Math 131 – Fall 2015 – Boyle –Exam 1

• NO CALCULATORS OR ELECTRONIC DEVICES ALLOWED.

• Use a separate answer sheet for each question; use the back side of an answer sheet if you need more space to answer a question.

- Give your pledge on page 1 only, covering the whole test.
- Draw a box around a final answer to a problem.

1. (10 points) What is the average value of $\sin x$ on the interval $[0, \pi]$?.

2. (13 points) Compute
$$\int_{x=1}^{3} x \ln x \, dx$$
.

3. (12 points) What is $\int_{x=1}^{\infty} \frac{1}{\sqrt{x}} dx$? (The possible correct answers are a number, ∞ , $-\infty$ or DNE (does not exist).)

4. (9 points) Graph the level curves in the xy plane for the function $z = x^2 + y^2$ for the values z = 0, z = 1 and z = 4. Put all the level curves on the same graph.

5. (16 points) Use the total differential (i.e., linear approximation) to estimate $\sqrt{(8.04)^2 + (5.98)^2}$. Choose appropriate numbers and do the arithmetic to give your final answer in decimal form

6. (14 points) Let $f(x,y) = x^2 + xy + y^2 - 6x - 3$.

(a) (4 pts) Find every critical point of f.

(b) (10 pts) At each critical point, determine whether f has a local minimum, a local maximum or a saddle.

7. (14 points) Let R be the region in the xy plane bounded between the graphs of $y = x^2$ and y = x.

- (a) (4 pts) Draw those graphs and indicate in your picture what R is.
- (b) (10 pts) Compute the integral $\int \int_R x^2 y \, dx dy$.

THERE IS ANOTHER QUESTION ON THE BACK SIDE OF THIS PAGE.

8. (12 points) Let I denote a given definite integral $\int_{x=a}^{b} f(x) dx$. Let L_n, T_n, S_n denote the estimates of I by the Left Sum, Trapezoid Rule and Simpson's Rule (respectively), using the values of the function f at equally spaced points x_0, x_1, \ldots, x_n . There are constants C_1, C_2, C_3 (depending on f and [a, b], but not on n) and constants k, m, p such that the following hold: $|L_n - I| \leq C_1(1/n^k); \quad |T_n - I| \leq C_2(1/n^m); \quad |S_n - I| \leq C_3(1/n^p)$. (We call the right hand side of such an inequality an *error bound*.)

- (a) (4 pts) What are k, m, p?
- (b) (2 pts) Suppose E is the error bound at n = 16, and you want to use another n for which the error bound is E/(10,000).
 (i) What should the new n be for the L_n approximation?
 (ii) What should the new n be for the S_n approximation?
- (c) (2 pts) Suppose [a, b] = [-2, 2] and n = 4. What are the points x_0, x_1, x_2, x_3, x_4 ?
- (d) (4 pts) Graph $f(x) = x^2$ over the interval [-2, 2], and draw a shaded region whose area is the estimate T_4 for $\int_{x=-2}^{2} x^2 dx$. Make your picture large and clear enough that we can see you understand.