Fall 2014 - Math 463

Complex Variables for Scientists and Engineers

Homework \#2 - Due Tues. Sept. 16 in class

1. Give a polar form for $z=(2-2 i)^{3}$. What is its principal argument $A(z)$?
2. Find all the roots (first in exponential form, then give the real part and imaginary part) of $(-8)^{1 / 3}$.
3. Describe and sketch the set of points determined by the following conditions (one graph for each):
(a) $|z-3 i| \geq 1$
(b) $z \neq 0$ and $-\pi<\operatorname{Arg}(z)<\pi$
(c) $\operatorname{Re}(z)<1 / 2$
(d) $\operatorname{Im}(z)=1$
4. For each set in Exercise 3, describe and sketch the interior, the closure and the boundary.
5. Which sets in Exercise 3 are open? Which sets are closed?
6. (a) Write the function $f(z)=z^{2}+z+1$ in the form $f(z)=u(x, y)+i v(x, y)$.
(b) Write the function $f(z)=\frac{z}{\bar{z}}$ in the form $f(z)=u(r, \theta)+i v(r, \theta)$.
(c) Suppose that $f(x+i y)=x^{2}-y+i x y$. Write $f(z)$ in terms of z (Hint: use the relations $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\left.\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}\right)$
7. We examine some properties of the exponential function $f(z)=e^{z}$. If $z=x+i y$ (with x and y real numbers), then we define $e^{z}=e^{x}(\cos y+i \sin y)$.
(a) Are there any complex number z such that $f(z)=0$? (justify your answer)
(b) Describe the images under f of each of the following lines:
(a) $\operatorname{Im}(z)=1$
(b) $\operatorname{Re}(z)=1$
(c) $\operatorname{Im}(z)=\operatorname{Re}(z)$.
(c) Sketch the region onto which the set of points satisfying $0 \leq \operatorname{Re}(z) \leq 1$, $0 \leq \operatorname{Im}(z) \leq 1$ is mapped by the transformation $f(z)=e^{z}$.

From the text do the following (e.g. 14: ... lists problems from Section 14).

- Sec. 14: 1bd,3,6,8b
(Note: the answer listed for (b) should have been listed instead for (c).)
- Sec. 18: 10
- Sec. 24: 1acd

