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Abstract. Given square matrices B and B′ with a poset-indexed block struc-

ture (for which an ij block is zero unless i ¹ j), when are there invertible ma-

trices U and V with this required-zero-block structure such that UBV = B′?

We give complete invariants for the existence of such an equivalence for matri-

ces over a principal ideal domain R. As one application, when R is a field we
classify such matrices up to similarity by matrices respecting the block struc-

ture. We also give complete invariants for equivalence under the additional
requirement that the diagonal blocks of U and V have determinant 1. The
invariants involve an associated diagram (the “K-web”) of R-module homo-
morphisms. The study is motivated by applications to symbolic dynamics and

C∗-algebras.
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1. Introduction

Let R be a principal ideal domain, let P = {1, . . . , N} be a finite poset, and
let MP denote the set of square matrices B over R with a fixed N × N block
structure for which an ij block is zero unless i ¹ j. (Some infinite matrices are
allowed; complete definitions are in Section 2.) Let GLP be the invertible matrices
in MP and let SLP be those invertible matrices for which each diagonal block
has determinant 1. We say matrices B,B′ in MP are GLP equivalent (or just
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equivalent) if there exist U, V in GLP such that UBV = B′. We say they are SLP
equivalent if there exist U, V in SLP such that UBV = B′. In this paper we classify
matrices in MP up to GLP equivalence and up to SLP equivalence.
When P = {1} (i.e. posets are irrelevant), the classification is classical. Matrices

B and B′ (of the same size, over R) are GL equivalent iff they have a common
Smith normal form, iff the R-modules cok(B) and cok(B ′) are isomorphic. For
more general P, a Smith form is not enough: modules attached to certain principal
block submatrices appear as additional invariants, and also homomorphisms among
these.
So, following [H6], we attach to each matrix B in MP a diagram (the “K-web”

of B) of homomorphisms of finitely generated R-modules. These are kernel and
cokernel modules of certain principal submatrices of B related to the poset block
structure. Given matrices B and B′ in MP , we characterize the GLP and SLP
equivalence of B and B′ by the existence of an appropriate isomorphism of their
K-webs. The problem of deciding when such K-web isomorphisms exist is tractable
in some cases, but we have no general decision procedure.
While we work over a PID, the existing work we know on block equivalence [KL]

and the closely related subject of poset representations (e.g. [NR, Ar, S]) mostly
concerns matrices over a field. Our exploitation of the poset blocking structure, our
study of block SL equivalence, and our (limited) consideration of infinite matrices
also appear to be unusual in the study of block equivalence.
Most results in this paper are extracted or generalized from the algebraic invari-

ants introduced and computed for the caseR = Z by the second author in [H1]-[H6],
especially [H4, H6], in the course of his classification of flow equivalence of shifts
of finite type up to flow equivalence (following [PS, BowF, F]), with applications
to Cuntz-Krieger algebras (following [C, CK, R]). Nevertheless, we have several
reasons for the current paper. We develop the invariants (and the open problems
which accompany them) in an accessible and purely matrix-theoretic form. The ar-
guments of [H5, H6] intertwine the algebraic questions with issues of positivity and
symbolic dynamics. We sharpen and clarify the classifying algebraic results implicit
in [H4, H6]. In particular, given B,B′ in MP with isomorphic K-webs, [H4, H6]
will produce an equivalence between possibly larger matrices ιB, ιB ′, where e.g. the
additional entries of ιB agree with the identity (see (4.10) for a precise definition
of ι). In this paper we give complete results for matrices of a given fixed size, and
these require additional structure. There is a treatment of the SFT flow equiv-
alence problem [B] which differs from the earlier approach of the second author
[H3, H6] and which reduces the flow equivalence classification to precisely the alge-
braic problem addressed in this paper. This treatment, which produces additional
information, requires the current paper for completion. The results in the current
paper on automorphisms induced by self-equivalences are applied in [B] with results
of that paper to give new information on the mapping class group of a shift of finite
type. The SLP(Z) equivalence problem addressed in this paper is an easier cousin
of SLP(Z[t]) equivalence, which plays a role in the classification of shifts of finite
type up to isomorphism which is analogous to the role of SLP(Z) equivalence for
the classification up to flow equivalence. We want to understand the easier problem
clearly. Finally, methods and results introduced in this paper may have application
to the classification of nonsimple Cuntz-Krieger algebras, following [H2, H3]. (We
use “K” in “K-web” because when R = Z, the R-modules in the reduced K-web



POSET BLOCK EQUIVALENCE OF INTEGRAL MATRICES 3

can be identified with the K-theoretic groups of certain ideals and quotients of an
associated nonsimple Cuntz-Krieger C∗-algebra [C][H6].)
We now describe the structure of the paper. In section 2, we give precise defi-

nitions and notation for our matrices and block structures. In section 3, we define
our diagrams (“K-webs”) of homomorphisms, and the web isomorphisms induced
by equivalences. In section 4 we state our classification theorems; in addition to
classifying poset block equivalence by isomorphisms of K-webs, we explain which
web isomorphisms can be induced by an equivalence. The proofs are carried out
in sections 5 and 6. Section 7 gives examples illustrating the invariants. Section
8 explains how the invariants simplify in certain cases. Section 9, in the case R
is a field, applies the equivalence results to classify matrices in MP up to GLP
similarity.
We thank Shmuel Friedland and Lawrence Levy for helpful comments.

2. Definitions

For the rest of the paper, we fix a poset (partially ordered set) (P,¹), or simply
P. We describe the order with a relation ≺ satisfying the following conditions (in
which < refers to the usual order on N) for all i, j, k in P:

i ≺ j =⇒ i < j , and(2.1)

i ≺ j ≺ k =⇒ i ≺ k .

Here we write i ≺ j to mean that i ¹ j and i 6= j. We can visualize the poset as
an acyclic directed graph with vertex set {1, ..., N} and transitions i→ j iff i ≺ j.
We say that a matrix (or a block in a matrix) is square if its rows and columns

are indexed by the same set. Let n denote the vector (n1, . . . , nN ), where ni ∈
{1, 2, . . . ,∞} = N ∪ {∞}, and ∞ denotes countable infinity. We say a square
matrix M is “n-blocked” if it splits into blocks Mij , 1 ≤ i, j ≤ N , where Mij

denotes the intersection of the ith block row and the jth block column, and has
size ni × nj . We also use the notation M{i, j} = Mij and M{i} = Mii. More
generally, for s ⊂ P, we let M{s} denote the principal submatrix of M on blocks
indexed by s. For example, M{i, j} =Mij and M{i} =Mii.
LetMP(n,R) denote the set of n-blocked matrices, with entries in R, satisfying

the following conditions:

• If Mij is not the zero block, then i ¹ j.
• For all but finitely many entries of M , M(s, t) = δst.

In the latter condition, we used the Kronecker delta: δst = 1 if s = t and δst = 0
otherwise. This condition is vacuous if every ni is finite. The matrices inMP(n,R)
are block upper triangular and in addition certain blocks above the diagonal must
be zero. The set MP(n,R) is closed under addition, and is closed under matrix
multiplication because the relation ¹ is transitive.
For M ∈ MP(n,R), we define the determinant detM in the obvious way: it

equals detF for any finite principal submatrix F such that M(s, t) = δst except
for entries (s, t) of F . Let SLP(n,R) denote the set of matrices in MP(n,R) with
determinant 1 and similarly let GLP(n,R) denote the set of matrices in MP(n,R)
with determinant a unit in R. So, in the trivial case N = 1, there is no block con-
dition and we have SLP(n,R) = SL(n1,R) and GLP(n,R) = GL(n1,R). We will
use abbreviated notations such as MP , GLP , and SLP for MP(n,R), GLP(n,R),
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and SLP(n,R); also M(R) or M for MP(n1,R), GL or GL(R) for GLP(n1,R),
and SL or SL(R) for for SLP(n1,R).
We say two matrices B,B′ in MP are equivalent inMP (or are GLP equivalent)

if there are matrices U, V in GLP such that UBV = B′. We say they are SLP
equivalent if in addition U and V are in SLP . (If n1 = ∞ and e.g. R = Z, then
two matrices in GL(n1,R) are SL(R) equivalent if and only if they lie in the same
element of the algebraic K-theory group K1(R) [Ros].)

Remark 2.2. Note, the semigroups SLP(n,R) and GLP(n,R) are actually groups.
For example, given B ∈ SLP(n,R), by assumption the diagonal blocks of B are
invertible, so we may find a block diagonal matrix D in SLP(n,R) such that every
diagonal block of DB is an identity matrix. Then we may multiply by elementary
matrices Ei in SLP(n,R) to clear out any remaining nonzero offdiagonal entries.
So, if E is the product of these Ei in the appropriate order, then EDB = I. But
ED ∈ SLP(n,R) because SLP(n,R) is a semigroup.

3. The K-web

We adopt the notations and definitions of the previous section.
To any element B of MP we will attach a diagram of homomorphisms of R-

modules (the “K-web” of B), which will be an invariant of GLP -equivalence. For
SLP -equivalence there will be a finer invariant. Then we will define the isomorphism
ofK-webs induced by an equivalence. The invariant is built up from exact sequences
derived from two by two block triangular matrices [H5], and we discuss these next.

2× 2 block triangular matrices.
Let S = (R X

0 D ) be a 2 × 2 block triangular matrix. It is routine to verify that
we have well defined R-module homomorphisms of finitely generated R-modules,

kerD → cokR cokR→ cokS cokS → cokD

v 7→ [Xv] [v] 7→ [( v0 )] [( vw )] 7→ [w]

and with these homomorphisms, the following sequence is exact:

kerD → cokR→ cokS → cokD → 0 .(3.1)

Now suppose

S′ =

(
R′ X ′

0 D′

)
, U =

(
U1 U2

0 U4

)
, V =

(
V1 V2

0 V4

)
,

where S′, U and V are presented with the same 2×2 block structure as S, and also
(U, V ) is an equivalence from S to S ′, that is USV = S′ with U and V invertible.

Proposition 3.2. The equivalence (U,V) above induces an isomorphism of exact
sequences

kerD −−−−→ cokR −−−−→ cokS −−−−→ cokD −−−−→ 0

a

y b

y c

y d

y

kerD′ −−−−→ cokR′ −−−−→ cokS′ −−−−→ cokD′ −−−−→ 0

by the rules

a : x 7→ (V4)
−1x , b : [x] 7→ [U1x] , c : [x] 7→ [Ux] , d : [x] 7→ [U4x] .
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The verification of the proposition is an exercise [H5]. In the proposition, “iso-
morphism” means that each of the maps a, b, c, d is an R-module isomorphism and
the diagram commutes.
Because R is a PID, a finitely generated R-module is the direct sum of a free

module F and a torsion module T . An endomorphism ϕ : F ⊕ T → F ⊕ T has the
form (f, t) 7→ (ϕ1(f), ϕ2(f, t)). Of course, the endomorphism ϕ1 : F → F can be
represented as multiplying vectors in the free module F by some matrix Φ1 over R,
and det(Φ1) is independent of the choice of basis for the vector representation. We
define det(ϕ1) = det(Φ1) and det(ϕ) = det(ϕ1). In the case F = 0 we adopt the
notational convention that det(ϕ) = det(ϕ1) = 1.

Proposition 3.3. Suppose in Proposition 3.2 that the following additional condi-
tions hold: D = D′ (so det(a) and det(d) are defined), and det(U4) = det(V4) = 1.
Then det(a) = det(d).

Proof. KerD and the free part of cokD are R-modules of equal rank, hence the
claim is true by our notational convention if D is nonsingular. The claim is also
easily checked if D = 0. So suppose det(D) = 0 and D 6= 0.

Consider first the special case that D has the block form D =

(
0 0
0 W

)
with W

nonsingular. The equivalence USV = S ′ implies U4DV4 = D. Letting U4 = E and
V −1

4 = F , we write the equation U4D = DV −1
4 in the block form

(
E11 E12

E21 E22

)(
0 0
0 W

)
=

(
0 0
0 W

)(
F11 F12

F21 F22

)

which gives
(
0 E12W
0 E22W

)
=

(
0 0

WF21 WF22

)
.

The nonsingularity of W implies E12 = 0 and F21 = 0, so we have
(
E11 0
E21 E22

)(
0 0
0 W

)
=

(
0 0
0 W

)(
F11 F12

0 F22

)
.

It follows from the definition of a and d that det(d) = det(E11) and det(a) =
det(F11). Now E22W =WF22 implies det(E22) = det(F22) and then det(E11)det(E22) =
1 and det(F11)det(F22) = 1 imply det(E11) = det(F11). This proves the proposition
in the special case.
In the general case, it is a consequence of the Smith normal form (reviewed in

Section 4) that there exist P,Q in GL(R) such that PDQ has the form

(
0 0
0 W

)

with W nonsingular. The equivalence (U4, V4) : D → U4DV4 = D is a composition
of equivalences

D
(P,Q)
−−−−→ PDQ

(PU4P
−1,Q−1V4Q)

−−−−−−−−−−−−−→ PDQ
(P−1,Q−1)
−−−−−−−→ D

and we have the homomorphisms a : kerD → kerD and d : cokD → cokD as corre-
sponding compositions

kerD
a1−−−−→ kerPDQ

a2−−−−→ kerPDQ
(a1)

−1

−−−−→ kerD ,

cokD
d1−−−−→ cokPDQ

d2−−−−→ cokPDQ
(d1)

−1

−−−−→ cokD .
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Now det(a) = det(a1)det(a2)det((a1)
−1) = det(a2), likewise det(d) = det(d2), and

det(a2) = det(d2) by the special case considered earlier. Therefore det(a) = det(d).
¤

The full K-web of B.
We say a subset s of P is convex if s is nonempty and for all k in P,

{i, j} ⊂ s and i ≺ k ≺ j =⇒ k ∈ s .

We say a subset d of P is a difference set if d is convex and there are convex sets
r, s in P, r ⊆ s, such that d = s \ r and

i ∈ r and j ∈ d =⇒ j 6≺ i .

Given such r, s, and d, let B{s} = S, B{r} = R, and B{d} = D. Then S has the
block form S = (R X

0 D ) and we have an associated exact sequence

kerD → cokR→ cokS → cokD → 0(3.4)

as discussed above for (3.1).
The full K-web of B is a certain family of R-modules and R-module homomor-

phisms. To each convex subset c of P, we attach the module Cc(B) := cokB{c}.
To each difference set d in P, we attach the module Kd(B) := KerB{d}. The mod-
ules Cc, Kd are the modules of the full K-web. (More formally, we have a family
of modules indexed by the disjoint union of C and D, where C is the collection of
convex subsets of P and D is the collection of difference sets in P.) The homo-
morphisms (or strands) of the full K-web are the homomorphisms arising from one
of the exact sequences (3.4). (More formally, each triple (r, s, d) giving rise to one
of the sequences (3.4), together with one of the pairs (d, r), (r, s), (s, d), indexes a
corresponding strand of the full K-web.) We visualize the web as a directed graph.

The (reduced) K-web of B.
The full K-web of B is a powerful (often complete) invariant of GLP equivalence.

We will focus on a more managable invariant, the reduced K-web of B, which turns
out to be equally strong (Corollary 4.12). The reducedK-web is a certain subfamily
of the modules and strands comprising the full K-web. To describe these, we use a
little more notation. For i ∈ P, let ri = {j : j ≺ i} and si = {j : j ¹ i}; so, if ri is
nonempty then {i} = si \ri is a difference set. The index set for the modules Cc(B)
retained in the reduced K-web is the set of c such that for some i ∈ P, c = {i} or
c = si or c = ri 6= ∅. The index set for the modules Kd(B) retained in the reduced
K-web is the set of d = {i} such that ri 6= ∅.
Given ri 6= ∅, let B{si} = Si, B{ri} = Ri, and B{i} = Di (D for difference set

or diagonal block), and write Si in the block form

Si =

(
Ri Xi

0 Di

)
.

If i ∈ P and ri 6= ∅, then the ith level of the reduced K-web is composed of the
modules and strands in the exact sequence

kerDi → cokRi → cokSi → cokDi → 0(3.5)

(representing K{i} → Cri
→ Csi

→ C{i} → 0). If i has no predecessor, then the
ith level is simply the module cokSi, with no maps. Notice that different levels can
overlap, since it is possible that ri = rj or ri = sj with j ≺ i. The set of strands of
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the reduced K-web is the union of the strands on all the levels, 1 ≤ i ≤ N , together
with the strands cokSj → cokRi satisfying the following two conditions:

• j is an immediate predecessor of i (this means j ≺ i and there is no k such
that j ≺ k ≺ i), and

• j is not the unique immediate predecessor of i.

Note, any such strand cokSj → cokRi does occur in the full K-web, in the exact
sequence associated in (3.4) to the triple (r, s, d) = (sj , ri, ri \ sj).
From this point on, unless we refer explicitly to a full K-web, by K-web we will

mean the reduced K-web. We write K(B) for the K-web of B. K(B) depends on
P and is defined for B ∈MP .

Example 3.6. The diagram below gives the K-web for the poset P = {1, 2, 3, 4}
for which the order ¹ agrees with ≤ except that 2 ± 3. For this P and B ∈ MP ,
there is no R1 (since 1 has no predecessor), R2 = R3 = B{1}, R4 = B{1, 2, 3};
S1 = B{1}, S2 = B{1, 2}, S3 = B{1, 3}, S4 = B; and Di = B{i}, i = 1, 2, 3, 4.
This same P is used in Example 7.2, which has some further numerical calculations.

kerD2
- cokR2

¾ kerD3

¼©
©
©
©
© H

H
H
H
Hj

cokD2
¾ cokS2 cokS3

- cokD3
H
H
H
H
Hj ¼©

©
©
©
©

kerD4
- cokR4

- cokS4
- cokD4

Induced isomorphism and SL isomorphism of K-webs.
Given P, the definition of isomorphism of (full or reduced)K-webs is obvious: an

isomorphism is a collection of isomorphisms of all correspondingly indexed modules,
which intertwine all the corresponding strands. Suppose B,B ′ are in MP and
UBV = B′, with U, V in GLP . When s is a convex set in P, one easily checks that
there is an induced equivalence

U{s}B{s}V {s} = B′{s} .

Therefore, given a convex set d which is the difference set of convex sets, d = s \ r,
the equivalence UBV = B′ induces a 2× 2 block equivalence
(
U{r} U{r, d}
0 U{d}

)(
B{r} B{r, d}
0 B{d}

)(
V {r} V {r, d}
0 V {d}

)
=

(
B′{r} B′{r, d}
0 B′{d}

)
.

Then we define the induced isomorphism of K-webs (full or reduced) to be given
by the isomorphisms

cokB{s} → cokB′{s}

[x] 7→ [U{s}x]

(for every convex set s) and

kerB{d} → kerB′{d}

y 7→ (V {d})−1y

(for every difference set d).
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It follows from the discussion of the 2 × 2 block case that these are indeed R-
module isomorphisms, and that adding these isomorphisms to the disjoint union of
the full K-webs of B and B′ produces a commuting diagram as required. We call
the collection of these induced isomorphisms the full K-web isomorphism induced
by the equivalence (U, V ). The K-web isomorphism κ(U,V ) induced by (U, V ) is
simply the restriction of the full K-web isomorphism to the modules of the reduced
K-web. The restriction of a K-web isomorphism κ to level i is denoted κi. When
i has a predecessor, we use notation κi = (ai, bi, ci, di):

kerDi −−−−→ cokRi −−−−→ cokSi −−−−→ cokDi −−−−→ 0

ai

y bi

y ci

y di

y

kerD′i −−−−→ cokR′i −−−−→ cokS′i −−−−→ cokD′i −−−−→ 0

(3.7)

If i has no predecessor, we may still use the names ci and di, which make sense and
are equal in this case.
Let Imm(i) denote the set of immediate predecessors of i in P. We explain now

why we include in the reduced K-web the strands cok(Sj) → cokRi, j ∈ Imm(i),
when |Imm(i)| > 1: with the inclusion of these strands, it holds for a K-web
isomorphism κ that when |Imm(i)| > 1, the map bi : cokRi → cokR′i is determined
by the maps cj : cokSj → cokS′j , j ∈ Imm(i). A specific case of this is the next
proposition, whose easy proof is left to the reader. This proposition is the precise
consequence of the additional strands which will be used in our construction of
GLP equivalences from K-web isomorphisms.

Proposition 3.8. Using the notation of (3.7), suppose κ is a K-web isomorphism,
i ∈ P, i has a predecessor, cj = Id for every j in Imm(i), and Ri = R′i. Then
bi = Id.

Continuing with the notation of (3.7), note that the isomorphism di is uniquely
determined by (bi, ci). In the special case that each Di = D′i and U{i} and
V {i} have determinant 1, we get by Proposition 3.3 the additional condition that
det(ai) = det(di).

Definition 3.9. Suppose that B,B′ are matrices inMP such that (in the notation
above) Di = D′i, 1 ≤ i ≤ N . Then an isomorphism of their full or reduced K-webs
is an SL-isomorphism if det(ai) = det(di) whenever {i} is a difference set.

We can now state the following theorem.

Theorem 3.10. Suppose B and B′ are matrices in MP and (U, V ) : B → B′ is a
GLP equivalence. Then this equivalence induces a full K-web isomorphism giving
by restriction the reduced K-web isomorphism κ(U,V ) : K(B) → K(B′). If (U, V )
is an SLP equivalence and B{i} = B′{i} for all i in P, then these are SL K-web
isomorphisms.

Example 7.2 gives two matrices whose K-webs are isomorphic but are not SL-
isomorphic. When we are only concerned with GL equivalence, we can ignore the
strands cokSi → cokDi in the K-web. These strands are included only for the
expression of the extra constraint involved in SL equivalence.

4. The results

Suppose C is an m×n matrix over the PID R, with rows indexed by {1, . . . ,m}
and columns indexed by {1, . . . , n}. It is a classical theorem [AW, Ne] that there
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exist U ∈ GL(m,R) and V ∈ GL(n,R) such that the matrix D = UCV satisfies
the following conditions:

• D(i, j) = 0 if i 6= j,
• If D(i, i) 6= 0 and i < min{m,n}, then D(i, i) divides D(i+ 1, i+ 1),
• If D(i, i) = 0 and i < min{m,n}, then D(i+ 1, i+ 1) = 0.

The matrix D is called the Smith normal form of C. The entries of D are unique
up to multiplication by units in R. The Smith normal form can also be achieved by
an SL(R) equivalence, simply by postmultiplication of the GL(R) equivalence by
suitable invertible diagonal matrices. When R is a Euclidean domain (e.g. R = Z),
there is an algorithm for producing an equivalence to Smith normal form.
Now suppose B and B′ in M(R) have the same size. The existence of the Smith

normal form has the following easy consequences.

(1) There exist GL(R) matrices U, V such that UBV = B ′ if and only if the
R-modules cokB and cokB′ are isomorphic.

(2) There exist SL(R) matrices U, V such that UBV = B ′ if and only if the
R-modules cokB and cokB′ are isomorphic and detB = detB′.

We record the following corollary of these facts.

Proposition 4.1. Suppose B and B′ are in MP(R).

(1) There exist block diagonal matrices U, V in GLP(R) such that (UBV ){i} =
B′{i} for all i ∈ P if and only if for all i ∈ P, the R-modules cokBi and
cokB′i are isomorphic.

(2) There exist block diagonal matrices U, V in SLP(R) such that (UB
′V ){i} =

B{i} for all i ∈ P if and only if for all i in P, detBi = detB′i and the
modules cokBi and cokB

′
i are isomorphic.

Suppose B and B′ are inMP . Then a necessary condition for GLP(SLP) equiva-
lence of B and B′ is the GL(SL) equivalence of the diagonal blocks B{i} and B ′{i}
for all i in P. Whether this necessary condition holds may be determined by the
computation of some cokernel modules and (in the SL case) determinants, as ex-
plained before Proposition 4.1. Given this necessary condition, by Proposition 4.1
we have that B′ is GLP(SLP) equivalent to a matrix B

′′ such that B{i} = B′′{i}
for all i in P. Consequently, to address problems involving GLP or SLP equiv-
alence, we can reduce to the case where B and B ′ have corresponding diagonal
blocks equal. For simplicity, we will make this equal-diagonal-blocks assumption in
the statement of our main results.
Suppose B ∈ M(R). A self-equivalence of B is a pair (U, V ) of GL(R) matrices

such that UBV = B. An SL self-equivalence is a self-equivalence (U, V ) with

det(U) = det(V ) = 1. The automorphism Ũ of the R-module cokB induced by
(U, V ) is given by the rule [x] 7→ [Ux], where [x] denotes the coset, x+ Image(B).
Given an automorphism ϕ of cokB, it is easy to find a matrixM over R such that ϕ
is defined by the rule [x] 7→ [Mx], but it is not always the case that ϕ can be induced
by a self-equivalence. For example, if B = [5] and R = Z, then cokB = Z/5, and
the automorphism [x] 7→ [2x] cannot be induced by a self equivalence of B.

Definition 4.2. Supose B ∈ M(R). An automorphism ϕ of cok(B) is GL-
allowable (or just allowable) if there exists a GL self-equivalence of B which in-
duces ϕ. An automorphism ϕ of cok(B) is SL-allowable if there exists an SL self-
equivalence of B which induces ϕ.
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Definition 4.3. For a matrix B with entries in R, gcdB denotes the greatest
common divisor of the entries of B.

It is easy to see that for any B ∈ M(R) and automorphism ϕ of cokB, there
exists a matrix M over R such that ϕ : [x] 7→ [Mx], for all x.

Theorem 4.4. Suppose B ∈M(R) and δ = gcdB. Suppose ϕ is an automorphism
of cokB and M is any matrix over R defining ϕ, that is, ϕ : [x] 7→ [Mx] for all x.

Then ϕ is SL-allowable iff det(M) ≡ 1 (mod δ), and ϕ is GL-allowable iff
det(M) ≡ u (mod δ) for some unit u in R.

Note, given B and ϕ above, det(M) (mod δ) is independent of the choice of
matrixM . Also note, if gcdB=1 in Theorem 4.4, then every automorphism of cokB
is SL-allowable. If gcdB = 0 (i.e., B = 0), then ϕ is SL-allowable iff det(M) = 1,
and ϕ is GL-allowable iff det(M) is a unit in R. Section 5 is devoted to the proof
of Theorem 4.4.
In Example 7.1, we will exhibit B and B′ in MP which have equal diagonal

blocks, such that B and B′ are not GLP equivalent, although there exists an SL K-
web isomorphism K(B) → K(B′) (for which one of the maps di is not allowable).
So, while the isomorphism class of the K-web is an invariant of GLP equivalence,
it is in general not a complete invariant.
We can now state our main results.

Theorem 4.5. Suppose B and B′ are matrices in MP with corresponding diagonal
blocks equal, and κ : K(B)→ K(B′) is a K-web isomorphism. Then there exists a
GLP equivalence (U, V ) : B → B′ such that κ(U,V ) = κ if and only if each of the
automorphisms di : cokB{i} → cokB′{i} defined by κ is GL-allowable. There exists
an SLP equivalence (U, V ) : B → B′ such that κ(U,V ) = κ if and only if κ is an
SL K-web isomorphism and each of the automorphisms di : cokB{i} → cokB′{i}
defined by κ is SL-allowable.

Section 6 is devoted to the proof of Theorem 4.5. The combination of Theorems
3.10 and 4.5 immediately gives the following classification theorem.

Theorem 4.6. Suppose B and B′ are matrices in MP with corresponding di-
agonal blocks equal. Then B and B′ are GLP equivalent if and only if there is
a K-web isomorphism κ : K(B) → K(B′) such that each of the automorphisms
di : cokB{i} → cokB′{i} defined by κ is GL-allowable. The matrices B and B ′ are
SLP equivalent if and only if there is an SL K-web isomorphism κ : K(B)→ K(B ′)
such that each of the automorphisms di : cokB{i} → cokB′{i} defined by κ is SL-
allowable.

Among various special cases, we single out a few in the following easy corollaries
of the preceding results.

Corollary 4.7. Suppose B and B′ are matrices in MP such that gcdB{i} = 1 =
gcdB′{i} for all i in P. Then for any K-web isomorphism κ : K(B) → K(B ′),
there exists a GLP equivalence (U, V ) : B → B′ such that κ(U,V ) = κ. The matrices
B and B′ are GLP equivalent if and only if the K-webs K(B) and K(B ′) are
isomorphic.

Corollary 4.8. Suppose B and B′ are matrices in MP such that B{i} = B′{i}
with gcdB{i} = 1, for all i in P. Then for any SL K-web isomorphism κ : K(B)→
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K(B′), there exists a SLP equivalence (U, V ) : B → B′ such that κ(U,V ) = κ. The
matrices B and B′ are SLP equivalent if and only if the K-webs K(B) and K(B ′)
are SL isomorphic.

The next corollary is included because it is precisely the result appealed to in
[B] for the classification of shifts of finite type up to flow equivalence.

Corollary 4.9. Suppose B and B′ are matrices in MP such that for each i ∈ P,
B{i} = B′{i}, and either gcdB{i} = 1 or B{i} is the 1 × 1 matrix (0). Then an
SL K-web isomorphism κ : K(B) → K(B′), is induced by an SLP equivalence iff
the automorphism di : cokB{i} → cokB′{i} defined by κ is the identity whenever
B{i} = (0). The matrices B and B′ are SLP equivalent if and only if such an SL
K-web isomorphism exists.

The classification results have a stabilization corollary, which is applied in [B].
We give notation for that statement now.

Definition 4.10. Given n ≤ r, we have a natural embedding ιn,r = ι : MP(n,Z)→
MP(r,Z) as follows. For each ij, the map ι embeds the ij block of M as the upper
left corner of the ij block of ιM . Outside this embedded upper left corner, the ij
block of ιM is zero if i 6= j and agrees with the identity matrix if i = j.

Make the following observation: the map ι induces an isomorphism of K-webs
and respects the additional SL invariants. The stabilization corollary below follows
from this observation and the classification results.

Corollary 4.11 (Stabilization). Suppose B and B ′ are matrices in MP(n,R).
Suppose n ≤ r, and let ι be the embedding of MP(n,R) into MP(r,R) given above.
Suppose for all i that ni < ri implies gcd B{i} = 1.

Then B is GLP(n,R) equivalent to B
′ if and only if ιB is GLP(r,R) equivalent

to ιB′; and B is SLP(n,R) equivalent to B
′ if and only if ιB is SLP(r,R) equivalent

to ιB′.

Corollary 4.12. Suppose B and B′ are matrices in MP(n,R). If there is an
isomorphism of their reduced K-webs, then there is an isomorphism of their full
K-webs. If they have equal diagonal blocks and there is an SL isomorphism of their
reduced K-webs, then there is an SL isomorphism of their full K-webs.

Proof. If necessary after applying an embedding ι of B and B ′, we may assume
that each diagonal block in B and B′ has gcd=1. Then the result follows from
the classification theorems and the induction of a full K-web isomorphism by an
equivalence. ¤

Discussion. How good are the K-web invariants? The K-webs are computable,
and the invariants can be used to give subtle examples of nonequivalence (e.g., Ex-
ample 7.2). But, although there are some tractable cases (see Section 8), even over
Z or Q we have no general algorithm for deciding isomorphism or SL isomorphism
of K-webs, we have no canonical forms, and we have no characterization of the
diagrams which arise as K-webs. So our theorems are by no means the end to the
problem of understanding block equivalence of matrices in MP .
The classification of K-webs involves known hard problems (already familiar in

the block equivalence problem [KL]). In a given poset, it could be the case that j
has several immediate predecessors i, so that there are strands in the K-web from
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several modules cokSi into cokRj . The images in cokRj can overlap. Therefore
determining the isomorphism of K-webs involves the subproblem of classifying how
these images can overlap. When R is a field, this is the topic of classifying rep-
resentations of partially ordered sets, initiated by Nazarova and Roiter [NR] and
studied subsequently in dozens of papers (some of which are reviewed in [Ar, S]).
For more general rings (e.g. Z), this is the topic of classifying R-representations of
posets [Ar, Pl], which seems to be less developed.
The problem of classifying poset representations has as a subproblem the fol-

lowing problem: classify n-tuples of matrices over R up to simultaneous similarity.
For R = C, a classification scheme was given by Friedland [Fri]. For R = Z, see
[Fa], and for decision procedures (for n = 1) [G, GS].

5. Equivalences inducing cokernel isomorphisms

Posets are not involved in this section. The purpose of this section is the proof
of Theorem 4.4.

Proof of Theorem 4.4. The case B = 0 is clear. Without loss of generality, we
assume that B 6= 0, and that B is an η × η matrix with 2 ≤ η < ∞. The proof
proceeds in several parts.

Reduction of B to a Smith form. First we remark that an equivalence
(W,X) : B′ → B (i.e. B =WB′X) induces

(1) an isomorphism W̃ : cokB′ → cokB given by the rule [x] 7→ [Wx];
(2) a bijection of self-equivalences, by the following correspondence: if (U, V )

is a self-equivalence of B′ (UB′V = B′), then (WUW−1, X−1V X) is a
self-equivalence of B; and

(3) a bijection from Aut(cokB′) to Aut(cokB) given by the rule α 7→ W̃αW̃−1.

Comparing (2) and (3), we see that if there is any B ′ SL equivalent to B such
that every SL-allowable automorphism of B′ is induced by an SL self-equivalence
of B′, then every SL-allowable automorphism of cokB is induced by an SL self

equivalence of B. Also, a matrix M defines ϕ iff WMW−1 defines W̃ϕW̃−1, and
det(M) = det(WMW−1). Therefore by appeal to the Smith normal form, we
may assume that B is diagonal, with diagonal entries b1, . . . , bη with the following
properties:

(1) b1 = δ.
(2) bi|bi+1 if bi 6= 0, 1 ≤ i < η,
(3) bi+1 = 0 if bi = 0, 1 ≤ i < η,
(4) bi = bi+1 if bi+1/bi is a unit, 2 ≤ i < η.

In the last property above, we exclude the case i = 1 because after achieving the
Smith form as UBV with U and V invertible, we multiply U by diag((detU−1, 1, . . . , 1))
and V by diag((detV −1, 1, . . . , 1)) to achieve an SL equivalence. To write b1 = δ,
if necessary we revise our choice of δ (multiplying it by a unit).



POSET BLOCK EQUIVALENCE OF INTEGRAL MATRICES 13

Let s1, . . . , sk denote the distinct elements of {b2, . . . , bη}, let s0 = δ, and write
B in the block diagonal form

(5.1) B =




B00

s1I
s2I

. . .

skI



=

(
B00 0
0 B∗

)

in which

(1) B00 is the 1× 1 matrix (s0) = (δ).
(2) si divides si+1 if 1 ≤ i < k,
(3) of the si, only sk might be zero, and
(4) each I is the identity matrix of appropriate size.

Matrix presentation for α in Aut(cokB).
We write the initially given matrix M with the blocking of B in (5.1),

M =



M00 . . . M0k

...
. . .

...
Mk0 . . . Mkk


 ,

where e.g. M00 is a 1× 1 matrix. The choice of M is not uniquely determined by
α; a matrix M ′ of the same size will also induce α if and only if

Mij ≡M ′
ij (mod si) , 0 ≤ i, j ≤ k .

Because the matrixM induces the cokernel automorphism, it satisfies the following
divisibility properties:

For i > j, every entry of Mij is a multiple of si/sj ; and,(5.2)

if sk = 0, then Mkk ∈ GL(R).

Strategy of the proof. Suppose UBV = B and U is blocked as follows into
submatrices Uij , 0 ≤ i, j ≤ k, to match the blocking of B in (5.1):

U =




U00 U01 . . . U0k

U10 U11 . . . U1k

...
...

. . .
...

Uk0 Uk1 . . . Ukk


 .

Let Ũ denote the automorphism of cokB induced by U . If there are self-equivalences
(U1, V1) and (U2, V2) of B such that the matrix U1MU2 induces the identity map

on cokB, then Ũ1ϕŨ2 = Id, so ϕ = (Ũ1)
−1(Ũ2)

−1. So, our strategy will be to
multiply M from the left and right by matrices U arising from self-equivalences
until we have produced a matrix which acts like the identity.

The supply of induced automorphisms. We will assemble four types of
matrix U which occur in SL self-equivalences (U, V ) of B. In each case, U = Id
except perhaps on a principal submatrix, and we describe this principal submatrix.
Here e.g. U{j} is the 1× 1 matrix whose entry is U(j, j), and U{{i, j}} is the 2× 2
principal submatrix of U on indices i, j, where 1 ≤ i < j ≤ η (the matrices U ,B are
η × η). We let U (j) denote the principal submatrix of U on the indices t for which
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t ≥ 2 and bt = sj , and suppose the block sjI in B is mj ×mj . Here are the four
types.

(1) U (j) = C, for any C ∈ GL(mj ,R), 1 ≤ j ≤ k.
(2) U{{i, j}} = ( 1 x

0 1 ) , if x ∈ R.
(3) U{{i, j}} = ( 1 0

x 1 ) , if bj 6= 0 and x is a multiple of bj/bi in R.

(4) U{{1, j}} =
(
a b
bj d

)
, if gcd(bj , d) = 1, and ad− bbj = 1.

Types (1)− (3) are realized in SL self-equivalences (U, V ) of B as follows. For Type
(1), we set U(1, 1) = (detC)−1 and V (1, 1) = detC. Otherwise, U = V = I outside
the indicated principal submatrix. Here for these cases are the descriptions for V :

(1) V (j) = C−1.
(2) V {{i, j}} =

(
1 y
0 1

)
, with y = −xbj/bi.

(3) V {{i, j}} =
(

1 0
y 1

)
, with y = −xbi/bj .

For U of type (4), note that δ|bj . So we may define V achieving the self equivalence
(U, V ) by setting V = Id except for

V {{1, j}} =

(
d −bbjδ

−1

−δ a

)
.

It is an exercise to verify that UBV = B in each case.

The reduction step. Given i with 2 ≤ i ≤ η, consider the following condition:

M(i, j) ≡ δij (mod bi), 1 ≤ j ≤ η .(5.3)

Suppose 2 ≤ m < η, and (5.3) holds if 2 ≤ i < m, and (5.3) fails if i = m. We
will multiply the matrix M from the left and/or right by matrices of the forms U
above to produce a new matrix M for which (5.3) holds if 2 ≤ i ≤ m. Clearly
by induction this will establish the reduction of the theorem to the case that (5.3)
holds for 2 ≤ i ≤ m. Let µ =M(m,m).
CASE 1: bm 6= 0 and gcd(µ, bm) = 1.
Pick γ in R such that γµ ≡ 1 (mod bm), and multiply M from the left by a

matrix of type (4) (setting j = m and d = γ), to produce a new matrix M in which
M(m,m) ≡ 1 (mod bm). Multiplying from the right by matrices U of type (2), we
may add multiples of column m to columns i > m until M(m, i) ≡ 0 (mod bm) for
i > m. BecauseM(m, j) ≡ 0 (mod bm/bj) for j < m, by multiplying from the right
by matrices U of type (3), we may add multiplies of column m to columns i < m
until M(m, j) ≡ 0 (mod bm) for j < m. Now M satisfies (5.3) for i = m, and all of
our operations respected (5.3) holding when 2 ≤ i < m.
CASE 2: bm 6= 0 and gcd(µ, bm) 6= 1.
(This can happen: for example, let R = Z, B = diag(1, 6, 12), and M = ( 3 4

4 9 ).)
Define d = gcd({bmδ

−1M(1,m)} ∪ {M(j,m) : m + 1 ≤ j ≤ η}). We first claim
that gcd(bm, µ, d) = 1. Suppose the claim is false, and p is a prime dividing d.
For x nonzero in cokB, let htp(x) denote the largest nonnegative integer s such
that x = psy for some y ∈ cokB. We consider two subcases. Subcase (i): p does
not divide bmδ

−1. Then p divides M(1,m), as well as M(j,m),m ≤ j ≤ η. Thus

htp([Mem]) > 0, and because M̃ is an automorphism this implies htp([em]) > 0,
which contradicts the fact htp([em]) = 0. (If [em] = py had a solution, then the
solution could be chosen in the direct summand R[em], and bmp

−1 would annihilate
R[em] ∼= R/bm, which is absurd.) Subcase (ii): p divides bmδ

−1. Let s be the largest
power of p dividing δ. Then δ[em] 6= 0, and htp(δ[em]) = s. But htp(δ[Mem]) =
htp([(0, . . . , 0, δM(m,m), . . . , δM(η,m))

t] ≥ s+ 1. This is again a contradiction.
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Now write bm = abc, where a is a product of primes dividing µ, b is a product
of primes dividing d, and c is a product of primes dividing neither µ nor d. It
follows that any prime dividing bm divides exactly one of the two terms µ and cd,
so gcd(bm, µ+ cd) = 1. Choose r2, rm+1, . . . , rη in R such that

r2bmδ
−1M(1,m) +

η∑

i=m+1

riM(i,m) = cd .

For m + 1 ≤ i ≤ η, let Ui be the type (2) matrix U{{m, i}} with x = ri. Let U2

be the type (3) matrix U{{m, 1}} with x = r2bmδ
−1. Let M ′ = U2Um+1 · · ·UηM .

Now M ′ still satisfies (5.3) for 2 ≤ i < m, and also M ′(m,m) = µ + cd. Since
gcd(M ′(m,m), bm) = 1, this reduces Case 2 to Case 1.
CASE 3: bm = 0.
According to (5.1), bm = sk, sk−1 6= 0 and bi = 0 for i ≥ m. Without loss of

generality, we may assume m is the least i such that bi = 0. So, bm is the upper-left
entry of Mkk which has indices m ≤ i, j ≤ η. Apply matrices U of type (1) (with
j = k) to achieve Mkk = Id. Now (5.3) still holds for i < m; for m ≤ i ≤ η, (5.3)
holds for j ≥ m since Mkk = Id; and for j < m ≤ i, we have M(i, j) = 0 simply
because sk = 0 and si 6= 0 if i 6= k. This finishes the reduction step.

The final step.
After applying SL equivalences, we have reduced to the case where M satisfies

(5.3) for 2 ≤ i ≤ η. Now M(i, j) ≡ δij (mod δ) for 2 ≤ i ≤ η and 1 ≤ j ≤ η,
so det(M) ≡ M(1, 1) (mod δ). Then by assumption there is a unit u in R (with
u = 1 if ϕ is an SL equivalence) such that so M(1, 1) ≡ u (mod δ). Let U =
diag(u−1, 1, . . . , 1), then UBU−1 = B and (UM)(1, 1) = 1 (mod δ). Finally, apply
matrices U{{1, j}} of type 2 to UM to produce a matrix which induces the identity
automorphism. This finishes the proof. ¤

6. Realizing isomorphisms of K-webs by equivalences

This section is devoted to the proof of Theorem 4.5. We begin with the following
lemma, in which T denotes the poset {1, 2} with the relation 1 ≺ 2.

Lemma 6.1. Suppose S and S ′ are matrices in MT (R) with

S =

(
R X
0 D

)
, S′ =

(
R X ′

0 D

)
,

where D is diagonal, and suppose (a, b, c, d) is an isomorphism of their associated
exact sequences,

kerD −−−−→ cokR −−−−→ cokS −−−−→ cokD −−−−→ 0

a

y Id

y c

y Id

y

kerD −−−−→ cokR −−−−→ cokS ′ −−−−→ cokD −−−−→ 0

in which b = Id and d = Id.
Then there is a GL equivalence (U, V ) : S → S ′, where U has the form ( I ∗0 I ) and

V has the form ( I ∗0 C ), such that (U, V ) induces the isomorphism (a, b, c, d). Given
det(a) = 1, we may require detU = detV = 1.

Proof. We will consider the case in which D has the form D =
(

0 0
0 D∗

)
, in which

D∗ is nonsingular and the complementary zero diagonal block is k × k. (It is a
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purely notational matter that we present the maximal principal submatrix D∗ as
the given corner block, and the pure cases D = 0 and D = D∗ can be addressed
using parts of our argument for the mixed case.)
Let A be the member of GL(k,R) such that the block matrix A′′ = (A 0

0 I ) (of

size matching D) satisfies a(x) = A−1x, for all x in ker(D). Let V ′′ =
(
I 0
0 A′′

)
(of

size matching S) and consider the equivalence (I, V ′′) : S → ISV ′′, which induces
the exact sequence isomorphism (a, Id, Id, Id). Note, if det(a) = 1, then detA′′ =
1 = detV ′′. After replacing S with ISV ′′, we reduce to the original problem, with
the additional condition a = Id.
Now it suffices to find U, V of the form



I ∗ ∗
0 I ∗
0 0 I




(in which the central I is k × k and the upper left block I has the same size as
R) such that USV = S′. Write S and S′ with this block structure (with blockings
X = (X1 X2) and X

′ = (X ′1 X
′
2)):

S =



R X1 X2

0 0 0
0 0 D∗


 , S′ =



R X ′1 X ′2
0 0 0
0 0 D∗


 .

Since now a = Id, and D∗ is nonsingular, the first (leftmost) square in the com-
muting diagram gives us X1 = X ′1 +RW for some matrix W . Let

V ′ =



I W 0
0 I 0
0 0 I


 .

We may replace S′ with S′V ′, and so without loss of generality we simply assume
that X1 = X ′1.
Let (I + F ) be a matrix such that for all x, the coset c([x]) in cokS ′ equals

[(I + F )x]. Express F in the 3× 3 block form above,

F =



F11 F12 F13

F21 F22 F23

F31 F32 F33


 .

On account of the second commuting square, all columns in the first block column
of F lie in the image of S′. So we may revise our choice of F to require Fi1 = 0 for
1 ≤ i ≤ 3.
On account of the third commuting square, there is a block matrix

(
K1 K2

K3 K4

)
such

that

(
F22 F23

F32 F33

)
=

(
0 0
0 D∗

)(
K1 K2

K3 K4

)

=

(
0 0

D∗K3 D∗K4

)
.
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So we may revise our choice of F again by subtracting from F the following matrix
(which has all columns in the image of S ′):



R X1 X ′2
0 0 0
0 0 D∗





0 0 0
0 0 0
0 K3 K4


 .

This puts I + F into the desired form

U =



I F12 F13

0 I 0
0 0 I




with U inducing the desired maps Id, c, Id on cokR, cokS, cokD.
There is a matrix X ′′2 such that

US =



R X1 X ′′2
0 0 0
0 0 D∗


 and S′ =



R X1 X ′2
0 0 0
0 0 D∗


 .

If x is a column of S′, then U−1x must be in the image of S (otherwise the map
cokS → cokS′ induced by U would not be injective). Therefore every column of S ′

is anR combination of columns of US, and there is a matrix Z such that USZ = S ′.
We can choose this Z to have the form

Z =



I 0 Z1

0 I Z2

0 0 Z3


 .

Now D∗Z3 = D∗, and the nonsingularity of D∗ then implies Z3 = Id. Setting
V = Z concludes the proof of the lemma. ¤

Proof of Theorem 4.5. The proofs in the GL and SL cases are almost the same,
so we will give them together. We are working with the given κ and B,B ′ with
corresponding diagonal blocks equal.
By Theorem 4.4, for each diagonal block Di of B, there exists an SL self-

equivalence (U ′i , V
′
i ) of Di which induces the automorphism di. Let U

′ and V ′

be the block diagonal matrices with diagonal blocks Ui and Vi. It now suffices

to realize the K-web isomorphism κ
(
κ(U ′, V ′)

)−1
: K(B) → K(B′) by an equiva-

lence (U, V ) which is an SLP equivalence if κ is an SL K-web isomorphism (for in
this case, the equivalence (UU ′, V ′V ) realizes κ). So without loss of generality, we
simply assume the additional condition di = Id, 1 ≤ i ≤ N .
To prove the theorem, it now suffices to produce recursively matrices Bi and GLP

equivalences (Ui, Vi) : Bi−1 → Bi, 1 ≤ i ≤ N , such that the following conditions
hold (in which B0 = B, Li = {j : j ¹ i}, and κ<i> = κ(Ui, Vi) · · ·κ(U1, V1)):

Bi{{1, . . . , i}} = B′{{1, . . . , i}} .(6.2)

(κ<i>)j = κj , 1 ≤ j ≤ i .(See (3.6) for the definition of κj .)(6.3)

Ui = Vi = Id , except on indices in Li .(6.4)

(Ui, Vi) : Bi−1 → Bi is an SLP equivalence if κ is an SL isomorphism.(6.5)
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Because 1 has no predecessor, κ1 is given by d1 : cok(D1) → cok(D′1), and by
our assumption, d1 = Id. So for the case i = 1, (6.2) − (6.5) are satisfied by
(U1, V1) = (Id, Id) : B0 → B1 (we let Id denote both a matrix and a map).
Now suppose 1 < n ≤ N and for i < n we have carried out the construction

of Ui, Vi and Bi satisfying (6.2) − (6.5). To finish the proof, it suffices to con-
struct (Un, Vn) : Bn−1 → Bn such that (6.2) − (6.5) hold for i = n. Let κ′ denote
κ(κ<n−1>)−1. Then (6.3) holds for i = n if

(
κ(Un, Vn)

)
j
= κ′j for 1 ≤ j ≤ n. Be-

cause (6.3) holds for 1 ≤ i < n, we have κ′j = Id for 1 ≤ j < n. Because (6.4) holds
for 1 ≤ i < n, we have κ′n = κn. Therefore it suffices to find (Un, Vn) satisfying
(6.2), (6.4), (6.5) for i = n and also

κ
(
(Un, Vn)

)
j
= Id , 1 ≤ j < n(6.6)

= κn , j = n .

If n has no predecessor in P, then we may use (Un, Vn) = (Id, Id). So suppose n
has a predecessor. Define

S = Bn−1{Ln} =

(
R X
0 D

)
and S′ = B′{Ln} =

(
R X ′

0 D

)
,

in which D = B{n} = B′{n}. Denote κ′n as (a
′
n, b

′
n, c

′
nd
′
n); it then follows from

Proposition 3.8 that b′n = Id, so κ′n = (a
′
n, Id, c

′
n, Id). Appealing to Lemma 6.1,

pick invertible U ′′, V ′′ with block forms compatible with the blocking of S and S ′

and satisfying

U ′′ =

(
I ∗
0 I

)
, V ′′ =

(
I ∗
0 C

)
,

such that

• U ′′SV ′′ = S′ ,
• κ(U ′′, V ′′) = κn , and
• if det(a′n) = 1, then detV

′′ = 1.

Let Un and Vn be the matrices satisfying (6.4) which agree with U
′′ and V ′′ on Li.

Set Bn = UnBn−1Vn.
Clearly Un, Vn, Bn satisfy (6.6) and for i = n satisfy (6.2) and (6.4). It remains

to verify (6.5) for i = n. So, suppose κ is an SL K-web isomorphism. Then by the
inductive assumption, (Ui, Vi) is an SLP equivalence for 1 ≤ i < n. Consequently
κ′ is an SL K-web isomorphism. Because d′n = Id, it follows that det(a′n) = 1,
and therefore detV ′′ = 1, which implies that (Un, Vn) is an SLP equivalence. This
finishes the proof of the theorem. ¤

7. Examples

Example 7.1. We will exhibit two matrices B,B ′ ∈ MP(Z) which are not GLP
equivalent, but which have SL isomorphic K-webs. We use P = {1, 2} with 1 ≺ 2,

and set B =

(
5 1
0 5

)
and B′ =

(
5 2
0 5

)
. First, if there were a GLP(Z) equivalence,

say

(
a b
0 d

)(
5 1
0 5

)
=

(
5 2
0 5

)(
a′ b′

0 d′

)
, then we would have a+ 5b = 5b′ + 2d′

with {a, d′} ⊂ {1,−1}, which is impossible. Next, for the K-web isomorphism note
that for this P the K-web is the single strand

kerD1 → cokR2 → cokS2 → cokD2 → 0
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and for both of our matrices this takes the form

0→ Z/5→ Z/25→ Z/5→ 0 .

A K-web isomorphism K(B) → K(B′) is exhibited by the following commuting
diagram between the strands for B and B′,

0 = ker(5) −−−−→ cok(5)
[x]7→[( x0 )]
−−−−−−→ cok

(
5 1
0 5

)
[(
x
y )]7→[y]

−−−−−−→ cokD −−−−→ 0
y

y2

y( 2 0
0 1

)

y1

0 = ker(5) −−−−→ cok(5)
[x]7→[( x0 )]
−−−−−−→ cok

(
5 2
0 5

)
[(
x
y )]7→[y]

−−−−−−→ cokD −−−−→ 0

in which 2 denotes multiplication by 2, and the central map is given by the rule
(
x
y

)
+

(
5 1
0 5

)
Z2 7→

(
2 0
0 1

)(
x
y

)
+

(
5 2
0 5

)
Z2 .

We leave to the reader the verification that we have defined three isomorphisms
giving a commuting diagram as claimed. The example does not contradict our
classification result Theorem 4.6, because Theorem 4.4 shows multiplication by 2
is not a GL(Z)-allowable isomorphism of Z/5.

Example 7.2. We will exhibit two matrices B,B ′ ∈ MP(Z) which are GLP
equivalent and which have corresponding diagonal blocks equal, but which are not
SLP equivalent.

We use the poset P = {1, 2, 3, 4} for which the order ≺ agrees with < except
that 2 ⊀ 3. The matrices B,B′ have the block forms

B =




D1 X X 0
0 D2 0 X
0 0 D3 X
0 0 0 D4


 , B′ =




D1 X ′ X 0
0 D2 0 X
0 0 D3 X
0 0 0 D4




where Di = ( 1 1
1 1 ) for i = 1, 2, 3, 4; X = (

0 0
1 0 ); and X

′ = ( 0 0
0 1 ).

Let V be the permutation matrix that switches the 3rd and 4th columns of B.
Then BV = B′ and therefore B and B′ are GLP equivalent. To show B and B′

are not SLP equivalent, by Theorem 4.6 it suffices to show that the full K-webs
K(B) and K(B′) are not SL isomorphic. (We could alternately show the reduced
K-webs are not isomorphic, but the argument would be more complicated.) The
full web includes the following four exact sequences (associated respectively to the
difference sets {1, 2} \ {2}, {1, 3} \ {3}, {2, 4} \ {4}, and {3, 4} \ {4}).

kerD2 −−−−→ cokD1 −−−−→ cokS2 −−−−→ cokD2 −−−−→ 0

kerD3 −−−−→ cokD1 −−−−→ cokS3 −−−−→ cokD3 −−−−→ 0

kerD4 −−−−→ cokD2 −−−−→ cokB{2, 4} −−−−→ cokD4 −−−−→ 0

kerD4 −−−−→ cokD3 −−−−→ cokB{3, 4} −−−−→ cokD4 −−−−→ 0

One easily checks the following:

(1) For each group in one of the sequences above, the corresponding groups in
K(B) and K(B′) are the same (not just isomorphic).
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(2) Each of the four exact sequences is isomorphic in both K(B) and K(B ′) to

Z
∼=

−−−−→ Z 0
−−−−→ Z

∼=
−−−−→ Z −−−−→ 0 .

(3) The arrows (maps) kerD2 → cokD1 are not the same in K(B) and K(B
′),

but all other corresponding arrows from the four sequences are the same in
K(B) and K(B′).

Now suppose there is an SL K-web isomorphism κ from the full K-web of B to
that of B′, with associated group isomorphisms (automorphisms in this example)
ai : kerDi → kerDi and di : cokDi → cokDi. These automorphisms of Z can only
be 1 (the identity) or −1. Without loss of generality (because −κ is also an SL K-
web isomorphism), we may assume that d1 = 1. This gives the following diagram
chasing chain of deductions:

• a2 = −1, because κ intertwines the arrows kerD2 → cokD1,
• d2 = −1, by the SL paired determinant condition (i.e., det(a2) = det(d2)),
• a4 = −1, because κ intertwines the arrows kerD4 → cokD2,
• d3 = −1, because κ intertwines the arrows kerD4 → cokD3,
• a3 = −1, by the SL paired determinant condition.

But this is a contradiction, because a3 = 1 since κ intertwines the arrows kerD3 →
cokD1. Therefore no SL isomorphism of the full K-webs of B and B ′ can exist,
and these matrices are not SLP equivalent.

8. Special cases

In this section we consider several special cases in which the complete K-web
invariants for poset block equivalence can be simplified.

The case with R a field and P linearly ordered.
Now suppose P is linearly ordered (that is, the relation ≺ on {1, . . . , N} is

the same as <), and R is a field. For purposes of contrast and illustration, we’ll
give the classification up to GLP(R) equivalence in this case, even though this is
contained in the more general results of [KL]. We’ll consider the GLP equivalence
in MP(n,R) (so, the ith diagonal block of a matrix in this set is ni × ni) in the
case that every ni < ∞. The infinite matrix case is essentially the same and the
SL case is similar.
Every element of MP(n,R) is GLP(R) equivalent to a block upper triangular

matrix in a certain canonical form, and a complete invariant for GLP(R) equiva-
lence in MP(n,R) is given by an array of numbers ri,j , 1 ≤ i ≤ j ≤ N , where ri,j
is the rank of the ij block (of size ni × nj , of course) of the canonical form. To
describe the canonical form, let us suppose for convenience that a block Mij has
rows indexed by {1, . . . , ni} and columns indexed by {1, . . . , nj}. Let us say the
block is standard if every entry is zero, except that there might be integers g ≤ h
such that Mij(t, t) = 1 for g ≤ t ≤ h. Now a matrix M is in the canonical form if
the following hold (in which Mi denotes the principal submatrix Mi1Mi2 . . .MiN ):

• Each block is standard.
• A block Mij is zero if i > j.
• A row or column of M has at most one nonzero entry.
• If a row of Mi is the zero row, then every lower row in Mi is also the zero
row.
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To get a picture of the canonical form, and see how it is achieved, we’ll discuss the
3× 3 case.

B =



B11 B12 B13

0 B22 B23

0 0 B33


 → B′ =




I 0 | 0 0 | 0 0
0 0 | 0 C12 | 0 C13

− − · − − · − −
0 0 | I 0 | 0 0
0 0 | 0 0 | 0 C23

− − · − − · − −
0 0 | 0 0 | I 0
0 0 | 0 0 | 0 0




(
C12 C13

0 C23

)
→




I 0 | 0 0
0 0 | 0 D
− − · − −
0 0 | I 0
0 0 | 0 0




D →



I | 0
− · −
0 | 0


 .

Begin with B as given in block form. Multiplying from both sides by invertible
block diagonal matrices, put each diagonal block into the standard form, then add
multiples of each I block along the diagonal to zero out the rest of any row or
column through that block. This produces the matrix B ′ with the block form
shown (each 2× 2 block in B′ replaces some Bij , and correspondingly has ni rows
and nj columns). Now repeat these operations through the blocks Cij formed, and
then finally through the last block D. This produces a matrix F in the canonical
form (rather than exhibit F , we leave it to the reader’s visualization).
One way to check that this form is canonical is to recover the numbers rij as

invariants from the K-web. For this linear/field case, the K web reduces to the
following diagram:

kerB{2} kerB{3} . . . kerB{N}

f1

y f2

y fN−1

y

cokB(1) g2
−−−−→ cokB(2) g3

−−−−→ . . .
gN−1

−−−−→ cokB(N−1) gN
−−−−→ cokB(N)

in which we use B(i) to denote B{1, . . . , i}, and the image of fn equals the kernel
of gn+1. Now ni − rii = dim(kerB{i}). For 1 < i < j ≤ N , the dimension of the
image of cokB(1) in cokB(j) under the map gj · · · g2 is equal to n1−(r11+ · · ·+r1j);
so for 1 ≤ j ≤ N , r1j is determined by the K-web. Similarly, for 1 < i < j ≤ N ,

the dimension of the image of cokB(i) in cokB(j) under the map gj · · · gi+1 is

(n1 + · · ·+ ni)−
∑

s,
1≤s≤i

(
∑

t,
s≤t≤j

rst

)
,

and we can recursively recover the entire rij array from dimension data determined
by the isomorphism class of the K-web.
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If the order is not linear, then in general we cannot put an element of MP(R)
into this canonical form, because some of the clearing out operations may not be
allowed.

The nonsingular case.
If R is a field, then any two nonsingular elements of MP(R) are GLP(R) equiv-

alent. One can verify this by observing that every group in the K-web of such
an element vanishes, or by using allowed operations to reduce a nonsingular ma-
trix to the identity. In this nonsingular case, the additional invariants for the SL
equivalence are the determinants of the diagonal blocks.
Now suppose only that R is a PID, and B is a nonsingular matrix in MP(R).

Then every cokernel module in the K-web of B is a torsion module, and for each
i with a predecessor in P, the ith level K-web map cokRi → cokSi of (3.5) is
injective (on account of the exactness, since ker(Di) = 0). Consequently each of
these cokernel modules ultimately embeds in cokB. We end up with a torsion mod-
ule (cokB) and a list of distinguished submodules (the embeddings of the cokernel
modules cokRi and cokSi); isomorphism of the K-webs of B and B

′ is equivalent to
isomorphism of the torsion modules cokB and cokB ′ respecting the distinguished
submodules. Moreover, here we can neglect the modules cokRi, as they are deter-
mined as unions of the cokSj for which j ≺ i. In particular, if P is linearly ordered,
then cokSi = cokB

(i) for all i in P, and K(B) is completely characterized by cokB
with the chain of distinguished submodules

cokB(1) ⊂ cokB(2) ⊂ · · · ⊂ cokB(N) = cokB

(in which cokB(i) is identified with its image under the embedding gN · · · gi+1).
In the nonsingular case, the subtle issue of paired determinants disappears. The

additional invariant for SL isomorphism ofK webs here is simply the list of determi-
nants of the diagonal blocks. For R = Z, the absolute value of these determinants
can be extracted from the K-web data, and the only additional information is the
list of signs of determinants of diagonal blocks.
Note in particular the case that B and B′ are nonsingular with gcdD = 1

for each diagonal block D of B and B′. Here B and B′ are GLP(R) equivalent
iff their K-webs are isomorphic (Cor. 4.7); and if in addition the corresponding
diagonal blocks of B and B′ are equal, then B and B′ are SLP(R) equivalent iff
their K-webs are SL isomorphic (Cor. 4.8). This is useful for classification of
some dynamical systems and C∗-algebras, as follows. Suppose A ∈ MP(Z+) and
each of its N diagonal blocks is irreducible. Let B1, B2, . . . , BN denote the
diagonal blocks of B = I − A ∈ MP(Z), and suppose B is nonsingular (i.e., 1 is
not an eigenvalue of A). Then modulo a permutation of irreducible components,
the group cokB together with its distiguished subgroups as discussed above, under
group isomorphisms respecting the distinguished subgroups, is a complete invariant
of stable isomorphism of the nonsimple Cuntz-Krieger algebras defined by A [H3].
Again modulo a permutation of irreducible components, this invariant plus the
assignment det(Bi), i = 1, 2, . . . , N , is a complete invariant of flow equivalence of
reducible shifts of finite type defined by A [H3]. (Note, det(Bi) is invariant under
SL-equivalence, but not under GL-equivalence. We need both types of equivalence.)
In particular, for R = Z, there are decision procedures for determining whether

nonsingular matrices B,B′ in MP(R) are GLP equivalent or SLP equivalent.

The 2×2 case.
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Suppose P = {1, 2} with 1 ≺ 2. Let us work out the subblock form of a GLP(R)
equivalence (U, V ) from B to B′, as follows:

UBV =

(
U1 U2

0 U4

)(
B1 B2

0 B4

)(
V1 V2

0 V4

)

=

(
U1B1V1 U1B1V2 + U1B2V4 + U2B4V4

0 U4B4V4

)

=

(
B′1 B′2
0 B′4

)
= B′ .

For the moment, we use colcokB1 to denote what we have been calling cokB1, so
that we may similarly use rowcokB4 to denote the cokernel of B4 considered as a
map on row vectors. A GLP(R) equivalence as above induces isomorphisms

colcokB1 → colcokB′1 , rowcokB4 → rowcokB′4

[x] 7→ [U1x] [x] 7→ [xV4]

and also

colcokB1 ⊗ rowcokB4 → colcokB′1 ⊗ rowcokB
′
4

[B2] 7→ [U1B2V4] .

Thus, as invariants of GLP(R) equivalence we get first the isomorphism classes
of those cokernels colcokB1 and rowcokB4 and then (after passing to the problem
of considering matrices with equal diagonal blocks) an orbit of the action on the
tensor product module colcokB1 ⊗ rowcokB4 by Aut(colcokB1)× Aut(rowcokB4).
(In the case that the diagonal block cokernels are free R-modules, we can identify
[B2] with a matrix and the orbit is simply the GL(R) equivalence class of this
matrix.) Under the assumption that the gcd of the entries of each diagonal block is
1, we have shown that the cokernel automorphisms are induced by (block diagonal)
SLP(R) self equivalences, and it follows that colcokB1, rowcokB4, and the orbit
of [B2] in colcokB1 ⊗ rowcokB4 under the action of “product-type” isomorphisms
comprise a complete invariant of GLP(R) equivalence. The additional invariants
for SLP(R) equivalence are simply det(B1) and det(B4).
This tensor product invariant for the 2× 2 case was developed in [H1] following

[C]. Suppose A ∈ MP(Z+) has two irreducible components and B = I − A of the
form above. [H1] shows that the tensor product invariant, together with det(B1)
and det(B4), are complete flow equivalence invariants for shifts of finite type defined
by A. [H2] shows that the tensor product invariant alone, is a complete invariant
of stable isomorphism for the Cuntz-Krieger algebras arising from such matrices A,
i.e., the Cuntz-Krieger algebras with exactly one proper closed ideal [C].

9. GLP similarity

In this section, F denotes a field. The following correspondence is classical.

Theorem 9.1. Suppose B, B′ ∈ M(n1,F). Then B and B′ are similar over F if
and only if tI −B and tI −B′ are GL(n1,F [t]) equivalent.

Because F is a field, the polynomial ring F [t] is a principal ideal domain. Thus
the correspondence given by Theorem 9.1 reduces the classification of square ma-
trices over F up to similarity over F to the theory of equivalence of matrices over
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a PID, as is well known (e.g. [AW, Ne]). In this section, we will generalize this
classical theory to the classification of matrices in MP(F) up to GLP similarity.

Definition 9.2. Let F be a field and B, B′ ∈ MP(n,F). The matrices B and B′

are said to be GLP similar over F if there is S ∈ GLP(n,F) such that S
−1BS = B′.

Geometrically, GLP similarity reflects the constraint that the similarity must
preserves certain invariant subspaces (Sec. 4 of [H5]). Recall (Remark 2.2), if S is
in GLP(n,F), then so is S

−1.

Lemma 9.3. Suppose F is a field and B ∈ M(k, F). Then every automorphism
of the F [t]-module cok (tI −B) is allowable.

Proof. Let α ∈ Aut[cok (tI−B)]. It suffices to show that α is allowable. If gcd(tI−
B) = 1, then α is even SL allowable, by Theorem 4.4.
Suppose gcd(tI − B) 6= 1. Then B = cI for some constant c ∈ F . Then

cok(tI − B) = cok[(t − c)I], so we have an isomorphism Fk → cok(tI − B) given
by the rule v 7→ [v], and we see that for every automorphism α of the F [t]-module
cok(tI − B) there exists a unique matrix P (α) = P ∈ GL(k,F) such that α is
given by the rule α : [v] 7→ [Pv]. Also, P (tI −B)P−1 = P (t− c)P−1 = tI −B; so,
(P, P−1) is a self-equivalence which induces α. ¤

Remark 9.4. For the case tI−B = (t−c)I in the proof above, an automorphism α
of cok(tI−B) is SL allowable if and only if the matrix P (α) over F has determinant
1. This is because SL allowability requires that there exist Q ∈ SL(k,F [t]) such that
Q ≡ P mod (t−c), and then the conditions det(P ) ∈ F and det(P ) ≡ 1 mod (t−c)
imply det(P ) = 1.

The following theorem generalizes Theorem 9.1 and also Theorem 4.8 in [H5].

Theorem 9.5. Suppose B and B′ are in MP(n,F). Then the following are equiv-
alent.

(1) B and B′ are GLP similar over F .
(2) tI −B and tI −B′ are GLP equivalent over F [t].
(3) There exist R0, S0 ∈ GLP(n,F) such that tI −B′ = R0(tI −B)S0.
(4) The K-webs of F [t]-modules K(tI −B) and K(tI −B ′) are isomorphic.
(5) There is a F [t]-module isomorphism δ : cok (tI −B)→ cok (tI −B ′) such

that δ(cok (tI − B){si}) = cok (tI − B′){si}, i ∈ P, where si = {j : j ∈
P, j ¹ i}.

Proof. (1) ⇒ (3) Suppose B′ = S−1BS for some S ∈ GLP(n,F). We let R0 =
S−1, S0 = S and (3) follows.
(3)⇒ (2) It is trivial, since GLP(n,F) ⊂ GLP(n,F [t]).
(2) ⇒ (3) Suppose U(t), V (t) in GLP(n,F [t]) satisfy (tI − B′) = U(t)(tI −

B)V (t). Now we show that

U(t) = (tI −B′)P (t) + T0 and V (t) = Q(t)(tI −B′) + S0(9.6)

for some P (t), Q(t) ∈ MP(n,F [t]) and S0, T0 ∈MP(n,F).
Let us prove the first equation in (9.6). Since U(t) ∈ GLP(n,F [t]), we have

U(t) =
∑m

i=0 Uit
i for some Ui ∈ MP(n,F), i = 0, 1, . . . ,m. Let P (t) =∑m−1

i=0 Pit
i, where Pi ∈ MP(n,F), i = 0, 1, . . . ,m− 1, are defined inductively as

follows:

Pm−1 = Um, Pm−2 = Um−1 +B′Pm−1, · · · , P1 = U2 +B′P2, P0 = U1 +B′P1,
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and finally, we define T0 := U0+B
′P0 ∈ MP(n,F). Then U(t) = (tI−B

′)P (t)+T0.
The second equation in (9.6) can be proved exactly the same way.
Since U(t)−1(tI − B′) = (tI − B)V (t), using the second equation in (9.6) for

V (t), we obtain U(t)−1(tI −B′) = (tI −B)[Q(t)(tI −B′) + S0]. Therefore

[U(t)−1 − (tI −B)Q(t)](tI −B′) = (tI −B)S0 .(9.7)

Let W = U(t)−1 − (tI − B)Q(t). Since MP(n,F [t]) is closed under addition,
subtraction and multiplication, and GLP(n,F [t]) ⊂ MP(n,F [t]) is closed under
inversion, we have W ∈ MP(n,F [t]). Comparing the degrees of t on both sides of
W (tI − B′) = (tI − B)S0 in (9.7), we see that actually W = S0 ∈ MP(n,F). So
it suffices to show that W is invertible. Using (9.6), (9.7) and tI −B ′ = U(t)(tI −
B)V (t), we obtain

I = U(t)U(t)−1

= U(t)[W + (tI −B)Q(t)]

= U(t)W + U(t)(tI −B)Q(t)

= U(t)W + (tI −B′)V (t)−1Q(t)

= [(tI −B′)P (t) + T0]W + (tI −B′)V (t)−1Q(t)

= T0W + (tI −B′)[P (t)W + V (t)−1Q(t)].

Comparing the degrees of t again we see that I = T0W . Therefore, W = S0 ∈
GLP(n,F) and tI −B′ =W−1(tI −B)S0.
(3)⇒ (1). Here tI−B′ = R0S0t−R0BS0. Hence I = R0S0 and B

′ = R0BS0 =
S−1

0 BS0.
(2)⇒ (4). It follows from Theorem 3.8
(4) ⇒ (2). Because their K-webs are isomorphic, we may by Proposition 4.1

assume B and B′ have equal diagonal blocks. The claim then follows from Lemma
9.3 and Theorem 4.6.
(4)⇔ (5). This follows from the discussion of the nonsingular case in Section 8,

as det(tI −B′) and det(tI −B′) are nonzero in F [t]. ¤

Remark 9.8. As the proof shows, the conditions (1), (2) and (3) in Theorem
9.5 are still equivalent under the weaker assumption that F is a commutative ring
with 1. The classical version of this fact (i.e., the case P = {1}) is well known (see
Remark 5.3.9 in [AW]).
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