An example computation using matrix multiplication

Joe sells coffee and donuts in three cities (which I'll call cities 1,2 and 3). A cup of coffee costs $\$ 1.00$ in city $1, \$ 2.00$ in city 2 and $\$ 3.00$ in city 3 . A donut costs $\$ 1.50$ in city $1, \$ 2.50$ in city 2 and $\$ 3.50$ in city 3 . This information is summarized in the 2×3 matrix

$$
A=\left(\begin{array}{lll}
1.00 & 2.00 & 3.00 \\
1.50 & 2.50 & 3.50
\end{array}\right)
$$

Yesterday, Joe sold 60, 70 and 80 cups of coffee in cities 1,2 and 3 (respectively) and he sold 52, 42 and 62 donuts in cities 1,2 and 3 (respectively). This is summarized in the 3×2 matrix

$$
B=\left(\begin{array}{ll}
60 & 52 \\
70 & 42 \\
80 & 62
\end{array}\right)
$$

Now we compute the matrix product

$$
C=A B=\left(\begin{array}{lll}
1.00 & 2.00 & 3.00 \\
1.50 & 2.50 & 3.50
\end{array}\right)\left(\begin{array}{ll}
60 & 52 \\
70 & 42 \\
80 & 62
\end{array}\right)=\left(\begin{array}{ll}
440 & 324 \\
545 & 402
\end{array}\right)
$$

For example, the computation for the entry $B(2,1)$ is

$$
\begin{aligned}
B(2,1) & =(1.50)(60)+(2.50)(70)+(3.50)(80) \\
& =90+175+280=545 .
\end{aligned}
$$

We interpret this by remembering the units and "cancelling". For example, $(1.50 \$ /$ cup $)(60$ cups $)=(1.50)(60)(\$ /$ cup $)($ cup $)=(1.50)(60) \$$. The number $B(2,1)=545$ is the total number of dollars Joe collected yeserday selling coffee in the three cities. The other entries of B have similar interpretations.

Matrices are often used to organize calculations like this. Choosing and "cancelling " units can be helpful for checking that the matrices are set up do do the computation you want.

