
Random samples as i.i.d. random variables

Random samples

Often it’s of interest to estimate some property of a population by taking
a random sample.

Example: Poll 20 “randomly chosen” voters. Estimate the proportion of
all voters voting for Trump by the proportion of the 20 voting for Trump.

Example: Survey 10 “randomly chosen” MATH 131 students to estimate
the average number of pairs of shoes a student owns, similarly.

We would like to know how reliable our estimate is. To make sense of this,
we need a mathematical framework.

Independent random variables

Recall, events A,B in a sample space are independent if

Prob(A ∩ B) = Prob(A) · Prob(B) .

(Knowing whether an experimental outcome is in the set B gives you no
information about whether the experimental outcome is in A.) The idea of
indepence for random variables is essentially the same:

Discrete random variables X and Y are independent if for all numbers s

and t,
Prob(X = s and Y = t) = Prob(X = s) · Prob(Y = t) .

Continuous random variables X and Y are independent if for all numbers
intervals (a, b) and (c, d) in R,

Prob(a < X < b and c < Y < d) = Prob(a < X < b) · Prob(c < Y < d) .

(Knowing the outputs of one of the random variables gives you no informa-
tion about the outputs of the other random variable.) Here, “and” means ∩.

The definition for independence of n random variables is similar, using a
product of n probabilities.



Independent identically distributed (i.i.d.) random variables

Random variables are identically distributed if the have the same probability
law. They are i.i.d. if they are also independent.

I.i.d. random variables X1, . . . Xn give a mathematical framework for “ran-
dom sample”.

Example. For 1 ≤ k ≤ n, let Xk be the random variable which is 1 with
probability p and zero otherwise, and suppose these r.v.s are independent.
This is a model for flipping a coin n times, where the coin lands heads with
probability p, and Xk records the number of heads (zero or one) seen on the
kth flip.

Example. “Randomly” choose n voters and ask each if he/she would vote
for Trump. Let Xk = 1 if the answer is yes, and Xk = 0 otherwise. Here
we think of each Xk as an independent sample of the underlying population
distribution.

Now, to understand the reliability of an estimate from a random sample,
we want to say something mathematical about the sums and averages,

Sn = X1 + · · ·+Xn

Xn =
X1 + · · ·+Xn

n
=

Sn

n
.

What we’ll “say” are the Law of Large Numbers and the Central Limit The-
orem. For this we’ll need
Some mathematical facts about i.i.d. random variables:
If X and Y are independent, then E(XY ) = E(X)E(Y )
and Var(X + Y ) = Var(X) + Var(Y ).
If X1, X2, . . . Xn are i.i.d., each with mean µ and variance σ2, then

E(X1 + · · ·+Xn) = nµ

Variance(X1 + · · ·+Xn) = nσ2

st. dev.(X1 + · · ·+Xn) =
√
nσ .

These facts aren’t hard to prove, but we’ll skip proof.
That square root will be very important! It reflects that in the sum, there is
some cancellation of variations above and below the mean.


