Math 131 - Fall 2015 - Boyle -Exam 2

- NO CALCULATORS OR ELECTRONIC DEVICES ALLOWED.
- Use a separate answer sheet for each question; use the back side of an answer sheet if you need more space to answer a question.
- Give your pledge on page 1 only, covering the whole test.
- Draw a box around a final answer to a problem.

1. (10 points) For the initial value problem $d y / d x=-3 x y+2, y(0)=1$ use Euler's method with step size 0.1 to estimate $y(0.2)$.

2. (13 points)

(a) (10 pts) Solve the initial value problem $d y / d t=y^{2}, y(1)=1$.
(b) (3 pts) What is the largest b (either a number or ∞) such that the solution is valid on the interval $[1, b)$?
3.(12 points) Answer True or False. No comment required.
(a) If A and B are 2×3 matrices, then $A+B$ is well defined.
(b) If A and B are 2×3 matrices, then $A B$ is well defined.
(c) If A and B are 2×2 matrices, then $A B=B A$.
(d) If A, B, C are matrices such that $A B=A C$, then $B=C$.
4. (12 points) Suppose the following matrix is the augmented matrix of a system of linear equations in m equations in n variables:

$$
A=\left(\begin{array}{cccccc}
0 & -2 & 3 & 2 & 1 & 1 \\
0 & 0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) (4 pts) What is m ? What is n ?
(b) (3 pts) How many solutions does the system have?
(c) $(2 \mathrm{pts})$ How many free variables are there?
(d) (3 pts) Give an example of an augmented matrix for a system of linear equations with no solution.
5. (12 points) Suppose $y=\left(y_{1}, y_{2}\right), x=\left(x_{1}, x_{2}\right)$ and $y=f(x)$ is defined by

$$
y_{1}=\left(x_{1}\right)^{2} x_{2} \quad \text { and } \quad y_{2}=3 x_{1} x_{2} .
$$

(a) (7 pts) Compute the matrix which is the derivative of y with respect to x at the input $\left(x_{1}, x_{2}\right)=(1,-1)$.
(b) (5 pts) Use the derivative to approximate $f(1.1,-0.8)-f(1,-1)$.
6. (13 points) At time $t=0$, a tank holds 100 gallons of water that contain 20 pounds of salt. A salt solution (2 pounds of salt per gallon) flows into the tank at the rate of 8 gallons per hour, and the solution in the tank flows out at the same rate. The amount x of salt (in pounds) at time t (in hours) is assumed to satisfy a differential equation of the form $d x / d t=k x+b$, where k and b are constants.
(a) (4 pts$)$ What are k and b ?
(b) $(7 \mathrm{pts})$ Find a formula for x as a function of t.
(c) (2 pts) As $t \rightarrow \infty$, what value does $x(t)$ approach?
7. (13 points) The system of differential equations

$$
\frac{d x_{1}}{d t}=3 x_{1}-2 x_{1} x_{2} \quad \text { and } \quad \frac{d x_{2}}{d t}=-4 x_{2}+5 x_{1} x_{2}
$$

is chosen such that $x_{1}(t)$ and $x_{2}(t)$ model the sizes of two populations as a function of time.
(a) (2 pts) What is the equilibrium point of the system at which $x_{1} \neq 0$ and $x_{2} \neq 0$?
(b) (8 pts) Suppose at $t=0$ that $x_{1}=1=x_{2}$. Find an equation (expressed in terms of x_{1} and x_{2}, without using derivatives or t) satisfied by the solution $\left(x_{1}(t), x_{2}(t)\right)$ for all t.
(c) (3 pts) For the initial condition $x_{1}(0)=0.1$ and $x_{2}(0)=0.1$, what is the long term behavior of $x(t)$ as t increases?
8. (19 points) For the system of differential equations

$$
\begin{aligned}
x_{1}+4 x_{2} & =\frac{d x_{1}}{d t} \\
3 x_{1}+2 x_{2} & =\frac{d x_{2}}{d t}
\end{aligned}
$$

do the following.
(a) (2 pts) Presented as a matrix equation, this system takes the form $M x=$ $d x / d t$, where $x=\binom{x_{1}}{x_{2}}$ and $d x / d t=\binom{d x_{1} / d t}{d x_{2} / d t}$. What is the matrix M ?
(b) (8 pts) Find a matrix P and a diagonal matrix D such that $P^{-1} M P=D$. (c) (3 pts) Find the general solution $x(t)$ to the given linear system. (It should include two undetermined constants, C_{1} and C_{2}.)
(d) (3 pts) Compute P^{-1}.
(e) (3 pts) Assuming the initial condition $x_{1}=1$ and $x_{2}=2$ at $t=0$, compute the constants C_{1} and C_{2} in your general solution.

