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I. Subshift background

1. Subshifts

Notations:

• A = {0,1, . . . , N − 1}, the alphabet

• XN = AZ

x in XN is a bisequence . . . x−1x0x1 . . . ,
with all xi in A

• XN is a metric space,
dist(x, y) = 1

k+1, if k = min{|j| : xj 6= yj}

• σ : XN → XN is the shift map (σx)i = xi+1

• σ and σ−1 are 1-1, onto, continuous.

• (XN , σ) is the full shift on N symbols
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• If Y is a closed σ-invariant subset of XN ,

then (Y, σ) is a subshift.

• For such a Y , there exists a set F of words

on A such that

Y = {x ∈ XN : ∀i ≤ j, xixi+1 · · ·xj /∈ F}.
If it is possible to choose F a finite set,

then Y is a subshift of finite type (SFT).

• Example: let A be an N ×N zero-one ma-

trix with rows and columns indexed by A.

Define

XA = {x ∈ AZ : ∀i, A(xi, xi+1 = 1} .

(XA, σ) is a topological Markov chain

[Parry 1964]. It is SFT.

In this talk: we require the matrix defin-

ing a TMC to be irreducible

(for all i, j, ∃m such that Am(i, j) > 0).
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2. (Sliding) block codes

Let Y be a subshift on alphabet A.

Let Y ′ be a subshift on alphabet A′.

ABUSE OF NOTATION: by a k-block code

I will mean a function φ : Y → Y ′ for which

there is a function Φ : Ak → A′ such that

(φx)i = Φ(x[i, . . . , i+ k − 1]) for all i ∈ Z.

I’ll say φ is a block code if for some k it is

a k-block code.

Curtis-Hedlund-Lyndon: For subshifts Y, Y ′, a

map ψ : Y → Y ′ is continuous with ψσ = σψ if

and only if ψ is a block code composed with a

power of the shift.

From here: φ denotes a block code.
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φ is a factor map if φ is onto (φ : Y � Y ′).
φ is an isomorphism, or topological conjugacy,

if it is bijective.

EXAMPLE.

Given a subshift (X,σ), define X[k] as the im-

age of X under φ where

(φx)i = x[i, i+ 1, . . . , i+ k − 1].

The subshift (X[k], σ) is the k-block presenta-

tion of (X,σ), and is topologically conjugate

to (X,σ).
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3. Measures.

Given a subshift (X,σ):
• M(X) denotes the space of σ-invariant Borel
probabilities on X (these are the measures for
which the coordinate projections on X give a
2-sided stationary stochastic process).
• Mk(X) denotes the k-(step )Markov mea-
sures in M(X) which have full support (all al-
lowed words in X have strictly positive proba-
bility).
• x[i, j] may denote either the word xi · · ·xj or
the set {y ∈ X : xk = yk, i ≤ k ≤ j}.

EXAMPLE. Let P be an N × N irreducible
stochastic matrix, and p the stochastic row
vector such that pP = P .
Define an N×N zero-one matrix A by A(i, j) =
0 if P (i, j) = 0, and A(i, j) = 1 otherwise.

Then P determines a µ in M1(XA):
µ(x, [i, j]) =
p(xi)P (xi, xi+1)P (xi+1, xi+2) · · ·P (xj−1, xj).
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DEFINITION:

µ in M(X) is k-Markov if for all i ≥ 0 and

j ≥ k − 1,

µ

(
x[0, i]

∣∣∣ x[−j,0]
)

= µ

(
x[0, i]

∣∣∣ x[−(k − 1),0]
)
.

A measure is 1-Markov iff it is defined from a

stochastic matrix, as on the last slide.

A measure µ is k-Markov iff the topological

conjugacy taking X to its k block presentation

takes µ to a 1-Markov measure.

A Markov measure is a measure which is k-

Markov for some k.

From here, “Markov” always means “Markov

with full support”.
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4. Why use subshifts to consider mea-

sures?

• We can consider many measures in a com-
mon setting. we can study those measures
by relating them to continuous functions
(“thermodynamics”). We may find distin-
guished measures (e.g. solving some vari-
ational problem involving functions).

• Modulo topological conjugacy (topologically
invariant properties), we might conceptu-
ally simplify a presentation (e.g., using a
higher block presentation, we can reduce
many block-code problems to problems in-
volving just one-block codes).

• With topological ideas we might see some
structure behind the complications of a par-
ticular example.
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5. Hidden Markov measures.
Suppose µ ∈M(XA), and φ : XA → Y .
Then the measure φµ ∈ M(Y ) is defined by
(φµ)(E) = µ(φ−1(E)).
If µ ∈ Mk(XA), then φµ is called a hidden
Markov measure (and various other names).

PROBLEM [Burke Rosenblatt 1958] For φ a
1-block code and µ 1-Markov, when is φµ 1-
Markov?

• The problem was solved (several times).

• Via the higher block presentation, we like-
wise can decide whether φµ is k-Markov.

• Given φ and µ Markov, we know k such that
either φµ is k-Markov or φµ is not Markov.

ABOVE: given µ, consider φµ.
NEXT: given ν, consider {µ : φµ = ν}.
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II. Markovian maps and thermodynamics

6. Markovian maps

EXAMPLE [MPW 1984] There exists φ : XA →
XB such that if ν is a supported Markov mea-

sure on XB and φµ = ν, then µ is not a sup-

ported Markov measure on XA.

DEFNITION [BT 1983] φ : XA → XB is Marko-

vian if for every supported Markov measure ν

on XB, ∃ a supported Markov measure on XA
such that φµ = ν.

THEOREM [BT 1983] For φ : XA � XB, if

there exists any supported Markov µ and ν with

φµ = ν, then φ is Markovian.

(We will see a little better later how the Marko-

vian property is a kind of uniform finiteness

property.)
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A SIMPLE EXAMPLE.

This is to suggest that by being able to lift

one Markov measure to a Markov measure,

we may be able to lift other Markov measures

to Markov measures. (From here, “Markov”

means “Markov with full support”.)

Consider the one-block φ from X3 = {0,1,2}Z

to X2 = {0,1}Z, via 0 7→ 0 and 1,2 7→ 1.

Let ν be the 1-Markov measure on X2 given

by the transition matrix

(
(1/2) (1/2)
(1/2) (1/2)

)
.

Given positive numbers α, β, γ less than 1, the

stochastic matrix(1/2) α(1/2) (1− α)(1/2)
(1/2) β(1/2) (1− β)(1/2)
(1/2) γ(1/2) (1− γ)(1/2)


defines a measure on X2 which maps to ν.
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But now, if ν′ is any other 1-Markov measure

on X2, given by a stochastic matrix

(
p q
r s

)
,

then ν′ will lift to the 1-Markov measure de-

fined by the stochastic matrixp αq (1− α)q
r βs (1− β)s
r γs (1− γ)s

 .

(This example map φ is “e-resolving”, and all

e-resolving maps are Markovian.)

OPEN PROBLEM Give a procedure to decide,

given φ : XA � XB, whether φ is Markovian.
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THE 1- MARKOVIAN COMPUTATION.

Suppose for a 1-block φ : XA → XB, with φ(i)
denoted i, that φµ = ν where µ, ν are 1-Markov
defined by stochastic matrices P,Q.

Suppose ν′ ∈M1(XB), defined by a stochastic
matrix Q′. We will define a stochastic matrix
P ′ defining µ′ in M1(XA) so that φµ′ = ν′.

First define a matrix M of size matching P

by
M(i, j) = 0 if P (i, j) = 0 , and otherwise
M(i, j) = Q′(i, j)P (i, j)/Q(i, j).

This matrix M will have spectral radius 1 but
might not have row sums 1. Let r be a positive
right eigenvalue for M . Then P ′ is the matrix
defined by

P ′(i, j) = r(i)−1M(i, j) r(j) .

This is the germ of a more general thermody-
namic result.

13



7. Thermodynamics on subshifts 001.

ENTROPY

Given: subshift (X,σ), µ ∈M(X).

• h(X) = limn
1
n log |{x[0, n− 1] : x ∈ X}|

is the topological entropy of the map σ|X.

• hµ(X) = limn
1
n

∑
−µ[W ] logµ[W ] ,

with the sum over W in {x[0, n−1] : x ∈ X},
is the measure theoretic entropy of µ

(with respect to σ).
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PRESSURE is a refinement of entropy which
takes into account not only the map σ : X → X
but also weights coming from a given function.

Given f ∈ C(X,R),
P (f, σ) = limn

1
n log

∑
W exp[Sn(f,W )]

where Sn(f,W ) =
∑n−1
i=0 f(σ

ix),
for some x ∈ X such that x[0, n− 1] = W
(in the limit the choice of x doesn’t matter).

So, P (f, σ) = h(X) if f ≡ 0.
VARIATIONAL PRINCIPLE FOR PRESSURE:
P (f, σ) = sup{hµ +

∫
f dµ : µ ∈M(X)}.

An equilibrium state for f (w.r.t. σ) is a mea-
sure µ = µf such that P (f, σ) = hµ +

∫
f dµ.

Often: µf is a Gibbs measure for f :
with P (f, σ) = log(ρ),

µf(x[0, n− 1]) ∼ ρ−n expSnf(x)

( “∼” means the ratio of the two sides is bounded
above and away from zero, uniformly in x, n.)
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If f ∈ C(XA,R), with f(x) = f(x0x1), then f

has a unique equilibrium state µf , and µf ∈
M1(σA). This µf is defined by the stochastic

matrix P = stoch(Q), where

Q(i, j) = 0 if A(i, j) = 0,

= exp[f(i, j)] otherwise .

and the stochasticization of Q is

stoch(Q)= (1/ρ)D−1QD,

where

ρ is the spectral radius of Q,

D is diagonal with D(i, i) = r(i), and

r > 0 and Qr = λr .

The pressure of f is log ρ.
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Likewise: if f(x) = f(x0, x1, . . . , xk),
then f has a unique equilibrium state µ, and µ
is a k-step Markov measure.

Let Ck(X,R) = {f : f(x) = f(x[0, k−1]). Then
[Parry-Tuncel] for f, g in Ck(X,R), T.F.A.E.

• µf = µg

• ∃h ∈ C(X,R) such that
f = g+ (h− h ◦ σ) + constant

• ∃h ∈ Ck−1(X,R) such that
f = g+ (h− h ◦ σ) + constant

Let W denote the vector space of functions
h − h ◦ σ + constant, with h locally constant.
Then the map Ck(X,R)/W → Mk(σA),
[f ] 7→ µf , is a bijection.

So, the Markov measures are identified with
the locally constant functions (modulo W ).
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8. Compensation functions

Let φ : XA → XB. Suppose

• µ ∈M(XA), ν ∈M(XB)

• µ and ν are ergodic

• ν = νf
(i.e. ν is an eq. state for f ∈ C(XB,R))

• µ = µF (write F as (f ◦ φ) + c)

Then for any g in C(XB,R) with unique eq.

state νg we have:

• if µ = µ(g◦φ)+c, then φµ = νg.
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Such a function c is called a compensation
function [Walters 1986]. It turns out, a com-
pensation function is a function c ∈ C(XA,R)
such that for all g ∈ C(XB,R)
• P (g) = P

(
(g ◦ φ) + c

)
, ∀g ∈ C(XB,R).

For such a c:

• There is a lift of measures matching an
affine embedding of continuous functions:
C(XB) ↪→ C(XA), via g → (g ◦ φ) + c
M(XB) ↪→M(XA), via µg → µ(g◦φ)+c

A compensation function is a kind of oracle
which gives a relation on functions that must
be respected by sufficiently closely related mea-
sures (eq. states).
FACT: φ is Markovian iff
φ has a compensation function which is locally
constant.

In our 1-Markovian computation:
an associated compensation function is
c(x) = logP (i, j)− logQ(i, j) when x0x1 = ij.
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Markovian maps and Resolving Maps

9. Resolving Maps. Let φ : XA � Y be a

1-block code, denoting a symbol (φx)0 as x0.

(Y is not necessarily SFT.)

DEFINITION φ is right resolving if for all sym-

bols i, i, k such that ik occurs in Y , there is

at most one j such that ij occurs in XA and

j = k. In other words, for any diagram

iy
i −→ k

there is at most one j such that

i −→ jy y
i −→ k

DEFINITION φ is right e-resolving if it satisfies

the definition above, with “at most one” is

replaced by “at least one”.
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Reverse the roles of i and j above to define

left resolving and left e-resolving. A map φ is

resolving (e-resolving) if it is left or right re-

solving (e-resolving).

FACTS:

• If φ is resolving, then h(XA) = h(Y )

• If Y = XB and h(XA) = h(XB), then φ is

e-resolving iff φ is resolving.

• If φ is e-resolving, then Y = XB.

• If φ is e-resolving, then φ is (transparently)

Markovian.
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10. A Putnam diagram
THEOREM [B 2005] Suppose φ : XA � Y .
Then (canonically) there is a commuting dia-
gram of factor maps

XF
φ̃−−→ XB

π

y yφ+

XA −−→
φ

Y

with properties

•
left e-resolving−−−−−−−−−−−→

right resolving

y yright resolving

−−−−−−−−−−→
φ

• φ+ and π are 1-1 a.e. (bijective µ-a.e. for
every ergodic µ with full support).
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• φ+ is a canonical “futures” cover of Y de-

termined by φ.

• The maps π, φ̃ are restrictions of the fibered

product of φ and π to a canonical irre-

ducible component.

Given a 1-1 a.e. factor map from one irre-

ducible Smale space to another, Putnam [2005]

constructed a diagram with the indicated re-

solving and 1-1 a.e. properties (i.e., a “Put-

nam diagram”).

[B2005] is a restriction to the zero dimensional

case; but, there a more concrete construction

is feasible, and we need not assume Y is Smale

(SFT) or even that h(XA) = h(Y ).

The construction draws on work of Nasu; Kitchens;

and Kitchens-Marcus-Trow.
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NOTE: e-resolving maps are Markovian.

So, the diagram shows that in some sense, all

block codes are close to being Markovian.

Is the diagram of more specific use?
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