Math 131 - Fall 2015 - Boyle -Exam 1

- NO CALCULATORS OR ELECTRONIC DEVICES ALLOWED.
- Use a separate answer sheet for each question; use the back side of an answer sheet if you need more space to answer a question.
- Give your pledge on page 1 only, covering the whole test.
- Draw a box around a final answer to a problem.

1. (10 points) What is the average value of $\sin x$ on the interval $[0, \pi]$?.
2. (13 points) Compute $\int_{x=1}^{3} x \ln x d x$.
3. (12 points) What is $\int_{x=1}^{\infty} \frac{1}{\sqrt{x}} d x$?
(The possible correct answers are a number, $\infty,-\infty$ or DNE (does not exist).)
4. ($\mathbf{9}$ points) Graph the level curves in the $x y$ plane for the function $z=x^{2}+y^{2}$ for the values $z=0, z=1$ and $z=4$. Put all the level curves on the same graph.
5. (16 points) Use the total differential (i.e., linear approximation) to estimate $\sqrt{(8.04)^{2}+(5.98)^{2}}$. Choose appropriate numbers and do the arithmetic to give your final answer in decimal form
6. (14 points) Let $f(x, y)=x^{2}+x y+y^{2}-6 x-3$.
(a) (4 pts) Find every critical point of f.
(b) (10 pts) At each critical point, determine whether f has a local minimum, a local maximum or a saddle.
7. (14 points) Let R be the region in the $x y$ plane bounded between the graphs of $y=x^{2}$ and $y=x$.
(a) (4 pts) Draw those graphs and indicate in your picture what R is.
(b) (10 pts) Compute the integral $\iint_{R} x^{2} y d x d y$.
8. (12 points) Let I denote a given definite integral $\int_{x=a}^{b} f(x) d x$. Let L_{n}, T_{n}, S_{n} denote the estimates of I by the Left Sum, Trapezoid Rule and Simpson's Rule (respectively), using the values of the function f at equally spaced points $x_{0}, x_{1}, \ldots, x_{n}$. There are constants C_{1}, C_{2}, C_{3} (depending on f and $[a, b]$, but not on n) and constants k, m, p such that the following hold: $\left|L_{n}-I\right| \leq C_{1}\left(1 / n^{k}\right) ; \quad\left|T_{n}-I\right| \leq C_{2}\left(1 / n^{m}\right) ; \quad\left|S_{n}-I\right| \leq C_{3}\left(1 / n^{p}\right)$. (We call the right hand side of such an inequality an error bound.)
(a) (4 pts) What are k, m, p ?
(b) (2 pts) Suppose E is the error bound at $n=16$, and you want to use another n for which the error bound is $E /(10,000)$.
(i) What should the new n be for the L_{n} approximation?
(ii) What should the new n be for the S_{n} approximation?
(c) (2 pts) Suppose $[a, b]=[-2,2]$ and $n=4$.

What are the points $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$?
(d) (4 pts) Graph $f(x)=x^{2}$ over the interval $[-2,2]$, and draw a shaded region whose area is the estimate T_{4} for $\int_{x=-2}^{2} x^{2} d x$. Make your picture large and clear enough that we can see you understand.

