Math 130 - Spring 2015 - Boyle -Exam 3

- NO CALCULATORS OR ELECTRONIC DEVICES ALLOWED.
- Use a separate answer sheet for each question.
- Give your pledge on page 1 only, covering the whole test.
- Draw a box around a final answer to a problem.

1. (14 points)

Let f be the function $f(x)=x^{2}-8 \ln x$ with domain $[1,10]$.
(a) (4 pts) What properties of f and its domain guarantee that f will assume maximum and minimum values?

Solution.

f is continuous and the domain is a finite closed interval.
(b) (10 pts) What are the maximum and minimum values assumed by f on its domain?
Solution.
$f^{\prime}(x)=2 x-(8 / x)$. So, $f^{\prime}(x)=0$ at $x=2$.
Because f is differentiable, the max and min values can only be assumed at inputs from $\{1,2,10\}$. So,

Minimum value is $f(2)=4-8 \ln (2)$
(by the first derivative test, or by comparing values).

Maximum value is $f(10)=100-8 \ln (10)$
(this number is larger than $f(1)=1$).

2. (10 points)

Find the equation of the tangent line to the curve $4 e^{2 x}-y^{2}=0$ at the point $(0,2)$.
Solution.
Use implicit differentation. Differentiating with respect to x :

$$
\begin{array}{r}
4 e^{2 x}-y^{2}=0 \\
8 e^{2 x}-2 y y^{\prime}=0 \\
2 y y^{\prime}=8 e^{2 x} \\
y^{\prime}=\frac{4 e^{2 x}}{y} .
\end{array}
$$

For $(x, y)=(0,2)$, we have $y^{\prime}=4 e^{0} / 2=2$, and an equation for that tangent line is

$$
y-2=2 x .
$$

3. (15 points)

Let f be the function with domain $[0,2]$ defined by $f(x)=\sqrt{2 x+1}$.
(a) (7 pts) Compute the left endpoint Riemann sum estimate $\sum_{i=1}^{4} f\left(x_{i-1}\right) \Delta x$ of $\int_{x=0}^{2} f(x) d x$ when $n=4$. (Do not simplify the expression you obtain from the definition.)
Solution.
$\sqrt{2(0)+1}(1 / 2)+\sqrt{2(1 / 2)+1}(1 / 2)+\sqrt{2(1)+1}(1 / 2)+\sqrt{2(3 / 2)+1}(1 / 2)$.
(b) (5 pts) Draw the graph of f and the rectangles corresponding to this Riemann sum.

Solution.

Not included for technical reasons.
(c) (3 pts) Is this Riemann sum greater or smaller than $\int_{x=0}^{2} f(x) d x$? Solution.
Smaller.

4. (14 points)

Let f be the function on $[0,4]$ defined by $f(x)=(2 x+1)^{1 / 4}$. Let R be the "region under the curve", i.e. the set of points (x, y) such that $0 \leq x \leq 4$ and $0 \leq y \leq f(x)$. Let S be the solid of revolution obtained by rotating R about the x-axis.

What is the volume of S ?
Solution.

$$
\begin{aligned}
\text { volume }(S) & =\int_{x=0}^{4} \pi[f(x)]^{2} \\
& =\int_{x=0}^{4} \pi(2 x+1)^{1 / 2} \\
& =\pi\left[(1 / 3)(2 x+1)^{3 / 2}\right]_{x=0}^{4} \\
& =\pi\left((1 / 3)\left(9^{3 / 2}-(1 / 3)(1)\right)\right) \\
& =\frac{\pi}{3}(27-1) \\
& =\frac{26 \pi}{3}
\end{aligned}
$$

5. (18 points)

(a) (8 pts) Compute the average value of the function $f(x)=\sec ^{2}(x)$ over the interval $[0, \pi / 4]$.
Solution.
This average value \bar{f} is

$$
\begin{aligned}
\bar{f} & =\frac{1}{(\pi / 4)} \int_{x=0}^{\pi / 4} \sec ^{2}(x) d x \\
& =\frac{4}{\pi}[\tan (x)]_{x=0}^{\pi / 4} \\
& =\frac{4}{\pi}(\tan (\pi / 4)-\tan (0)) \\
& ==\frac{4}{\pi}(1-0)=\frac{4}{\pi} .
\end{aligned}
$$

(b) (10 pts) Evaluate the definite integral

$$
\int_{x=\pi / 4}^{\pi / 2} \sqrt{\sin x} \cos x d x
$$

Solution.

We use a substitution $u(x)=u=\sin (x)$. Then $d u / d x=\cos x$, and

$$
\begin{aligned}
& \int_{x=\pi / 4}^{\pi / 2} \sqrt{\sin x} \cos x d x=\int_{u=u(\pi / 4)}^{u(\pi / 2)} \sqrt{u} d u \\
= & \int_{u=1 / \sqrt{2}}^{1} \sqrt{u} d u=\left[\frac{2}{3} u^{3 / 2}\right]_{u=1 / \sqrt{2}}^{1} \\
= & \frac{2}{3}-\frac{2}{3}(1 / \sqrt{2})^{3 / 2} \\
= & \frac{2}{3}\left(1-2^{-3 / 4}\right) .
\end{aligned}
$$

6. (14 points)

Let $s(t)$ be the position of a certain object at time t. Suppose its velocity at time t is $e^{2 t}$, and suppose $s(0)=1$.
What is the position of the object at time $t=3$?
Solution.

$$
\begin{aligned}
s(3)-s(0) & =\int_{t=0}^{3} e^{2 t} d t=\left[(1 / 2) e^{2 t}\right]_{t=0}^{3} \\
& =(1 / 2) e^{(2) 3}-(1 / 2) e^{(2) 0} \\
& =\left(e^{6}-1\right) / 2
\end{aligned}
$$

Therefore

$$
\begin{aligned}
s(3) & =s(0)+\left(e^{6}-1\right) / 2 \\
& =1+\left(e^{6}-1\right) / 2 \\
& =\frac{e^{6}+1}{2} .
\end{aligned}
$$

7. (15 points) According to Poiseuille's laws, the velocity v of blood in a blood vessel is given by $v(r)=k\left(R^{2}-r^{2}\right)$, where R is the (constant) radius of the blood vessel, r is the distance of the flowing blood from the center of the blood vessel, and k is a positive constant.

Given R, let $Q(R)$ be the total blood flow (in milliliter per minute) in the vessel. For n a positive integer, $Q(R)$ is approximated by a sum

$$
\sum_{i=1}^{n} v\left(r_{i}\right) 2 \pi r_{i} \Delta r
$$

in which $\Delta R=R / n$ and $r_{i}=i \Delta r$. As n goes to ∞, the sum converges to $Q(R)$.
(a) (5 pts) Write a definite integral which equals $Q(R)$.

Solution.

$$
\int_{r=0}^{R} v(r) 2 \pi r d r, \text { which equals } \int_{r=0}^{R} k\left(R^{2}-r^{2}\right) 2 \pi r d r
$$

(b) (10 pts) Compute the definite integral.

Solution.

$$
\begin{aligned}
\int_{r=0}^{R} k\left(R^{2}-r^{2}\right) 2 \pi r d r & =2 \pi k \int_{r=0}^{R}\left(R^{2}-r^{2}\right) r d r \\
& =2 \pi k \int_{r=0}^{R} R^{2} r-r^{3} d r \\
& =2 \pi k\left[(1 / 2) R^{2} r^{2}-(1 / 4) r^{4}\right]_{r=0}^{R} \\
& =2 \pi k\left((1 / 2) R^{4}-(1 / 4) R^{4}\right) \\
& =2 \pi k(1 / 4) R^{4}=\pi k(1 / 2) R^{4} \\
& =\frac{\pi k R^{4}}{2}
\end{aligned}
$$

