THE NORMAL DISTRIBUTIONS $\mathcal{N}(\mu, \sigma)$

Let μ and σ be real numbers, with $\sigma>0$, and suppose X is a random variable with mean μ and standard deviation σ. To say that X has the $\mathcal{N}(\mu, \sigma)$ distribution is the same thing as saying that its standardized version

$$
Z=\frac{X-\mu}{\sigma}
$$

has the standard normal distribution $\mathcal{N}(0,1)$, that is, Z has the distribution given by the probability density function

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

Note, we have $X=\mu+\sigma Z$, and for any numbers a, b with $a \leq b$, each of the following conditions is equivalent:

$$
\begin{aligned}
a & \leq Z & \leq b, \\
a \sigma & \leq \sigma Z & \leq b \sigma \\
\mu+a \sigma & \leq \mu+\sigma Z & \leq \mu+b \sigma \\
\mu+a \sigma & \leq X & \leq \mu+b \sigma \\
a \sigma & \leq X-\mu & \leq b \sigma
\end{aligned}
$$

Because these conditions define the same event, they have the same probability, in particular

$$
\begin{gathered}
\operatorname{Prob}(a \leq Z \leq b)=\operatorname{Prob}(a \sigma \leq X-\mu \leq b \sigma)=\operatorname{Prob}(\mu+a \sigma \leq X \leq \mu+b \sigma) \\
* * * \operatorname{Prob}(a \leq Z \leq b)=\operatorname{Prob}(\mu+a \sigma \leq X \leq \mu+b \sigma) * * *
\end{gathered}
$$

For example, if $\mu=7$ and $\sigma=3$, and we take $a=-2, b=2$, then

$$
\begin{aligned}
\operatorname{Prob}(-2 \leq Z \leq 2) & =\operatorname{Prob}(-2(3) \leq X-7 \leq 2(3)) \\
& =\operatorname{Prob}(7-2(3) \leq X \leq 7+2(3))=\operatorname{Prob}(1 \leq X \leq 13)
\end{aligned}
$$

SO: the distribution $\mathcal{N}(\mu, \sigma)$ looks just like $\mathcal{N}(0,1)$, except it is recentered at μ and rescaled by σ.

If the standardized version Z of X is approximately $\mathcal{N}(0,1)$, then " $=$ " in the last four equations becomes "approximately equals".

It's important to understand that for the normal distribution, the area under the curve (the graph of the p.d.f.) outside $[-, t, t]$ falls off vary rapidly as t gets large.

Let Φ denote the cumulative distribution function for the standard normal distribution. I.e., if $Z \sim \mathcal{N}(0,1)$, then $\operatorname{Prob}(Z \leq t)=\phi(t)$. Then (using $=$ to mean $=$ to the indicated decimal places (where the rightmost digit might be off by at most 1): when Z is standard normal, here is a table:
$k \quad \operatorname{Prob}(|Z|>k)$
1.32
2.046
$3 \quad .0027$
$4 \quad .000063$
$5 \quad .00000057$
6.0000000020
$7 \quad .0000000000026$
8 . 0000000000000012
$9 \quad .00000000000000000023$
$10.000000000000000000000015=(1.5) 10^{-23}$

The distribution of ANY normal random variable about its mean, measured in units of standard devitations, gives the exact same numbers.

For example, if X is a normally distributed random variable with mean μ and standard deviation σ, then
$\operatorname{Prob}(|X-\mu|>2 \sigma)=.046$ and $\operatorname{Prob}(|X-\mu|>4 \sigma)=.000063$.

