A few sample problems for inferential statistics

Problems.

1. Suppose X_{1}, \ldots, X_{100} are i.i.d random variables which have uniform distribution on $[a-2, a+2]$, where a is unknown. Suppose the random sample produces sample mean equal to 3 .
Compute a 95% confidence interval for a.
2. In a mythical national survey, 225 students are randomly selected from those taking calculus, and asked if calculus is their favorite subject. 100 students reply that calcululs is their favorite subject. Give a 95% confidence interval for the proportion of all students taking calculus who consider it their favorite subject.
3. Suppose in a random sample of 225 undergraduate men at UMD that the average best (highest weight) bench press is 150 pounds, with sample standard deviation of 20 pounds. Compute a 95% confidence interval for the average best bench press for for UMD undergraduate men.

Solutions to the problems are on the following pages.

Solutions.

1. Suppose X_{1}, \ldots, X_{100} are i.i.d random variables which have uniform distribution on $[a-2, a+2]$, where a is unknown. Suppose the random sample produces sample mean equal to 3 .
Compute a 95% confidence interval for a.

1. SOLUTION

A random variable with uniform distribution on $[a-2, a+2]$ has mean $\mu=a$. So, a confidence interval for μ is a confidence interval for a. Because $n=100$ is large, the confidence interval provided by the Central Limit Theorem applies:

$$
\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

A random variable with uniform distribution on $[a-2, a+2]$ has standard deviation $\sigma=4 / \sqrt{12}$. Our sample mean is 3 . Substituting, we get

$$
\begin{aligned}
& \left(3-(1.96) \frac{(4 / \sqrt{12})}{\sqrt{100}}, 3+(1.96) \frac{(4 / \sqrt{12})}{\sqrt{100}}\right) \\
= & (2.73,3.27) .
\end{aligned}
$$

2. In a mythical national survey, 225 students are randomly selected from those taking calculus, and asked if calculus is their favorite subject. 100 students reply that calcululs is their favorite subject. Give a 95% confidence interval for the proportion of all students taking calculus who consider it their favorite subject.

SOLUTION

We will plug into the 95% confidence interval formula for population proportion,

$$
\left(\widehat{p}-1.96 \frac{\sqrt{\widehat{p}(1-\widehat{p})}}{\sqrt{n}}, \widehat{p}+1.96 \frac{\sqrt{\widehat{p}(1-\widehat{p})}}{\sqrt{n}}\right)
$$

Here $\widehat{p}=100 / 225=20 / 45=4 / 9$ and $n=225$, so the interval is

$$
\begin{aligned}
& =\left(4 / 9-1.96 \frac{\sqrt{(4 / 9)(5 / 9)}}{\sqrt{225}}, 4 / 9+1.96 \frac{\sqrt{(4 / 9)(5 / 9)}}{\sqrt{225}}\right) \\
& =\left(4 / 9-1.96 \frac{\sqrt{20}}{(9)(15)}, 4 / 9+1.96 \frac{\sqrt{20}}{(9)(15)}\right) \\
& \approx(.38, .51)
\end{aligned}
$$

3. Suppose in a random sample of 225 undergraduate men at UMD that the average best (highest weight) bench press is 150 pounds, with sample standard deviation of 20 pounds. Compute a 95% confidence interval for the average best bench press for for UMD undergraduate men.

SOLUTION

We use for the interval the formula

$$
\left(\bar{X}-1.96 \frac{s}{\sqrt{n}}, \bar{X}+1.96 \frac{s}{\sqrt{n}}\right)
$$

Here the sample mean is 150 and $s=20$. So the desired 95% confidence interval, in pounds, for the average best bench press of UMD undergraduate men is

$$
\begin{aligned}
& \left(150-1.96 \frac{20}{\sqrt{225}}, 150+1.96 \frac{20}{\sqrt{225}}\right) \\
= & (150-1.96(.8), 150+1.96(.8)) \\
= & (48.4,51.6) .
\end{aligned}
$$

