STUDY GUIDE, EXAM 2, MATH 463

The exam covers Chapters $4,5,6$ of Brown and Churchill (Vol.9).
Some exam problems are inspired by a review of the assigned homework.

When I say f is analytic, I mean there is a domain D in \mathbb{C} such that $f: D \rightarrow \mathbb{C}$ and $f^{\prime}(z)$ exists everywhere. (It follows as described in Chapter 4 that $f(z)$ then has derivatives of all orders.) Below, D denotes a domain (connected open subset of \mathbb{C}).

Chapter 4.

There are a slew of definitions, facts and theorems you should know:

- Definitions of contour integral, domain, simply connected domain.
- If f is continuious on a contour C of length L, and M is a positive number such that $|f(z)| \leq M$ for all z on the contour, then $\left|\int_{C} f(z) d z\right| \leq M L$.
- For the contour $z(t)=R e^{i t}, 0 \leq t \leq 2 \pi$, if n is an integer not equal to -1 , then $\int_{C} z^{n} d z=0$; and, $\int_{C} 1 / z d z=2 \pi i$.
- For a continuous function $f: D \rightarrow \mathbb{C}$, TFAE.
(1) Path independence for all contour integrals $\int_{C} f(z) d z$.
(2) Integrates to zero on all closed contours.
(3) f has an antiderivatve on D.
- Cauchy-Goursat Theorem.
- If f is analytic on a simply connected D, then for every closed contour C, $\int_{C} f(z) d z=0$.
- Cauchy integral formula (for $f(z)$)
- Generalized Cauchy integral formula (for $f^{(n)}(z)$, the nth derivative)
- Principle of Deformation of Paths
- If $f: D \rightarrow \mathbb{C}$ and $f^{\prime}(z)$ exists for all z in D, then $f^{(n)}$ exists for all $n>0$, for all z in D.
- Morera's Theorem
- Cauchy's inequality $\left.\left(\left|f^{(n)}\right| \leq\left(n!M_{R}\right) / R^{n}\right)\right)$
- Liouville's Theorem
- Fundamental Theorem of Algebra (proved using Liouville's Theorem)
- Maximum Modulus Principle
- Gauss Mean Value Theorem

Chapter 5

For a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ with complex coefficients, there is a ρ in $[0,+\infty]$ (called the radius of convergence of the series) such that

- $\left|z-z_{0}\right|<\rho \Longrightarrow$ the series converges ,
- $\left|z-z_{0}\right|>\rho \Longrightarrow$ the series diverges .

Now suppose $\rho>0$ and f is defined on the open disc $B_{\rho}\left(z_{0}\right)$ by setting $f(z)=$ $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. Then

- f is analytic on $B_{\rho}\left(z_{0}\right)$.
- For every z in $B_{\rho}\left(z_{0}\right)$, the series converges absolutely.
- If $0<s<\rho$, then the series converges uniformly on $\left\{z:\left|z-z_{0}\right| \leq s\right.$.
- On $B_{\rho}\left(z_{0}\right), f$ has has derivatives of all orders, and these are given by series which can be computed by differentiating or antidifferentiating the series termwise.
- Likewise a series for an antiderivative of f on $B_{\rho}\left(z_{0}\right)$ can be computed by termwise antiderivation.
- The series can only be the Taylor series for $f(z)$ at z_{0} : for each $n, a_{n}=$ $(1 / n!) f^{(n)}\left(z_{0}\right)$.
If f is analytic on a domain D and g is analytic on a domain E containing D and $f=g$ on D, then g is called an analytic continuation of f. For example, define $f(z)=\sum_{n=0}^{\infty} z^{n}$ on $D=B_{1}(0)$ and define $g(z)=1 /(1-z)$ on $E=\{z \in \mathbb{C}: z \neq 1\}$.

The radius of convergence ρ is the smallest R such that there is a point w such that $\left|w-z_{0}\right|=R$ and there is no analytic continuation of f to a domain containing w. This can be used to say for example what the radius of convergence of a Taylor series of $f(z)=e^{z} /(z(z-3 i))$ is at, say, the point $2+5 i$ is - it is simply the distance to the closer of the numbers 0 and $3 i$.

The radius of convergence ρ can also be described in terms of the coefficients a_{n} as follows. Let A be the largest number in $[0,+\infty]$ which is the limit of some subsequence of the sequence of numbers $\left|a_{n}\right|^{1 / n}$. Then $\rho=1 / A$. (Here, $1 / 0$ means ∞ and $1 / \infty$ means 0 .) (For an example, consider $\sum_{n=0}^{\infty} 2^{n} z^{n}$.) (This characterization won't be used on Exam 2.)

Chapter 6

- Laurent series $f(z)=\sum_{n=-\infty}^{+\infty} c_{n}\left(z-z_{0}\right)^{n}$, valid for z in $D=\{z: r<$ $\left.\left|z-z_{0}\right|<R\right\}$ if f is analytic on D. Then

$$
c_{n}=\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

if (for example) C is the contour $z(t)=s e^{i t}, 0 \leq t \leq 2 \pi$ and $r<s<R$.

- The three types of isolated singularities. Definitions via Laurent series.
- Behavior of the three types in a small deleted neighborhood of the singularity.
- Casorati-Weierstrass Theorem, proved with Riemann's Theorem.
- Picard's Theorem
- Computing integrals with residues. With the residue at infinity.
- Computing the residue at a pole.
- Order of a zero. Order of a pole.
- If $f(z)=1 / g(z)$, then a zero of order m for g is a pole of order m for f.
- For f analytic on D, if $f\left(z_{0}\right)=0$ and f is not identically zero on a neighbrhood of z_{0}, then f is nonzero on some deleted neighborhood of z_{0}.
- Coincidence Principle.
- Suppose f, g are analytic at z_{0}, and are not identically zero. (Suppose $z_{0}=$ 0 for convenience.) Then there are nonnegative integers j, k and analytic functions F, G not zero at 0 such that $f(z)=z^{j} F(z)$ and $g(z)=z^{k} G(z)$. Then on a deleted neighborhood of $0, f(z) / g(z)=z^{j-k} F(z) / G(z)$ and
$F(z) / G(z)$ is analytic with some Taylor series $\sum_{n=0}^{\infty} a_{n} z^{n}$. Suppose you know the coefficients for the Taylor series of F and G. Then you can solve for the a_{n} :

$$
\begin{aligned}
F(z) & =\left(a_{0}+a_{1} z+a_{2} z^{2}+\cdots\right) G(z) \\
\left(b_{0}+b_{1} z+b_{2} z^{2}+\cdots\right) & =\left(a_{0}+a_{1} z+a_{2} z^{2}+\cdots\right)\left(d_{0}+d_{1} z+d_{2} z^{2}+\cdots\right)
\end{aligned}
$$

To solve. Note $b_{0}=F(0) \neq 0 \neq G(0)=d_{0}$.
First $b_{0}=a_{0} d_{0}$ determines a_{0}.
Then $b_{1}=a_{0} d_{1}+a_{1} d_{0}$ gives you a_{1}. Then $b_{2}=a_{0} d_{2}+a_{1} d_{1}+a_{2} d_{0}$ gives you a_{2}.
Etc.
If say $j-k=-4$, then the Laurent series for f / g is $\left(1 / z^{4}\right)\left(a_{0}+a_{1} z+\right.$ $a_{2} z^{2}+\cdots$, and the residue for f / g is a_{3}.

Often the easiest way to find coefficients for a Taylor or Laurent series is through known series. Another useful trick is to use

$$
\frac{1}{1-f(z)}=1+f(z)+[f(z)]^{2}+\ldots
$$

when $|f(z)|<1$.

