Fall 2014 - Math 463
Complex Variables for Scientists and Engineers
Homework \#1 - Due Tuesday Sept. 9 in class

1. (a) Give the real part, imaginary part and modulus of the following complex numbers:

$$
-3+9 i, \quad-2 i, \quad 5, \quad \overline{-5 i+3}, \quad \overline{1+2 i+\overline{(3-i)}}
$$

(b) Let $z_{1}=3+2 i$ and $z_{2}=4-2 i$. Give the real part and imaginary part of the following complex numbers:

$$
z_{1}+z_{2}, \quad z_{1}-z_{2}, \quad z_{1} z_{2}, \quad z_{1}^{-1}, \quad \frac{z_{2}}{z_{1}} .
$$

2. Verify that each of the two numbers $z=1+i$ and $z=1-i$ satisfies the equation $z^{2}-2 z+2=0$.
3. Plot the following points on a graph:

$$
z_{3}=-3 i, \quad z_{4}=1+2 i, \quad \overline{z_{4}}, \quad z_{3}+z_{4}, \quad 2 z_{4} .
$$

4. Describe and sketch the set of points determined by the following conditions (one graph for each):
(a) $|z-4+3 i|=3$
(b) $|z| \leq 3$
(c) $\operatorname{Im}(z)=3$
(d) $\operatorname{Re}(\bar{z}+2+i)=1$
5. Show that for any complex number z we have
(a) $\operatorname{Re}(i z)=-\operatorname{Im}(z)$
(b) $|\bar{z}|=|z|$
6. Writing $z=x+i y$, show that the set of all complex numbers satisfying

$$
z^{2}+\bar{z}^{2}=2
$$

is an hyperbola.

