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Abstract

This article is devoted to the asymptotic analysis of a system of
coupled kinetic and fluid equations, namely the Vlasov-Fokker-Planck
equation and a compressible Navier-Stokes equation. Such a system
is used, for example, to model fluid-particles interactions arising in
sprays, aerosols or sedimentation problems. The asymptotic regime
corresponding to a strong drag force and a strong Brownian motion is
studied and the convergence toward a two phases macroscopic model
is proved. The proof relies on a relative entropy method.

1 Introduction

1.1 The model

This paper is devoted to the asymptotic analysis of a system of equations
modeling the evolution of dispersed particles in a compressible fluid. This
kind of system arises in a lot of industrial applications. One example is
the analysis of sedimentation phenomenon, with applications in medicine,
chemical engineering or waste water treatment (see Berres, Bürger, Karlsen,
and Tory [5], Gidaspow [13], Sartory [21], Spannenberg and Galvin [22]).
Such systems are also used in the modeling of aerosols and sprays with

∗mellet@math.utexas.edu
†A. Mellet was partially supported by NSF grant DMS-0456647
‡vasseur@math.utexas.edu

1



applications, for instance, in the study of Diesel engines (see Williams [24],
[23]).

At the microscopic scale, the cloud of particles is described by its distri-
bution function f(x, v, t), solution to a Vlasov-Fokker-Planck equation:

∂tf + v · ∇xf + divv(Fdf −∇vf) = 0. (1)

The fluid, on the other hand, is modeled by macroscopic quantities, namely
its density ρ(x, t) ≥ 0 and its velocity field u(x, t) ∈ RN . We assume that
the fluid is compressible and isentropic, so that (ρ, u) solves the compressible
Euler or Navier-Stokes system of equations:{

∂tρ + divx(ρu) = 0
∂t(ρu) + divx(ρu⊗ u) +∇xp− ν∆u = Ff

(2)

(with ν = 0 in the inviscid case and ν > 0 in the viscous case).
The fluid-particles interactions are modeled by a friction (or drag) force

exerted by the fluid onto the particles. This force is assumed to be propor-
tional to the relative velocity of the fluid and the particles:

Fd = F0(u(x, t)− v)

where F0 is supposed to be constant equal to 1 (see Remark 1.1 below). The
right hand-side in the Euler equation takes into account the action of the
cloud of particles on the fluid:

Ff = −
∫

Fdfdv = F0

∫
(v − u(x, t))f(x, v, t) dv.

For the sake of simplicity, we assume that the pressure term is given by

p = ργ ,

though more general pressure terms could be taken into consideration.

This particular Vlasov-Navier-Stokes system of equations is used, for in-
stance, in the modeling of reaction flows of sprays (see Williams [24],[23])
and is at the basis of the code KIVA-II of the Los Alamos National Labo-
ratory (see O’Rourke et al. [1] and Amsden [2]). We refer to the nice paper
of Carrillo and Goudon [11] for a discussion on various modelling issues and
stability properties of this system of equations.

A first issue, when dealing with such a kinetic/fluid system of equations
is the existence of solutions. Global existence results for the coupling of
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kinetic equations with incompressible Navier-Stokes equations was proved by
Hamdache in [17]. The existence of solutions for short time in the case of the
hyperbolic system (i.e. no viscosity in the Navier-Stokes equation (ν = 0)
and no Brownian effect in the kinetic equation) is proved by Baranger and
Desvillettes in [3]. In [20], we study the coupled system (1)-(2) and prove
the existence of weak solutions (f, ρ, u) for any γ > 3/2 under minimal
assumption (finite mass and energy) on the initial data. Our result is recalled
in Section 1.5.

In this paper we adress the question on the asymptotic regime corre-
sponding to a strong drag force and strong brownian motion. More precisely,
we consider the following system of singular equations:

∂tfε + v · ∇xfε +
1
ε
divv((u− v)fε −∇vfε) = 0 (3)

∂tρε + divx(ρεuε) = 0 (4)

∂t(ρεuε) + divx(ρεuε ⊗ uε) +∇xργ
ε − ν∆u =

1
ε
(jε − nεuε) (5)

where nε =
∫

fε(x, v, t) dv and jε =
∫

vfε(x, v, t) dv. Note that large time

behavior in the case of incompressible fluids has been studied previously by
Hamdache [17] and Goudon, Jabin and Vasseur [16, 15].

The main result stated in the present paper is the convergence of weak
solutions (fε, ρε, uε) of (3)-(5) to (Mn,u, ρ, u) (Mn,u denotes the Maxwellian
distribution with density n and velocity u) where (n, ρ, u) is solution of the
following system of hydrodynamic equations:

∂tn + divx(nu) = 0
∂tρ + divx(ρu) = 0
∂t((ρ + n)u) + divx((ρ + n)u⊗ u) +∇x(n + ργ)− ν∆u = 0

(6)

This kind of multi-fluid system is also widely used in the modeling of par-
ticle/fluid interaction (see for instance Laurent, Massot, and Villedieu [18],
or Berthonnaud [7]). Notice that the Brownian effect in the kinetic equa-
tion ends up as an additional pressure term in the velocity equation. The
derivation of (6) from (3)-(5) was first addressed, formally, by Carrillo and
Goudon in [11]. In this paper, we rigorously justify this asymptotic analysis.

Remark 1.1 The choice of drag force Fd = F0(u− v) may not be the most
relevant one from a physical point of view. In particular, a quadratic depen-
dence in the velocity may be more appropriate in certain regimes. It could
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also seem more relevant from a physical point of view to assume that |Fd|
depends on the density of the fluid ρ, such as

Fd = ρ(u− v). (7)

However, the asymptotic analysis is not valid in those situation, unless we
can establish a priori lower bounds on the density. Indeed, we cannot expect
to have relaxation of the kinetic regime toward an hydrodynamic regime with
velocity u on the vacuum {ρ = 0}.

The main tool in the proof is a relative entropy method. It relies on
the ”weak-strong” uniqueness principle established by Dafermos for mul-
tidimensional systems of hyperbolic conservation laws admitting a convex
entropy functionals [12]. It has been frequently used for system of particles
and rarefied gas dynamics, see Yau [25]. It is the main tool also for the
asymptotic limit of the Boltzmann equation to the incompressible Navier-
Stokes equation, see Bardos, Golse, Levermore [4], Golse, Saint-Raymond
[14], Lions, Masmoudi [19]. See also Berthelin, Vasseur [6] and Goudon,
Jabin, Vasseur [16] for other kind of Hydrodynamical limit. For different
asymptotic problems it is called ”modulated energy” method (Brenier [10],
[9]).

1.2 Boundary conditions and notion of weak solutions

As usual, the kinetic variable v (the velocity) lies in RN , while the space
variable x lies in a subset Ω of RN . We will be considering two situations:
The case of Ω bounded subset with periodic boundary condition (Ω = TN ),
and the case of Ω bounded subset of R3 with smooth boundary ∂Ω. In
the later case, the system (1)-(2) has to be supplemented with boundary
condition along ∂Ω. The natural assumption for Navier-Stokes equations is
homogeneous Dirichlet condition for the velocity:

u(x, t) = 0 ∀x ∈ ∂Ω

To write the boundary condition for the kinetic equation, we introduce γf
the trace of f on ∂Ω, and we denote γ±f(x, v, t) = f |Σ± where

Σ± = {(x, v) ∈ ∂Ω× RN | ± v · r(x) > 0}
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(r(x) denotes the outward normal unit vector). In this ppaper, our only
requirement is that the boundary condition is such that the following con-
ditions are satisfied:∫

RN

(v · r(x)) γf(x, v, t) dv = 0 ∀x ∈ ∂Ω (8)

and ∫
RN

(v · r(x))
(
|v|2

2
+ log(γf)

)
γf dv ≥ 0 ∀x ∈ ∂Ω. (9)

Those conditions are very classical in kinetic theory and they are satisfied if
we consider local or diffusive reflection conditions. Typically, we write such
conditions in the form

γ−f(x, v, t) = B(γ+f) ∀(x, v) ∈ Σ−,

where the operator B is given by

B(g) = αJ(g) + (1− α)D(g) α ∈ [0, 1]

with a specular reflection operator J defined by

J(g)(x, v) = g(x,Rxv) Rxv = v − 2(v · r(x)) r(x),

and a diffusive operator given by (for example)

D(g)(x, v) = M(v)
∫

v·r>0
g(x, v)v · r dv ,

where M(v) is a Maxwellian distribution satisfying
∫
v·r>0 M(v) |v · r| dv = 1

for all r ∈ S2.
Other boundary conditions can be considered (such as elastic reflection

conditions), we refer the reader to [20] for further considerations on those
boundary conditions.

Finally, we recall that (f, ρ, u) is a weak solution of (3)-(5) on [0, T ] if

f(x, v, t) ≥ 0 ∀(x, v, t) ∈ Ω× R3 × (0, T ),

f ∈ C([0, T ];L1(Ω× R3)) ∩ L∞(0, T ;L1 ∩ L∞(Ω× R3)),

|v|2f ∈ L∞(0, T ;L1(Ω× R3)),
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and

ρ(x, t) ≥ 0 ∀(x, t) ∈ Ω× (0, T ),

ρ ∈ L∞(0, T ;Lγ(Ω)) ∩ C([0, T ];L1(Ω)),

u ∈ L2(0, T ;H1
0 (Ω)), ρ |u|2 ∈ L∞(0, T ;L1(Ω)),

ρ u ∈ C([0, T ];L2γ/(γ+1)(Ω)− w).

Moreover, we ask that (4)-(5) holds in the sense of distribution (Note that
the conditions on f yield n(x, t) ∈ L∞(0, T ;L6/5(Ω)) which is enough to
give a meaning to the product n u in L1((0, T ) × Ω)), and in the case of
reflection boundary conditions, we ask that the kinetic equation (3) holds
in the following sense:∫ T

0

∫
Ω×RN

f
[
∂tϕ + v · ∇xϕ + (u− v) · ∇vϕ + ∆vϕ

]
dx dv dt

+
∫

Ω×RN

f0ϕ(x, v, 0) dx dv = 0 (10)

for any ϕ ∈ C∞(Ω× R3 × [0, T ]) such that ϕ(·, T ) = 0 and

γ+ϕ = B∗γ−ϕ on Σ+ × [0, T ] (11)

(which holds, in particular, if ϕ is independent of v).

1.3 Formal derivation of the asymptotic model

The formal derivation of the asymptotic model was first investigated by
J. Carrillo and T. Goudon in [11]. We recall here the main steps for the sake
of completness. First of all, assuming that limε→0 fε = f and limε→0 uε = u,
(3) formally yields

(u− v)f −∇vf = 0,

which implies

f(x, v, t) = n(x, t)
1

(2π)3/2
e−

|u(x,t)−v|2
2 ,

where n(x, t) =
∫

f(x, v, t) dv denotes the density of particles. Furthermore,
integrating (3) with respect to v yields

∂tn + divj = 0
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where
j(x, t) =

∫
v f(x, v, t) dv = n(x, t)u(x, t),

is the current of particles. Finally, multiplying (3) by v and integrating with
respect to v, we are led to:

∂t(nu) + divx(n u⊗ u) +∇xn = −1
ε

∫
(u− v)f dv, (12)

in which we used the equality∫
v ⊗ vf dv = u⊗ u n + nI

(where I denotes the identity matrix). Adding (12) and (5), it is readily seen
that the right hand sides cancel, so that (n, ρ, u) is solution to the following
system of equations:

∂tn + divx(nu) = 0
∂tρ + divx(ρu) = 0
∂t((ρ + n)u) + divx((ρ + n)u⊗ u) +∇x(n + ργ)− ν∆u = 0

with boundary condition

u(x, t) = 0 ∀x ∈ ∂Ω.

1.4 Entropies

The rigorous proof of the convergence towards the asymptotic equation (6)
relies heavily on the use of energy inequalities and relative entropy methods.
Before we state our main result, we need to review the classical inequalities
satisfied by smooth solutions of (3) and (4)-(5). First of all, setting

E1(f) =
∫

RN

(
|v|2

2
f + f log f

)
dv,

it is readily seen (multipying (3) by |v|2
2 + log fε + 1 and integrating with

respect to x, v) that smooth solutions of (3) satisfy:

d

dt

∫
Ω

E1(fε) dx +
1
ε

∫
Ω

∫
RN

|(uε − v)fε −∇vfε|2
1
fε

dv dx

+
∫

∂Ω×RN

(v · r(x))
(
|v|2

2
+ log γfε + 1

)
γfε dσ(x) dv

=
1
ε

∫
Ω

∫
RN

uε(uε − v)fε dv dx,
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where the boundary term is either 0 (periodic boundary condition) or non-
negative (using (8) and (9)). In either case, we deduce

d

dt

∫
Ω

E1(fε) dx +
1
ε

∫
Ω

∫
RN

|(uε − v)fε −∇vfε|2
1
fε

dv dx

≤ 1
ε

∫
Ω

∫
RN

uε(uε − v)fε dv dx.

Moreover, defining

E2(ρ, u) = ρ
|u|2

2
+

1
γ − 1

ργ ,

it is well-konwn that smooth solutions of (4)-(5) satisfy:

d

dt

∫
Ω

E2(ρε, uε) dx + ν

∫
Ω
|∇xuε|2 dx = −1

ε

∫
Ω

∫
RN

uε(uε − v)fε dv dx.

We deduce the following proposition:

Proposition 1.1 Let (fε, ρε, uε) be a smooth solution of (3)-(5), then the
following energy equality holds:

d

dt

∫
Ω

[
E1(fε) + E2(ρε, uε)

]
dx

+
1
ε

∫
Ω

∫
RN

|(uε − v)fε −∇vfε|2
1
fε

dv dx + ν

∫
Ω
|∇xuε|2 dx ≤ 0. (13)

In particular

E (f, ρ, u) =
∫

RN

[
|v|2

2
f + f log f

]
dv + ρ

|u|2

2
+

1
γ − 1

ργ

is an entropy for the system (3)-(5).

From now on, we denote by

D(f, u) =
∫

Ω

∫
RN

∣∣(u− v)f −∇vf
∣∣2 1

f
dv dx

the kinetic dissipation.

Next, for a given density distribution n and velocity field u we introduce
the maxwellian distribution

M(n,u) =
n

(2π)3/2
e−

|u−v|2
2 .
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We know that, for any (f, ρ, u) satisfying
∫

f dv + E (f, ρ, u) < ∞, the fol-
lowing minimization principle holds (see Bouchut [8]):

E (M(n,u), ρ, u) ≤ E (f, ρ, u),

where
n(x, t) =

∫
f(x, v, t) dv.

In particular, introducing

H (n, ρ, u) = E (M(n,u), ρ, u)

= (n + ρ)
u2

2
+

1
γ − 1

ργ + n log n− 2
3

log(2π)n,

we have
H (n, ρ, u) ≤ E (f, ρ, u), if n =

∫
f dv. (14)

Moreover, H is an entropy for the asymptotic system (6). More precisely,
we have:

Proposition 1.2 Let (n, ρ, u) be a solution of (6), and let U = (n, ρ, P ) =
(n, ρ, (ρ + n)u). We define

H (U) =
P 2

2(n + ρ)
+

1
γ − 1

ργ + n log n− 2
3

log(2π)n.

Then we have

d

dt
H (U) + divx

[
F (U)− ν

P

n + ρ
∇ P

n + ρ

]
+ ν

∣∣∣∣∇ P

n + ρ

∣∣∣∣2 = 0,

where
∣∣∣∇ P

n+ρ

∣∣∣2 =
∑

i,j |∂jui|2 and with

F (U) =
P

n + ρ

[
P 2

2(n + ρ)
+

γ

γ − 1
ργ + n log n− 2

3
log(2π)n

]
In other words, H is a convex entropy for the system (6).

Finally, we recall that given an entropy H (U), we can define the relative
entropy by

H (V |U) = H (V )−H (U)−DH (U)(V − U)
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where D stand for the derivation with respect to the conservative variables
(n, ρ, P ). A simple computation shows that the relative entropy associated
with (6) is

H (U |U∗) = (n + ρ)
|u− u∗|2

2
+

1
γ − 1

p1(ρ|ρ∗) + p2(n|n∗)

with

p1(ρ|ρ∗) = ργ − ρ∗γ − γρ∗γ−1(ρ− ρ∗)
p2(n|n∗) = n log n− n∗ log n∗ − (log n∗ + 1)(n− n∗)

= n log
n

n∗
+ (n∗ − n).

(Note that the pi(·|·) are the relative entropies associated to p1(ρ) = ργ and
p2(n) = n log n.)

1.5 Main results

We now have all the notations necessary to state our main results. Through-
out the paper, we will assume that the intial data have finite mass and
energy. More precisely, we assume that f0(x, v), ρ0(x) and u0(x) are such
that 

∫
Ω

ρ0 dx < ∞,

∫
Ω

f0 dx dv < ∞∫
Ω

E (f0, ρ0, u0) dx < +∞
(15)

We recall that under those hypotheses, we proved in [20] the following
result:

Theorem 1.1 ([20]) Let f0(x, v), ρ0(x) and u0(x) satisfy (15). Assume
moreover that f0 ∈ L∞(Ω× RN ) and that

ν > 0 and γ > 3/2.

Then, for any ε > 0 there exists a weak solution (fε, ρε, uε) of (3)-(5) de-
fined globally in time. Moreover, this solution satisfies the usual entropy
inequality:∫

Ω
E (fε(t), ρε(t), uε(t)) dx +

1
ε

∫ t

0
D(fε, uε) ds + ν

∫ t

0

∫
Ω
|∇uε|2 dx ds

≤
∫

Ω
E (f0, ρ0, u0) dx (16)

10



In this paper, we are concerned with the asynptotic behavior of weak
solutions as ε goes to zero. To simplify the analysis, we will assume that the
initial data are well prepared, which amounts to assuming that

f0(x, v) = M(n0,u0) =
n0(x)

(2π)3/2
e−

|u0(x)−v|2
2 . (17)

Note that (15) can then be rewritten as
∫

Ω
ρ0 dx < ∞,

∫
Ω

n0 dx < ∞∫
Ω
(n0 + ρ0)

|u0|2

2
+

1
γ − 1

ργ
0 + n0 log n0 dx < ∞.

(18)

Remark 1.2 Instead of (17), it would actually be enough to assume that
the initial data fε

0 converges to a maxwellian distribution in the following
sense: ∫

Ω
E (fε

0 , ρ0, u0) dx −→
∫

Ω
H (n0, ρ0, u0) dx

Finally, we need to assume that solutions of the asymptotic system of
equations associated to initial value (ρ0, n0, u0) stays away from vacuum.
This will be satisfied (at least for small time) if the following condition
holds:

λ0 ≤ n0(x) + ρ0(x) ≤ Λ0 ∀x ∈ Ω, (19)

with λ0 and Λ0 positive constants. Indeed, under this assumption, we have
the following proposition (see Dafermos [12]):

Proposition 1.3 Under hypothesis (18) and (19), there exists T ∗ > 0 and
n∗, ρ∗, u∗ solution of (6) on [0, T ∗) such that

0 < λ ≤ n∗(x, t) + ρ∗(x, t) ≤ Λ for all x ∈ Ω, t ∈ [0, T ∗)

for some positive constants λ and Λ.

The main result of this paper says that any solutions of (3)-(5) satisfying
the entropy inequality (and thus in particular the solution constructed in
Theorem 1.1), converges, as ε goes to zero to (n∗, ρ∗, u∗):

Theorem 1.2 Assume that n0(x), ρ0(x) and u0(x) satisfy (15)-(19), and
let (fε, ρε, uε) be a weak solution of (3)-(5) with initial conditions

fε(x, v, 0) = f0(x, v), ρε(x, 0) = ρ0(x), uε(x, 0) = u0(x),
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and satisfying the entropy inequality (16). Assume moreover that

ν ≥ 0 and γ ∈ (1, 2).

Then there exists a constant C such that∫ T

0
H (Uε|U∗) dt +

ν

2

∫ T

0

∫
Ω
|∇(uε − u∗)|2 dx dt ≤ C

√
ε (20)

for all T < T ∗ where Uε = (nε, ρε, Pε), nε =
∫

fε(x, v, t) dv and Pε =
(nε + ρε)uε.

Moreover, any sequence of functions (fε, ρε, uε) satisfying Inequality (20)
satisfies

fε −→ Mn∗,u∗ a.e. and L1
loc(0, T ∗;L1(Ω× R3))-strong

nε −→ n∗ a.e. and L1
loc(0, T ∗;L1(Ω))-strong

ρε −→ ρ∗ a.e. and Lp
loc(0, T ∗;Lp(Ω))-strong ∀p < γ

√
ρεuε −→

√
ρ∗u∗ Lp

loc(0, T ∗;L2(Ω))-strong.

When ν > 0, we also have

uε −→ u∗ L2
loc(0, T ∗;L2(Ω))-strong.

We stress out the fact that it is not necessary to have a positive viscosity
coefficient ν to carry out the proof of this Theorem.

We now turn to the proof of Theorem 1.2. The next section is devoted
to the central argument of the proof, namely the relative entropy inequality
and its consequences. The (more technical) results needed to complete the
proof (controle of the relative flux and of the kinetics approximation) are
then detailed in the following two sections.

2 Relative entropy: Proof of Theorem 1.2

In this section we derive a relative entropy inequality for the asymptotic
system (6) which is the corner stone of this paper. This inequality is much
more general than the system under consideration and is valid for general
system of conservation laws of the form

∂tUi +
∑

k

∂xk
Aik(U) =

∑
k

∂xk

[
Bij(U)∂xk

(DjH (U))
]
, (21)
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where B(U) is a positive symmetric matrix and DH denotes the derivative
(with respect to U) of the entropy H (U) associated with the flux A(U) (the
system (6) can be written in this form, see below). The existence of such
an entropy is equivalent to the existence of an entropy flux function F such
that

DjFk(U) =
∑

i

DiH (U)DjAik(U) (22)

for all U . Then we have

∂tH (U) +
∑

k

∂xk

[
Fk(U)−

∑
i,j

DjH (U)Bij(U)∂xk
DiH (U)

]
+

∑
i,j,k

Bij(U)
[
∂xk

DiH (U)
][

∂xk
DjH (U)

]
= 0,

which in particular gives

d

dt

∫
Ω

H (U) dx ≤ 0.

The asymptotic system (6) can be written in this form, with U =
(n, ρ, P ) (we recall that P = (n + ρ)u) and

A(U) =
1

n + ρ


nP1 nP2 nP3

ρP1 ρP2 ρP3

C11 C12 C13

C21 C22 C23

C31 C32 C33

 , B(U) = ν


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

where
Cij = PiPj + (n + ργ)(n + ρ)δij .

Note that we have

DH (U) =
(
−u2

2
+ log n + 1− 2

3
log(2π) , −u2

2
+

γ

γ − 1
ργ−1 , u

)
The corner stone of the method is the following very general proposition:

Proposition 2.1 Consider a system of conservation laws (21) and assume
that there exists a smooth convex entropy H and a corresponding entropy
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flux F defined by (22). Then, for any be a smooth solution U∗ of (21) and
for any smooth function V , the following inequality holds:

d

dt

∫
Ω

H (V |U∗) dx

+
∫

Ω
Bij(V ) [∇DiH (V )−∇DiH (U∗)] [∇DjH (V )−∇DjH (U∗)] dx

≤ d

dt

∫
Ω

H (V )dx +
∫

Ω
Bij(V )∂xk

DiH (V )∂xk
DjH (V ) dx

−
∫

Ω
DH (U∗)[∂tV + divxA(V )− ∂xk

(Bj(V )∂xk
(DjH (V )))] dx

−
∫

Ω

∑
j,k

∂xk
[∂jH (U∗)]Ajk(V |U∗) dx

+
∫

Ω
div (B(U∗)∇DH (U∗))DH (V |U∗) dx

−
∫

Ω
[B(V )−B(U∗)]∇DH (U∗) [∇DH (V )−∇DH (U∗)] dx (23)

where

A(V |U) = A(V )−A(U)−DA(U) · (V − U)
DH (V |U) = DH (V )−DH (U)−D2H (U) · (V − U)

A similar proposition was first established by Dafermos [12] for general
system of hyperbolic conservation laws, without viscosity (see also [6]):.
This inequality has been extensively used ever since, and proved to be an
important tools in stability/asymptotic analysis of system of conservation
laws.

However, it is the first time, to our knowledge, that such an inequality
is derived when a viscosity term arise in the equation. We believe that the
main interest of this proposition is to show that as long as the viscosity term
is of the form

div
[
B(U)∇ (DH (U))

]
,

the natural relative entropy inequality (and its consequences) is preserved.
Moreover, it is not very hard to see that a viscosity term of the form

∇
[
E(U)div (DH (U))

]
=

∑
j

∂xi

[
Eij∂xj (DjH (U))

]
,

could also be added in the system. In particular, the usual viscosity term for
Navier-Stokes equation div(ν∇u)+∇(λdivu) can be used, but more general
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viscosity term are allowed (in particular with diffusion term involving the
density).

Finally, we observe that in our model, the viscosity matrix B does not
depends on U , so the last term in (23) vanishes.

Proof of Proposition 2.1. First, for any V, U ∈ [C1(Rn)]p, we have

∂tH (V |U) = ∂tH (V )− ∂tH (U)
−D2H (U)∂tU · (V − U)
−DH (U)∂tV + DH (U)∂tU.

Next, we observe that, using (22), we have, for all U ∈ RN :

−
∑
i,j,k

DijH (U)∂xk
(Ajk(U))(Vi − Ui)

+
∑
i,j,k

∂xk

[
DiFk(U)(Vi − Ui)

]
−

∑
i,j,k

DjH (U)∂xk

[
DiAjk(U)(Vi − Ui)

]
= 0

Using this equality, a carefull computation yields:

∂tH (V |U) =
= ∂tH (V )− ∂tH (U)
−div(B(V )∇DH (V ))DH (V ) + div(B(U)∇DH (U))DH (U)
−D2H (U)[∂tU + divxA(U)− div (B(U)∇ (DH (U)))](V − U)
−DH (U)[∂tV + divxA(V )− div (B(V )∇ (DH (V )))]
+DH (U)[∂tU + divxA(U)− div (B(U)∇ (DH (U)))]

+
∑
i,k

∂xk
[∂iFk(U)(Vi − Ui)]

+
∑
j,k

∂jH (U)∂xk
[A(V |U)]

+div [B(V )∇DH (V )−B(U)∇DH (U)] [DH (V )−DH (U)]
+div(B(U)∇DH (U))DH (V |U).
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Thus, if U = U∗ is a smooth solution of (21), we get

∂tH (V |U∗)
= ∂tH (V )− div(B(V )∇DH (V ))DH (V ) + divxF (U∗)
−DH (U∗) · [∂tV + divxA(V )− div (B(V )∇ (DH (V )))]

+
∑
i,k

∂xk
[∂iFk(U∗)(Vi − U∗

i )]

+
∑
j,k

∂jH (U∗)∂xk
[A(V |U∗)]

+div [B(V )(∇DH (V )−∇DH (U∗))] [DH (V )−DH (U∗)]
+div [(B(V )−B(U∗))∇DH (U∗)] [DH (V )−DH (U∗)]
+div(B(U∗)∇DH (U∗))DH (V |U∗).

Integrating with respect to x (using the boundary condition u = 0 on ∂Ω
when Ω is a bounded subset of RN ), it is relatively easy to deduce (23). �

We can now write the main proposition of this section:

Proposition 2.2 Let (fε, ρε, uε) be a weak solutions of (3)-(5) with initial
data satisfying (15)-(19) and verifying the entropy decay inequality (13), and
let U∗ = (n∗, ρ∗, (n∗ + ρ∗)u∗) be a smooth solution of (6). Denote by U ε the
macroscopic quantities corresponding to (fε, ρε, uε):

U ε = (nε, ρε, (nε + ρε)uε) with nε =
∫

fε dv.

Then U ε satisfies the following inequality:∫
Ω

H (U ε|U∗)(t) dx + ν

∫ t

0

∫
Ω
|∇(uε − u∗)|2 dx ds

≤ −
∫ t

0

∫
Ω

∑
j,k

∂xk
[∂jH (U∗)]Ajk(U ε|U∗) dx ds

+
∫ t

0

∫
Ω

div(B∇DH (U∗))DH (U ε|U∗) dx ds

−
∫ t

0

∫
Ω

DH (U∗) [∂tU
ε + divx(A(U ε))− divx(B∇DH (U ε))] dx ds

(where the last integral has to be understood in the distributional sense).
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Proof of Proposition 2.2. First, we note that since U∗ is a smooth solution
of (6) and using the expression of B(U), Inequality (23) gives:

d

dt

∫
Ω

H (U ε|U∗) dx + ν

∫
Ω

[∇uε −∇u∗]2 dx

=
d

dt

∫
Ω

H (U ε) dx + ν

∫
Ω
|∇uε| dx

−
∫

Ω

∑
j,k

∂xk
[∂jH (U∗)]Ajk(U ε|U∗) dx

−
∫

Ω
DH (U∗)(∂tU

ε + divx(A(U ε))− div(B∇DH (U ε))) dx.

+
∫

Ω
div (B∇DH (U∗)) ·DH (U ε|U∗) dx

Integrating this equality with respect to t, we get:∫
H (U ε|U∗)(t) dx + ν

∫ t

0

∫
Ω

[∇uε −∇u∗]2 dx ds

≤
∫

Ω
H (U ε|U∗)(0) dx +

∫
Ω

[H (U ε)(t)−H (U0)] dx

−
∫ t

0

∫
Ω

∑
j,k

∂xk
[∂jH (U∗)]Ajk(U ε|U∗) dx ds

−
∫ t

0

∫
Ω

DH (U∗)(∂tU
ε + divx(A(U ε))− divx(B∇DH (U ε))) dx ds

+
∫ t

0

∫
Ω

div (B∇DH (U∗)) ·DH (U ε|U∗) dx ds.

Next, we recall that E denotes the entropy associated to the initial sys-
tem (3-5) (see Proposition 1.1) and we write:

H (U ε)(t)−H (U0) = H (U ε)(t)− E (fε, ρε, uε)(t)
+E (fε, ρε, uε)(t)− E (f0, ρ0, u0)
+E (f0, ρ0, u0)−H (U0).

The well-preparedness of the initial data (17) yields

E (f0, ρ0, u0)−H (U0) = 0,

and (14) gives:
H (U ε)(t)− E (fε, ρε, uε)(t) ≤ 0.
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Moreover, the entropy inequality (13) implies that∫
Ω

E (fε, ρε, uε)(t) dx−
∫

Ω
E (fε, ρε, uε)(0) dx ≤ 0,

and so ∫
Ω

[H (U ε)(t)−H (U0)] dx ≤ 0.

Finally, hypothesis (17) yields

H (U ε|U∗)(0) = 0.

We deduce∫
H (U ε|U∗)(t) dx + ν

∫ t

0

∫
Ω

[∇uε −∇u∗]2 dx ds

≤ −
∫ t

0

∫
Ω

∑
j,k

∂xk
[∂jH (U∗)]Ajk(U ε|U∗) dx ds

−
∫ t

0

∫
Ω

DH (U∗)(∂tU
ε + divx(A(U ε))− div(B∇DH (U ε))) dx ds

+
∫ t

0

∫
Ω

div (B(U∗)∇DH (U∗)) ·DH (U ε|U∗) dx ds.

which gives Proposition 2.2. �

It is readily seen that Inequality (20) and Theorem 1.2 follow from Propo-
sition (2.2) if we can prove that the following facts hold (under the hypothe-
ses of Theorem 1.2):

(i) the relative flux is controled by the relative entropy:∫
Ω
|Aj,k(U |U∗)| dx ≤ C

∫
Ω

H (U |U∗) dx for all function U,

where the constant C depends on λ = inf(n∗+ρ∗) and Λ = sup(n∗+ρ∗)
(see Lemma 3.1).

(ii) the term due to the viscosity can be controled by the relative entropy
and the viscosity:∫ t

0

∫
Ω

div(Bj(U∗)∇∂jH (U∗))DH (U |U∗) dx ds

≤ C

∥∥∥∥ ∆u∗

n∗ + ρ∗

∥∥∥∥
L∞

∫
Ω

H (U |U∗) dx +
ν

2

∫
Ω
|∇(u− u∗)|2 dx ds

for all U = (n, ρ, (n + ρ)u) (see Lemma 3.3).
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(iii) the asymptotic system (6) is consistent with the original system, in
the sense that∥∥∥∥∫ t

0

∫
Ω

Φ
[
∂tU

ε + div(A(U ε))− div(B∇H (U ε))
]
dx dt

∥∥∥∥
L1(0,T )

≤ C(T )
√

ε

for any smooth function Φ(x, t) (see Proposition 4.1).

Note that the first two points are concerned with the stability of the asymp-
totic system and will result from an algebraic computation (see Section 3),
while the last point says that (6) is indeed the correct asymptotic system for
(3)-(5) and relies on the dissipative properties of the entropy (see Section
4).

When those three conditions are fullfilled, we can deduce (20). More
precisely, we have (using Proposition 2.2, and Lemma Lemma 3.1, 3.3 and
Proposition 4.1):

Proposition 2.3 Let (fε, ρε, uε) be a weak solutions of (3)-(5) with initial
data satisfying (15)-(19), and verifying the entropy decay inequality (13).
Let U∗ = (n∗, ρ∗, (n∗ + ρ∗)u∗) be a smooth solution of (6) such that

λ ≤ ρ∗ + n∗ ≤ Λ.

Then, there exists a constant C depending on λ−1, Λ, ||∇u||L∞, ||∂tu||L∞,
||∇u2||L∞, ||∆u||L∞ and ||∇ log n||L∞ such that∫

Ω
H (U ε|U∗)(t) dx +

ν

2

∫ t

0

∫
Ω
|∇(uε − u∗)|2 dx ds

≤ C

∫ t

0

∫
Ω

H (U ε|U∗) dx ds + R(t)

with ||R||L1(0,T ∗) ≤ C
√

ε.

A Gronwall argument then leads to∫ T

0

∫
Ω

H (U ε|U)(t) dx dt +
ν

2

∫ T

0

∫
Ω
|∇(uε − u∗)|2 dx dt ≤ C(T )

√
ε,

which conclude the proof of Theorem 1.2.
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3 Relative flux

In this section, we study the structure of the asymptotic system (6). We
denote respectively by A(·|·) and H (·|·) the relative flux and the relative
entropy associated with the system (6) (see Section 1.4 for details). We
establish the following lemma:

Lemma 3.1 Assume 1 < γ < 2, then for any positive constants λ and Λ,
there exists C(λ−1,Λ) such that∫

Ω
|A(U |U∗)| dx ≤ C

∫
Ω

H (U |U∗) dx

for any U = (n, ρ, (n + ρ)u), U∗ = (n∗, ρ∗, (n∗ + ρ∗)u∗) smooth functions
satisfying

λ ≤ ρ∗ + n∗ ≤ Λ.

Proof of Lemma 3.1:
First, we check that the relative flux is given by

A(U |U∗) =

 (α− α∗)(ρ + n)(ui − u∗i )
(β − β∗)(ρ + n)(ui − u∗i )

(ρ + n)(ui − u∗i )(uj − u∗j ) + p1(ρ|ρ∗)δij


with α = n

n+ρ , α∗ = n∗

n∗+ρ∗ , β = ρ
n+ρ and β∗ = ρ∗

n∗+ρ∗ , and we recall that the
relative entropy satisfies

H (U |U∗) = (n + ρ)
|u− u∗|2

2
+

1
γ − 1

p1(ρ|ρ∗) + p2(n|n∗).

with

p1(ρ|ρ∗) = ργ − ρ∗γ − γρ∗γ−1(ρ− ρ∗) =
γ

2
ξγ−2
1 (ρ− ρ∗)2

p2(n|n∗) = n log n− n∗ log n∗ − (log n∗ + 1)(n− n∗) =
1
2

1
ξ2

(n− n∗)2

where ξ1 between ρ and ρ∗ and ξ2 between n and n∗. Those computations
are very closed to the ones developed in [6], and we refer the reader to [6]
for more details.

The L1 norm of A(U |U∗) involves the following terms:∫
|(α− α∗)(ρ + n)(ui − u∗i )| dx ,

∫
|(β − β∗)(ρ + n)(ui − u∗i )| dx (24)
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and ∫
(ρ + n)(ui − u∗i )(uj − u∗j ) dx ,

∫
p1(ρ|ρ∗) dx, (25)

and it is readily seen that the last two terms (25) are bounded above by∫
H (U |U∗) dx. Moreover, the terms in (24) are alike, so we only need to

treat in detail one of them (the first one).
We note that Cauchy-Schwartz’s inequality gives∫

|(α− α∗)(ρ + n)(ui − u∗i )| dx

≤
(∫

(α− α∗)2(ρ + n) dx

)1/2 (∫
(ρ + n)|(ui − u∗i )|2 dx

)1/2

,

where the second term is bounded above by
(∫

H (U |U∗)dx
)1/2. So we are

left with the task of showing that the quantity

I = (α− α∗)2(n + ρ)

is bounded above by H (U |U∗).
To that purpose, we need to distinguish the case where n + ρ is larger

than Λ and the case where n+ρ is smaller than Λ. In each case, we will use
one of the following expression for α− α∗:

α− α∗ =
ρ(n− n∗) + n(ρ∗ − ρ)

(n + ρ)(n∗ + ρ∗)
(26)

or
α− α∗ =

ρ∗(n− n∗) + n∗(ρ∗ − ρ)
(n + ρ)(n∗ + ρ∗)

(27)

1 - When n+ρ < Λ, using the fact that ρ < Λ and ρ∗ ≤ Λ, we get ξ1 < Λ.
Since γ − 2 < 0 we deduce

p1(ρ|ρ∗) ≥ C(Λ)(ρ− ρ∗)2.

Similarly, using the fact that n < Λ and n∗ ≤ Λ, we have ξ2 < Λ which
yields

p2(n|n∗) ≥ C(Λ)(n− n∗)2.

Finally, using (26) together with the fact that n/(n + ρ) ≤ 1 and
ρ/(n + ρ) ≤ 1, we get

I ≤ (n + ρ)
(
|n− n∗|
(n∗ + ρ∗)

+
|ρ∗ − ρ|

(n∗ + ρ∗)

)2

≤ Λ
λ

((n− n∗)2 + (ρ∗ − ρ)2)
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and therefore
I ≤ C(Λ, λ)

[
p1(ρ|ρ∗) + p2(n|n∗)

]
2 - When n + ρ > Λ, we first note that using (27) and the fact that

n∗/(n∗ + ρ∗) ≤ 1, we have

I ≤ (|ρ∗ − ρ|+ |n− n∗|)2

(n + ρ)
≤ (n− n∗)2

n + ρ
+

(ρ− ρ∗)2

n + ρ

In order to control the first term, we again distinguish two situations:

– When n ≥ Λ, then n∗ < n, and so ξ2 < n. Therefore

p2(n|n∗) >
1
n

(n− n∗)2 >
(n− n∗)2

n + ρ
.

– When n < Λ, then 1/ξ2 > 1/ max(n, n∗) > 1/Λ, and since
(n−n∗)2

ρ+n < 1
Λ(n− n∗)2, we get

p2(n|n∗) > C(Λ)(n− n∗)2 > C(Λ)Λ
(n− n∗)2

ρ + n

where we used the fact that n + ρ ≥ Λ.

In either case, we have

(n− n∗)2

n + ρ
≤ C(Λ)p2(n|n∗).

Finally, we proceed similarly to show that the term (ρ−ρ∗)2

n+ρ is controled
by p1(ρ|ρ∗):

– When ρ > Λ, then ξ1 ≤ ρ and so ξγ−2
1 > ργ−2 > C(Λ)/ρ (using

the fact that γ > 1). Since

(ρ∗ − ρ)2

n + ρ
≤ (ρ− ρ∗)2

ρ
,

we deduce

(ρ∗ − ρ)2

n + ρ
< Cξγ−2

1 (ρ∗ − ρ)2 ≤ p1(ρ|ρ∗).
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– When ρ < Λ, then ξγ−2
1 > (max(n, n∗))γ−2 > Λγ−2, and since

(ρ−ρ∗)2

ρ+n < 1
Λ(ρ− ρ∗)2 (we recall that we still have n + ρ > Λ), we

get

p1(n|n∗) > C(Λ)(ρ− ρ∗)2 > C(Λ)
(ρ− ρ∗)2

ρ + n
.

The proof of Lemma 3.1 is now complete. �

Note that we actually proved the following fact:

Lemma 3.2 Assume 1 < γ < 2, then for any positive constants λ and
Λ, there exists C(λ, Λ) such that for any non-negative functions (n, ρ) and
(n∗, ρ∗) satisfying

λ ≤ ρ∗ + n∗ ≤ Λ,

we have

p1(ρ|ρ∗) ≥ C min
(

1
n + ρ

,
1
Λ

)
|ρ− ρ∗|2

p2(n|n∗) ≥ C min
(

1
n + ρ

,
1
Λ

)
|n− n∗|2

We deduce the following result:

Lemma 3.3 Assume 1 < γ < 2, then for any positive constants λ and Λ,
there exists C(λ, Λ) such that for every t > 0:∫ t

0

∫
Ω

div(B∇DH (U∗))DH (U |U∗) dx ds

≤ C

∥∥∥∥ ∆u∗

n∗ + ρ∗

∥∥∥∥
L∞

∫ t

0

∫
Ω

H (U |U∗) dx ds +
ν

2

∫ t

0

∫
Ω
|∇(u− u∗)|2 dx ds

for any U = (n, ρ, (n + ρ)u), U∗ = (n∗, ρ∗, (n∗ + ρ∗)u∗) smooth functions
satisfying

λ ≤ ρ∗ + n∗ ≤ Λ,

(and u = u∗ = 0 on ∂Ω when Ω is a bounded domain).

Proof. We first check that we have

BDH (U |U∗) = (BDH )(U |U∗)

where BDH (U) = P
n+ρ . Thus we have

BDH (U |U∗) =
1

n∗ + ρ∗
(n− n∗ + ρ− ρ∗)(u∗ − u).
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It follows that

div(B∇DH (U∗))DH (U |U∗) =
∆u∗

n∗ + ρ∗
(n− n∗ + ρ− ρ∗) (u∗ − u)

and so∫ t

0

∫
Ω

div(B∇DH (U∗))DH (U |U∗) dx ds

≤
∥∥∥∥ ∆u∗

n∗ + ρ∗

∥∥∥∥
L∞

(∫ t

0

∫
Ω
min

(
1

n + ρ
,
1
Λ

)[
|ρ− ρ∗|2 + |n− n∗|2

]
dx ds

)1/2

(∫ t

0

∫
Ω

max(ρ + n, Λ)(u− u∗)2 dx ds

)1/2

≤
∥∥∥∥ ∆u∗

n∗ + ρ∗

∥∥∥∥
L∞

(∫ t

0

∫
Ω

p1(n|n∗) + p2(ρ|ρ∗) dx ds

)1/2

(∫ t

0

∫
Ω

max(ρ + n, Λ)(u− u∗)2 dx ds

)1/2

.

Moreover, we can write∫ t

0

∫
Ω

max(ρ + n, Λ)(u− u∗)2 dx ds

≤
∫ t

0

∫
Ω
(ρ + n)(u− u∗)2 dx ds + Λ

∫ t

0

∫
Ω
(u− u∗)2 dx ds

≤
∫ t

0

∫
Ω

H (U |U∗) dx ds + C

∫ t

0

∫
Ω
∇(u− u∗)2 dx ds

thanks to Poincaré inequality (and the fact that u = u∗ on ∂Ω). The Lemma
follows easily using Young’s inequality. �

4 Control of the kinetic approximation

In this section, we prove the consistency of the asymptotic system with the
kinetic model. More precisely, we prove:

Proposition 4.1 Let Uε be a weak solution of (3)-(5) satisfying the entropy
inequality (13), and let U = (n, ρ, (n + ρ)u) be a smooth function. Then,
there exists a constant C depending only on ||∇u||L∞, ||∂tu||L∞, ||∇u2||L∞
and ||∇ log n||L∞ such that∥∥∥∥∫ t

0

∫
Ω

DH (U)
[
∂tUε + div(A(Uε))− div(B∇(DH (Uε)))

]
dxds

∥∥∥∥
L1(0,T )

≤ C
√

ε.
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The proof relies on inequality (13). However in order to controle the dissi-
pation term, we first need to show that the negative part of the entropy can
be controled by its positive part. More precisely, we need to show:

Lemma 4.1 There exists a constant C such that for every T > 0 and ε:∫
Ω

∫
RN

|v|2

4
fε + |fε log fε| dv dx +

1
ε

∫ T

0
D(fε) dt ≤ C.

Proof of Lemma 4.1. This is a fairly classical result, and its proof can be
found in particular in [15]. We recall it here for the sake of completness: We
write |s ln s| = s ln s− 2s ln sχ0≤s≤1, and for ω > 0, we note that

−s ln sχ0≤s≤1 ≤ sω + C
√

sχe−w≥s ≤ sω + Ce−ω/2

Using these relations with s = fε and ω = v2/8, we deduce:∫∫
|fε ln(fε)| dx dv ≤

∫∫
fε ln(fε) dx dv

+
1
4

∫∫
v2fε dx dv + 2C

∫∫
e−v2/16 dx dv.

Since Ω is bounded, it follows that∫∫
fε(1 + | ln(fε)|) dx dv +

1
4

∫∫
v2fε dv dx

+
∫ [

ρε
u2

ε

2
+

1
γ − 1

ργ

]
dx +

1
ε

∫ t

0
D(fε) ds

≤ E (fε, ρε, uε)(t) + C

≤ E (fε, ρε, uε)(0) + C.

�

Proof of Proposition 4.1. Formally, we have, integrating (3) with respect
to v:

∂tnε = −divx

∫
vfε dv

and thus

∂tnε + divx(nεuε) = divx

∫
(uε − v)fε dv.

25



Moreover, multiplying (3) by v and integrating with respect to v, we get
(still formally):

∂t

∫
vfε dv = −divx

∫
v ⊗ vfε dv +

1
ε

∫
(uε − v)fε dv

and thus

∂t((nε + ρε)uε) + divx(uε ⊗ uε(nε + ρε)) +∇x(ργ
ε + nε)− ν∆uε

= ∂t

∫
(uε − v)fε dv + divx

(∫
(uε ⊗ uε − v ⊗ v + I)fε dv

)
Hence, we can write∫ t

0

∫
Ω

DH (U)
[
∂tU

ε + divx(A(U ε))− divx(B∇DH (U ε))
]
dx ds

= −
∫ t

0

∫
Ω
[∇xD1H (U) + ∂tD3H (U)] ·

(∫
(uε − v)fε dv

)
dx ds

+
∫

Ω
D3H (U(t))

(∫
(uε − v)fε(t) dv

)
dx

−
∫ t

0

∫
Ω

(∫
(uε ⊗ uε − v ⊗ v + I)fε dv

)
: ∇xD3H (U) dx ds

where we recall that

D1H (U) = −u2

2
+ log n + 1− 2

3
log(2π), and D3H (U) = u.

This equality can be made rigorous by taking D1H (U) + v ·D3H (U)
as a test function in (10) (note that this function satisfies the compatibilty
condition (11) along ∂Ω in the case of reflection boundary conditions) and
D3H (U) as a test function in (5).

We deduce that there exists a constant C depending only on ||∇u||L∞ ,
||∂tu||L∞ , ||∇u2||L∞ and ||∇ log n||L∞ such that∫ t

0

∫
Ω

DH (U)(∂tU
ε + divx(A(U ε))− divx(B∇DH (U ε))) dx ds

≤ C

∫ t

0

∫
Ω

∣∣∣∣∫
RN

(uε − v)fε dv

∣∣∣∣ dx ds (28)

+C

∫
Ω

∣∣∣∣∫
RN

(uε − v)fε(t) dv

∣∣∣∣ dx

+C

∫ t

0

∫
Ω

∣∣∣∣∫
RN

(uε ⊗ uε − v ⊗ v + I)fε dv

∣∣∣∣ dx ds. (29)
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We are thus left with the task of showing that∫
Ω

∣∣∣∣∫
RN

(uε − v)fε dv

∣∣∣∣ dx and
∫

Ω

∣∣∣∣∫
RN

(uε ⊗ uε − v ⊗ v + I)fε dv

∣∣∣∣ dx

can be controled by the dissipation.

1 - We have∣∣∣∣∫ (uε − v)fε dv

∣∣∣∣ =
∣∣∣∣∫ (uε − v)fε −∇vfε dv

∣∣∣∣
≤

(∫
fεdv

)1/2 (∫
|(uε − v)fε −∇vfε|2

1
fε

dv

)1/2

and therefore∫ t

0

∫
Ω

∣∣∣∣∫ (uε − v)fε dv

∣∣∣∣ dx ds ≤ C

√∫ t

0
D(fε) ds ≤ C

√
ε,

which gives a bound for the first two terms in (29) (note that only the
L1(0, t)-norm of the second one is bounded).

2 - Next, we write∫
(uε ⊗ uε − v ⊗ v + I)fε dv

=
∫

[uε ⊗ (uε − v) + (uε − v)⊗ v + I] fε dv

=
∫

uε

√
fε ⊗

[
(uε − v)

√
fε − 2∇v

√
fε

]
+ uε ⊗ 2

√
fε∇v

√
fε dv

+
∫ [

(uε − v)
√

fε − 2∇v

√
fε

]
⊗ v

√
fε + 2

√
fε∇v

√
fε ⊗ v + Ifε dv

=
∫

uε

√
fε ⊗

[
(uε − v)

√
fε − 2∇v

√
fε

]
+ uε ⊗∇vfε dv

+
∫ [

(uε − v)
√

fε − 2∇v

√
fε

]
⊗ v

√
fε +∇vfε ⊗ v + Ifε dv

=
∫

uε

√
fε ⊗

[
(uε − v)

√
fε − 2∇v

√
fε

]
dv

+
∫ [

(uε − v)
√

fε − 2∇v

√
fε

]
⊗ v

√
fε dv
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and so ∫ t

0

∫
Ω

∣∣∣∣∫ (uε ⊗ uε − v ⊗ v + I)fε dv

∣∣∣∣ dx ds

≤
(∫ t

0

∫
Ω

∫
(|uε|2 + |v|2)fε dv dx ds

)1/2
√∫ t

0
D(fε) ds

So it only remains to see that
∫ ∫

(|uε|2 + |v|2)fε dv dx is bounded uni-
formly by a constant. Using the entropy inequality, we already know that∫ ∫

|v|2fε dv dx is bounded, so it is enough to check that
∫ ∫

(uε−v)2fε dv dx
is bounded. To that purpose, we write∫

(uε − v)2fε dv dx =
∫ ∫

(uε − v)
√

fε

[
(uε − v)

√
fε − 2∇v

√
fε

]
dv dx

+
∫ ∫

(uε − v)∇vfε dv dx

≤
(∫

(uε − v)2fε dv dx

)1/2 √
D(fε) +

∫
fε dv dx

which gives∫ t

0

∫
(uε − v)2fε dv dx ds ≤

∫ t

0
D(fε) ds + 2

∫ t

0

∫
fε dv dx ds.

and yields the result
Putting all the pieces together, (29) gives∥∥∥∥∫ t

0

∫
DH (U)

[
∂tU

ε + divx(A(U ε))− divx(B∇DH (U ε))
]
dx ds

∥∥∥∥
L1(0,T )

≤ (1 + T )
(

sup
x

∫ T

0
|∇xD1H (U)|+ |∂tD3H (U)|+ |∇xD3H (U)|ds

)√
ε

which is the desired result. �
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brouillards de gouttes monodispersés. C. R. Acad. Sci. Paris Sér. I
Math., 331(8):651–654, 2000.

[8] F. Bouchut. Construction of BGK models with a family of kinetic
entropies for a given system of conservation laws. J. Statist. Phys.,
95(1-2):113–170, 1999.

[9] Y. Brenier. Convergence of the Vlasov-Poisson system to the incom-
pressible Euler equations. Comm. Partial Differential Equations, 25(3-
4):737–754, 2000.

[10] Yann Brenier. Hydrodynamic structure of the augmented Born-Infeld
equations. Arch. Ration. Mech. Anal., 172(1):65–91, 2004.

[11] J. Carrillo and T. Goudon. Stability and asymptotics analysis of a
fluid-particles interaction model. C.P.D.E.

[12] C. M. Dafermos. The second law of thermodynamics and stability.
Arch. Rational Mech. Anal., 70(2):167–179, 1979.

[13] Dimitri Gidaspow. Multiphase flow and fluidization. Academic Press
Inc., Boston, MA, 1994. Continuum and kinetic theory descriptions.

29



[14] François Golse and Laure Saint-Raymond. The Navier-Stokes limit of
the Boltzmann equation for bounded collision kernels. Invent. Math.,
155(1):81–161, 2004.

[15] Thierry Goudon, Pierre-Emmanuel Jabin, and Alexis Vasseur. Hydro-
dynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles
regime. Indiana Univ. Math. J., 53(6):1495–1515, 2004.

[16] Thierry Goudon, Pierre-Emmanuel Jabin, and Alexis Vasseur. Hydro-
dynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles
regime. Indiana Univ. Math. J., 53(6):1517–1536, 2004.

[17] K. Hamdache. Global existence and large time behaviour of solutions for
the Vlasov-Stokes equations. Japan J. Indust. Appl. Math., 15(1):51–
74, 1998.

[18] Frédérique Laurent, Marc Massot, and Philippe Villedieu. Eulerian
multi-fluid modeling for the numerical simulation of coalescence in poly-
disperse dense liquid sprays. J. Comput. Phys., 194(2):505–543, 2004.

[19] P.-L. Lions and N. Masmoudi. From the Boltzmann equations to the
equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech.
Anal., 158(3):173–193, 195–211, 2001.

[20] A. Mellet and A. Vasseur. Global weak solutions for a Vlasov-Fokker-
Planck/Navier-Stokes system of equations. preprint.

[21] W.K. Sartory. Three-component analysis of blood sedimentation by the
method of characteristics. Math. Biosci., 33:145–165, 1977.

[22] A. Spannenberg and K.P. Galvin. Continuous differential sedimentation
of a binary suspension. Chem. Eng. in Australia, 21:7–11, 1996.

[23] F.A. Williams. Spray combustion and atomization. Physics of Fluids
1, pages 541–555, 1958.

[24] F.A. Williams. Combustion theory. Benjamin Cummings Publ., 2nd
ed., 1985.

[25] Horng-Tzer Yau. Relative entropy and hydrodynamics of Ginzburg-
Landau models. Lett. Math. Phys., 22(1):63–80, 1991.

30


