Fall 2014 - Math 463
Homework \#3 - Due in class Tues. Sept. 23

1. Sketch the region onto which the sector $r \leq 1,0 \leq \theta \leq \pi / 4$ is mapped by the transformation $f(z)=z^{2}$.
2. For each of the following, find the image of S under the transformation $w=f(z)$.
(a) $f(z)=(1+i) z ; S$ is the line $y=2 x+1$.
(b) $f(z)=1 / z ; S$ is the circle $|z|=2$.
3. Find the image of the circle $\left|z-z_{0}\right|=R$ under the transformation $f(z)=i z-2$.
4. Show that the image of the vertical line $\operatorname{Re}(z)=1$ under the transformation $f(z)=1 / z$ is a circle of radius $1 / 2$, centered at $z_{0}=1 / 2$.
5. Consider the limit $\lim _{z \rightarrow 0}\left(\frac{\bar{z}}{z}\right)^{2}$
(a) What value does the limit approach as z approaches 0 along the real axis?
(b) What value does the limit approach as z approaches 0 along the imaginary axis?
(c) Does $\lim _{z \rightarrow 0}\left(\frac{\bar{z}}{z}\right)^{2}$ exists? Explain.
6. Show that the function $f(z)=\operatorname{Arg}(z)$ is discontinuous at $z=-1$.
7. Problem 1, page 70 (Sec. 24)
8. Sec. 26: 1a, 1c, 6
