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Abstract

We establish the existence of a weak solutions for a coupled system of
kinetic and fluid equations. More precisely, we consider a Vlasov-Fokker-
Planck equation coupled to compressible Navier-Stokes equation via a
drag force. The fluid is assumed to be barotropic with γ-pressure law
(γ > 3/2). The existence of weak solutions is proved in a bounded domain
of R3 with homogeneous Dirichlet conditions on the fluid velocity field
and Dirichlet or reflection boundary conditions on the kinetic distribution
function.

1 Introduction

In this paper, we establish the existence of weak solutions for a system of a
kinetic equation coupled with compressible isentropic (or barotropic) Navier-
Stokes equations. Such a system models, for example, the evolution of dispersed
particles in a fluid: The cloud of particles is described by its distribution function
f(x, v, t), solution to a Vlasov-Fokker-Planck equation:

∂tf + v · ∇xf + divv(Fdf −∇vf) = 0. (1)

The fluid, on the other hand, is modeled by macroscopic quantities: Its density
ρ(x, t) ≥ 0 and its velocity field u(x, t) ∈ R3. Assuming that the fluid is viscous,
compressible and barotropic, we are led to consider the following Navier-Stokes
system of equations:{

∂tρ+ divx(ρu) = 0
∂t(ρu) + divx(ρu⊗ u) +∇xp− µ∆u− λ∇divu = Ff

(2)
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with µ > 0 and µ+ λ = ν > 0.
In this system, the fluid-particles interactions are taken into account via a

friction (or drag) force Fd exerted by the fluid onto the particles. This force
typically depends on the relative velocity u(x, t) − v and on the density ρ of
the fluid. In this paper, we will consider a very simple model, in which Fd is
independent on ρ and proportional to the relative velocity of the fluid and the
particles:

Fd = F0(u(x, t)− v)

where the coefficient F0 is a constant (we will take F0 = 1). Note that the right
hand-side of the moment equation in the Navier-Stokes system has to take into
account the action of the cloud of particles on the fluid, and so

Ff = −
∫
Fdfdv = F0

∫
(v − u(x, t))f(x, v, t) dv.

Finally, we will assume that the pressure follows a γ-law:

p(ρ) = ργ ,

with γ > 3/2.

This kind of system arises in a lot of industrial applications. One example
is the analysis of sedimentation phenomenon, with applications in medicine,
chemical engineering or waste water treatment (see Berres, Bürger, Karlsen,
and Tory [2], Gidaspow [9], Sartory [17], Spannenberg and Galvin [18]). Such
systems are also used in the modeling of aerosols and sprays with applications,
for instance, in the study of Diesel engines (see Williams [20], [19]).

In a related paper, [14], we investigate the asymptotic regime corresponding
to a strong drag force and strong Brownian motion. More precisely, we consider
the following system of singular equations:

∂tfε + v · ∇xfε +
1
ε
divv(fε(u− v)−∇vfε) = 0

∂tρε + divx(ρεuε) = 0

∂t(ρεuε) + divx(ρεuε ⊗ uε) +∇xρ
γ
ε − µ∆u− λ∇divu =

1
ε
(jε − nεuε)

where nε =
∫
fε(x, v, t) dv and jε =

∫
vfε(x, v, t) dv, and we prove that weak

solutions (fε, ρε, uε) that satisfies a natural entropy inequality converges, as ε
goes to zero, to (Mn,u, ρ, u), where Mn,u denotes the Maxwellian distribution
with density n(x, t) and velocity u(x, t). Moreover, (n, ρ, u) solve the following
system of hydrodynamic equations: ∂tn+ divx(nu) = 0

∂tρ+ divx(ρu) = 0
∂t((ρ+ n)u) + divx((ρ+ n)u⊗ u) +∇x(n+ ργ)− µ∆u− λ∇divu = 0
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This asymptotic analysis was first performed (formally) by J. Carrillo and T.
Goudon in [5]. The rigorous approach is developed in [14] when ν ≥ 0 and
γ ∈ (1, 2). We also refer to [5] for further considerations on various modelling
issues and stability properties of this system of equations.

The purpose of this paper is thus to prove that for fixed ε > 0, there exists a
solution of the coupled system of equations (1)-(2) that satisfies all the hypoth-
esis necessary to apply our convergence result of [14]. We work under slightly
different hypothesis (namely ν > 0 and γ > 3/2), but we note that when ν > 0
and γ ∈ (3/2, 2), both the existence result and the asymptotic result hold.

As in [14], we assume that (1)-(2) is set in a bounded subset Ω of R3. The
system has to be supplemented with initial and boundary conditions. We will
only make relatively minimal assumptions on the initial data

f(x, v, 0) = f0(x, v), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x),

and on ∂Ω, we will consider homogeneous Dirichlet boundary conditions for the
fluid equations and Dirichlet or reflection conditions for the distribution function
f . Naturally, the case of periodic boundary conditions could be treated similarly.

The existence of solutions for kinetic equations coupled with hydrodyamic
equations has been studied before. In particular, the coupling of Vlasov-Fokker-
Planck equation with Poisson equation (in that case u is an electric field) was
investigated by J. Carrillo et al. [6], [3] in the case of Dirichlet and reflection
boundary conditions, and by F. Bouchut [4] when the equation is set in the whole
space Ω = RN . Global existence results for the coupling of kinetic equations
with incompressible Navier-Stokes equations was proved by Hamdache in [11].
The existence of solutions for short time in the case of the hyperbolic system
(i.e. no viscosity in the Navier-Stokes equation (ν = 0) and no Brownian effect
in the kinetic equation) is proved by Baranger and Desvillettes in [1].

On the other hand, the main existence result for compressible Navier-Stokes
equation is due to P.-L. Lions in [12]. It shows the existence of weak solutions
under only physical assumptions for the initial data (finite mass and energy),
and when γ > 9/5 (in dimension 3). This result was later improved by E. Feireisl
[8] to include the case of all γ > 3/2. In our study, we will use many of the idea
of P.-L. Lions (in particular to regularize the system), and one of the key point
will be the compactness results for the density (in its improved form establised
by E. Feireisl) which will allow us to pass to the limit in the regularized problem.

In the case of reflection boundary condition for the particles, one of the
difficulty will be to deal with the lack of regularity of the trace of f along
the boundary. This is a very classical problem, which has been addressed,
in particular by Hamdache [10] and Cercignani et al. [7] for the Botlzmann
equation, and by J. Carrillo [6] for the Vlasov-Poisson-Fokker-Planck system of
equations. Our main reference on those issue will be the more recent work of S.
Mischler (see [16] and [15]).

In the next section, we describe our result more precisely. In particular we
specify the boundary conditions, make precise the notion of weak solutions, and
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state our result. The proof of the existence of weak solutions with Dirichlet
boundary condition on the kinetic variable f is then detailed in Section 3. The
last section deals with the case of reflection conditions.

2 Main results

2.1 Notion of weak solutions

The system under consideration is the following:

∂tf + v · ∇xf + divv((u− v)f −∇vf) = 0 (3)

∂tρ+ divx(ρu) = 0 (4)

∂t(ρu) + divx(ρu⊗ u) +∇xρ
γ − µ∆u− λ∇divu = (j − nu) (5)

where
n(x, t) =

∫
R3
f(x, v, t) dv , j(x, t) =

∫
R3
v f(x, v, t) dv.

The kinetic variable v (the velocity) lies in R3, while the space variable x lies
in a bounded subset Ω of R3. We assume that the boundary ∂Ω is a smooth
hypersurface and we consider homogeneous Dirichlet condition for the velocity
field u of the fluid:

u(x, t) = 0 ∀x ∈ ∂Ω, ∀t > 0 .

To make precise the boundary conditions on the kinetic distribution function,
we denote the traces of f by γ±f(x, v, t) = f |Σ± , where

Σ± = {(x, v) ∈ ∂Ω× R3 | ± v · r(x) > 0}.

We also introduce

Lp(Σ±) =

{
g(x, v) ;

(∫
Σ±

|g(x, v)|p|v · r(x)| dσ(x) dv
)1/p

<∞

}

where dσ(x) denotes the euclidean metric on ∂Ω. We consider two types of
boundary conditions: the case of Dirichlet boundary conditions, which read

γ−f(x, v, t) = g(x, v) ∀(x, v) ∈ Σ−, (6)

and the case of reflection conditions, which can be written as

γ−f(x, v, t) = B(γ+f) ∀(x, v) ∈ Σ−, (7)

(the hypothesis on the boundary operator B will be discussed in the next sec-
tion).
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In this framework, we say that (f, ρ, u) is a weak solution of (3)-(5) on [0, T ]
if

f(x, v, t) ≥ 0 ∀(x, v, t) ∈ Ω× R3 × (0, T )

f ∈ C([0, T ];L1(Ω× R3)) ∩ L∞(0, T ;L1 ∩ L∞(Ω× R3)),

|v|2f ∈ L∞(0, T ;L1(Ω× R3))

and

ρ(x, t) ≥ 0 ∀(x, t) ∈ Ω× (0, T )

ρ ∈ L∞(0, T ;Lγ(Ω)) ∩ C([0, T ];L1(Ω))

u ∈ L2(0, T ;H1
0 (Ω)), ρ |u|2 ∈ L∞(0, T ;L1(Ω))

ρ u ∈ C([0, T ];L2γ/(γ+1)(Ω)− w)

where (4)-(5) holds in the sense of distribution. In particular, we will see that
the conditions on f yield n(x, t) ∈ L∞(0, T ;L6/5(Ω)) which is enough to give a
meaning to the product nu in L1((0, T )× Ω).

In the case of Dirichlet boundary conditions (6), we also ask that

γ±f ∈ L1(0, T ;L1(Σ±)), and γ−(f) = g

and (3) hods in the sense of distribution, that is for any ϕ ∈ C∞(Ω×R3× [0, T ])
we have ∫ T

0

∫
Ω×RN

f
[
∂tϕ+ v · ∇xϕ+ (u− v) · ∇vϕ+ ∆vϕ

]
dx dv dt

+
∫

Ω×RN

f0ϕ(x, v, 0) dx dv +
∫ T

0

∫
Σ

(v · r(x))γf ϕdσ(x) dv dt = 0. (8)

In the case of reflection boundary conditions, it is a well known fact that
grazing collisions with the boundary of the domain are responsible for a loss
of regularity of the traces of f . In general, we cannot expect to have γ±f in
L1(0, T ;L1(Σ±)), and we only ask that (3) be satisfied in the following sense:∫ T

0

∫
Ω×RN

f
[
∂tϕ+ v · ∇xϕ+ (u− v) · ∇vϕ+ ∆vϕ

]
dx dv dt

+
∫

Ω×RN

f0ϕ(x, v, 0) dx dv = 0 (9)

for any ϕ ∈ C∞(Ω × R3 × [0, T ]) such that ϕ(·, T ) = 0 and γ+ϕ = B∗γ−ϕ on
Σ+ × [0, T ].

Remark 2.1 The weak formulation (9), together with the entropy inequality is
all that is needed for the asymptotic result of [14] to apply.
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2.2 Reflection boundary conditions

We recall that Ω is a bounded subset of R3. Moreover, we will assume that ∂Ω
is a smooth hypersurface. More precisely, we require that he following holds:

∂Ω is a C1 manifold. Moreover, there exists a W 1,∞ vector field r(x)
defined in Ω which is equal to the outward unit normal vector to ∂Ω for
all x ∈ ∂Ω.

In its most general form, the reflection operator B can be written as

Bf(v) =
∫

v′·n>0

B(t, x, v, v′)f(v′) |v′ · r(x)|dv′

The usual assumptions on the kernel B are the following:

(i) The operator B is non-negative (i.e. B ≥ 0).

(ii) For every v′ ∈ R3 such that v′ · n > 0, we have∫
v·n<0

B(t, x, v, v′)|v · r(x)| dv = 1

(iii) If M(v) = (2π)−3/2 exp(−|v|2/2) denote the Maxwellian distribution, we
have ∫

v′·n>0

B(t, x, v, v′)M(v′)|v′ · r(x)| dv′ = M(v).

Those three conditions are very classical in kinetic theory, and it is readily
seen that (i)-(iii) implies that B is a bounded operator from L1(Σ+) into L1(Σ−),
with

‖B‖L(L1(Σ+),L1(Σ−)) ≤ 1.

However, we will also need to control the trace of f in Lp(Σ) for p > 1, and to
that purpose we need to assume the following condition:

(iv) The operator B is a bounded operator from Lp(Σ+) into Lp(Σ−) for all
p ∈ [1,∞], with

‖B‖L(Lp(Σ+),Lp(Σ−)) ≤ 1.

This additional condition is satisfied, for example, if the reflections are elas-
tic, i.e. if we have

B(x, t, v, v′) = b(x, t, v, v′)δ(|v|2 − |v′|2).

For example, we can take

B(g) = αJ(g) + (1− α)K(g)

with a local reflection operator J defined by

J(g)(x, v) = g(x,Rxv)
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with Rxv = −v (inverse reflection) or Rxv = v − 2(v · r(x)) r(x) (specular
reflexion), and the elactic diffusive operator given by

K(g)(x, v) =
1

4π|v|2

∫
S+(x,v)

g(x, v′)v′ · r dv′ .

where S+(x, v) = {v′ ∈ R3 ; v′ · r(x) > 0, |v′|2 = |v|2}.
Note that condition (ii) on B yields that if γϕ(x, v) = g(x) is independent

on v then γ+ϕ = B∗γ−ϕ. So the weak formulation (9) holds in particular for
test function ϕ indepedent of v.

Finally, hypothesis (i)-(iii) yield the following classical lemma which will be
crucial in the sequel to make use of the entropy inequality:

Lemma 2.1 (Cercignani et al. [7]) Let γf ≥ 0 satisfy γ−f = Bγ+f and
assume that (1 + |v|2 + | log γf |)γf ∈ L1(Σ±). Then we have∫

R3
(v · r(x))γf dv = 0

and ∫
R3

(v · r(x))
(
|v|2

2
+ log(γf)

)
γf dv ≥ 0

2.3 Entropy inequality

Before stating our main results, we briefly review the classical energy/entropy
inequalities satisfied by smooth solutions of (3) and (4)-(5).

First of all, setting

E1(f) =
∫

RN

(
|v|2

2
f + f log f

)
dv,

it is readily seen that (multipying (3) by |v|2
2 + log f + 1 and integrating with

respect to x, v) smooth solutions of (3) satisfy:

d

dt

∫
Ω

E1(f) dx+
∫

Ω

∫
RN

|(u− v)f −∇vf |2
1
f
dv dx

+
∫

∂Ω×R3
(v · r(x))

(
|v|2

2
+ log γf + 1

)
γf dσ(x) dv

=
∫

Ω

∫
RN

u(u− v)f dv dx.

Next, defining

E2(ρ, u) = ρ
|u|2

2
+

1
γ − 1

ργ ,
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it is a well-konwn fact that smooth solutions of (4)-(5) satisfy:

d

dt

∫
Ω

E2(ρ, u) dx+ ν

∫
Ω

|∇xu|2 dx =
∫

Ω

∫
RN

u(u− v)f dv dx.

We deduce the following proposition:

Proposition 2.1 The function

E (f, ρ, u) =
∫

RN

[
|v|2

2
f + f log f

]
dv + ρ

|u|2

2
+

1
γ − 1

ργ

is an entropy for the system (3)-(5), with dissipation

D(f, u) =
∫

Ω

∫
RN

∣∣(u− v)f −∇vf
∣∣2 1
f
dv dx+ ν

∫
Ω

|∇xu|2 dx.

More precisely, if (f, ρ, u) is a smooth solution of (3)-(5), then the following
energy equality holds:∫

Ω

[
E (f, ρ, u)(t)

]
dx+

∫ t

0

∫
Ω×RN

|(u− v)f −∇vf |2
1
f
dv dx ds

+ν
∫ t

0

∫
Ω

|∇xu|2 dx ds =
∫

Ω

E (f0, ρ0, u0) dx

−
∫ t

0

∫
∂Ω×R3
(v · r(x))

(
|v|2

2
+ log γf + 1

)
γf dσ(x) dv ds.

The entropy inequality will be crucial in deriving a priori estimates on the
solutions (f, ρ, u) of the approximated system of equations. Note however that
the entropy E1 may be negative (when f ≤ 1). We will thus make extensive use
of the following classical Lemma [7]:

Lemma 2.2 Assume that f ≥ 0 and |v|2f ∈ L1(Ω× R3). Then∫
Ω×R3

f log− f dx dv ≤ C(ε,Ω) + ε

∫
|v|2f dx dv

for any ε > 0. Similarly, if |v|2γf ∈ L1((0, T ) × Σ±), then γf log−(γf) ∈
L1((0, T )× Σ±) and a similar estimate holds.

2.4 Main results

We can now state our main results. Throughout the paper, we will assume that
the intial data have finite mass and energy. More precisely, we assume:

f0(x, v) ≥ 0 ∀(x, v) ∈ Ω× RN , f0 ∈ L1 ∩ L∞(Ω× R3) (10)
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and
ρ0(x) ≥ 0 ∀x ∈ Ω ρ0 ∈ L1(Ω) (11)∫

Ω

E (f0, ρ0, u0) dx < +∞ (12)

In the case of Dirichlet boundary condition, we also assume that
g(x, v, t) ≥ 0 g ∈ L1 ∩ L∞(Σ− × (0, T ))∫ T

0

∫
Σ−

|v|2 g(x, v) |v · r(x)| dσ(x) dv dt <∞
(13)

Theorem 2.1 (Dirichlet boundary conditions) Let f0, ρ0 and u0 satisfy
(10)-(12) and let g satisfies (13) for every T > 0. Assume that γ > 3/2 and
ν > 0. Then there exists a weak solution (f, ρ, u) of (3)-(5) satisfying (6) defined
globally in time. Moreover, f satisfies the additional bounds for every T > 0:

(i) γ+f ∈ Lp(0, T ;Lp(Σ+)) for all p ∈ [0,∞]

(ii) |v|2γ+f ∈ L1(0, T ;L1(Σ+)).

and the following entropy inequality holds:∫
Ω

E (f(t), ρ(t), u(t)) dx+
∫ t

0

D(f, u) ds+ ν

∫ t

0

∫
Ω

|∇u|2 dx ds

+
∫ t

0

∫
∂Ω×R3

(v · r(x))
(
|v|2

2
+ log γf + 1

)
γf dσ(x)dvds ≤

∫
Ω

E (f0, ρ0, u0) dx(14)

The proof of this result will be developed in Section 3. It relies on the
introduction of a regularized system of equation (for which the existence of a
solutions is given by a fixed point argument), and it makes use of a compactness
result of P.L. Lions [12] and E. Feireisl [8] for weak solutions of compressible
Navier-Stokes equation.

In the case of reflection boundary condition, we have the following result:

Theorem 2.2 (Reflection boundary conditions) Let f0, ρ0 and u0 satisfy
(10)-(12) and assume that γ > 3/2. Then there exists a weak solution (f, ρ, u)
of (3)-(5) satisfying (7) defined globally in time. Moreover the following entropy
inequality holds:∫

Ω

E (f(t), ρ(t), u(t)) dx+
∫ t

0

D(f, u) ds+ ν

∫ t

0

∫
Ω

|∇u|2 dx ds

≤
∫

Ω

E (f0, ρ0, u0) dx (15)

We recall that in this case, (3) holds in the sense of (9). In particular, we stress
out the fact that we do not have γf in L1(0, T ;L1(Σ)), and that we cannot
write the weak formulation (8).

The proof of this second theorem relies on the first result and a fixed point
argument on the trace. It will be the object of Section 4.
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3 Proof of theorem 2.1: Dirichlet boundary con-
ditions

The proof of Theorem 2.1 is divided in three steps. First, we introduce a reg-
ularized system of equations for which we prove the existence of solutions by a
fixed point argument on the velocity field u. Then we investigate the properties
of these solutions and show, in particular, that they satisfy an approximated
entropy inequality. Finally, we pass to the limit on the regularization param-
eters and show that we obtain weak solutions of (3)-(5) satisfying the entropy
inequality.

3.1 Regularization

In this section, we regularized the system (3)-(5) and construct a solution of
the regularized system of equations. The main difficulty is to control the right
hand side in (5), i.e. to control some Lp norm of the kinetic density n(x, t) and
current j(x, t). To that purpsoe, we modify the kinetic equation by truncating
the velocity field u: We consider

∂tf + v · ∇xf + divv((χλ(u)− v)f −∇vf) = 0 (16)

where
χλ(u) = u 1{|u|≤λ}.

We need to modify Navier-Stokes system of equations accordingly, in order to
preserve the entropy inequality. This can be done by replacing the right hand
side in (5) by (j − nu)1{|u|≤λ}. Finally, following P.-L. Lions, we regularize the
transport term ρ∂t + ρu · ∇ in the moment equation, leading to the following
system of equations:

∂tρ+ divx(ρu) = 0 (17)

∂t(ρku) + divx((ρu)k ⊗ u) +∇xρ
γ − µ∆u− λ∇divu = (j − nu)1{|u|≤λ} (18)

where the subscript k in (18) denotes the convolution with a mollifier hk(x)
with respect to x:

ρk = ρ ? hk (ρu)k = (ρu) ? hk,

Finally, we need to regularize the initial data (f0, ρ0, u0) and boundary con-
dition g. Here also, the main issue is to gain control on some norms of n(x, t)
and j(x, t), and this is achieved by taking f0 and g with finite moments of
order higher than those given by the energy. More precisely, we assume that
(f0, ρ0, u0) satisfy (10)-(12), and∫

Ω×R3
|v|mf0(x, v) dx dv < +∞ ∀m ∈ [0,m0], with m0 > 5, (19)
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We also assume that g satisfies (13) and∫ t

0

∫
Σ−
|v|mg |v · r(x)| dσ(x) dv ds <∞ ∀m ∈ [0,m0], with m0 > 5. (20)

The main result of this section is the following proposition:

Proposition 3.1 Let f0, ρ0 and u0 satisfy (10)-(12) and (19). and let g satisfy
(13) and (20). Then, for all k and λ > 0 and for all T > 0, the system of
equations (16)-(18) has a weak solution (f, ρ, u) defined on [0, T ] with initial
condition

f |t=0 = f0, ρ|t=0 = ρ0, u|t=0 = u0.

Moreover, the following inequalities hold

sup
t∈[0,T ]

||f(t)||Lp(R3×Ω) ≤ e
3
p′ T

(
||f0||Lp(R3×Ω) + ‖g‖Lp((0,T )×Σ−)

)
(21)

||γ+f ||Lp((0,T )×Σ+) ≤ ||f0||Lp(R3×Ω) + ‖g‖Lp((0,T )×Σ−) (22)

(note that those bounds are independent of λ).

The notion of weak solutions that we use for (16)-(18) is similar to that in-
troduced in Section 2.1 for (3)-(5). In particular, we request that the weak
formulation (8) holds (with χλ(u) instead of u) and that

γ−f(x, v, t) = g(x, v, t) ∀(x, v, t) ∈ Σ− × (0, T ).

The rest of this section is devoted to the proof of Proposition 3.1. It follows
from a fixed point argument on the velocity field: For a given ũ, there exists a
solution f to the Vlasov-Fokker-Planck equations (16). Setting n =

∫
f dv and

j =
∫
vf dv, we can then define (ρ, u) solution of (17)-(18) with the force term

in (18) given by
(j − n ũ)1{|ũ|≤λ}

The key point is thus to have enough regularity on n and j in order to make
use of the result of P.-L. Lions [12] on compressible Navier-Stokes equations and
get the existence of such a (ρ, u). A simple fixed point argument then yields the
existence of a ũ such that ũ = u which in turn gives Proposition 3.1.

We thus start by taking

ũ ∈ L2(0, T, L2(Ω)),

and we consider the following boundary value problem:
∂tf + v · ∇xf + divv((χλ(ũ)− v)f −∇vf) = 0 in Ω× R3 × (0, T )
γ−f(x, v, t) = g(x, v, t) in Σ− × (0, T )
f(x, v, 0) = f0(x, v) in Ω× R3

(23)
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Thanks to the truncation, we have

χλ(ũ) ∈ L∞(Ω× (0, T )).

It is thus a classical result (see J. Carrillo [6]) that the V-F-P equation (23) has
a weak solution f ≥ 0 as soon as f0 satisfies (10) and (12) and g satisfies (13).

This solution satisfies, for all T > 0,

f ∈ L∞(0, T ;L1 ∩ L∞(Ω× R3)),

∇vf ∈ L∞(0, T ;L2(Ω× R3))

|v|2f ∈ L∞(0, T ;L1(Ω× R3))

γ+f ∈ L2((0, T )× Σ+).

and (23) holds in the sense of (8) with χλ(ũ) instead of u. Moreover, we have
the following bounds (see [6]):

Lemma 3.1 For any f0 satisfying (10), g satisfying (13), and for any ũ ∈
L2(0, T, L2(Ω)), the solution f(x, v, t) of the Vlasov-Fokker-Planck equation (23)
satisfies inequalities (21) and (22).

Moreover, for any positive m, there exists a constant C depending on λ, m
such that∫

Ω×R3
|v|mf(x, v, t) dx dv ≤ C(λ,m)

∫
Ω×R3

|v|mf0(x, v) dx dv

+C(λ,m)
∫ t

0

∫
Σ−
|v · n||v|mg(x, v, t) dσ(x) dv.(24)

and similar bounds hold for
∫ t

0

∫
Σ+ |v · n||v|mγ+f dσ(x) dv.

We recall, for further references, that the Lp bounds are obtained by multiplying
(16) by pfp−1, which yields

d

dt

∫
fp dx dv +

∫
Σ

(v · r(x))fpdσ(x) dv

−
∫

3(p− 1)fp dx dv + 4
∫
p− 1
p

|∇vf
p/2|2 dx dv = 0 (25)

Thanks to (24) and Hypothesis (19) and (20), we are now able to control
some Lp norms of the moments n(x, t) and j(x, t), by mean of the following
classical lemma:

Lemma 3.2 Assume that f satisfies

‖f‖L∞([0,T ]×R3×Ω) < M

and ∫ ∫
|v|mf(x, v, t) dx dv ≤M ∀t ∈ (0, T ), ∀m ∈ [0,m0].

12



Then there exists a constant C(M) such that

||n(t)||Lp(Ω) ≤ C(M), for every p ∈ [1, (m0 + 3)/3)
||j(t)||Lp(Ω) ≤ C(M), for every p ∈ [1, (m0 + 3)/4) (26)

for all t ∈ [0, T ].
In particular, under Hypothesis (19)-(20), the kinetic density and current

n(x, t) and j(x, t) are bounded in L∞(0, T ;L2(Ω)) (by a constant depending on
λ).

Proof. Let p ∈ (1,∞) and let q be such that 1/p+ 1/q = 1. Then, for all r, we
have:

n(x, t) =
∫

(1 + |v|)r/pf1/p(v)
f1/q

(1 + |v|)r/p
dv

≤
(∫

(1 + |v|)rf(v) dv
)1/p (∫

f(v)
(1 + |v|)rq/p

dv

)1/q

In particular, if rq/p > 3, we deduce

n(x, t) ≤ C||f(t)||1/q
L∞

(∫
(1 + |v|)rf(v) dv

)1/p

and so
||n(t)||pLp =

∫
n(x, t)p dx ≤ C

∫ ∫
(1 + |v|)rf(v) dv dx.

Finally, note that the condition rq/p > 3 is equivalent to

p <
r + 3

3
,

A similar argument holds for the current:

j(x, t) ≤
∫

(1 + |v|)r/pf1/p(v)
f1/q

(1 + |v|)r/p−1
dv

≤
(∫

(1 + |v|)rf(v) dv
)1/p (∫

f(v)
(1 + |v|)rq/p−q

dv

)1/q

In particular, if rq/p− q > 3, we deduce

j(x, t) ≤ C||f(t)||1/q
L∞

(∫
(1 + |v|)rf(v) dv

)1/p

and so
||j(t)||pLp =

∫
n(x, t)p dx ≤ C

∫ ∫
(1 + |v|)rf(v) dv dx,

and the condition rq/p− q > 3 is equivalent to

p <
r + 3

4
.
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Next, we consider the regularized Navier-Stokes system of equations with
force term (j − nũ)1{|ũ|≤λ}:

∂tρ+ divx(ρu) = 0 (27)
∂t(ρku) + divx((ρu)k ⊗ u) +∇xρ

γ − µ∆u− λ∇divu = (j − nũ)1{|ũ|≤λ} (28)

with the initial condition

ρ(x, 0) = ρ0(x) u(x, 0) = u0(x).

We note that the right hand side is bounded in L∞(0, T ;L2(Ω)):

||(j − nũ)1{|ũ|≤λ}||L2(Ω) ≤ ||j||L2(Ω) + λ||n||L2(Ω),

so the existence of a weak solution (ρ, u) of the system (27)-(28) can be proved
as in P.-L. Lions [12]. More precisely, we can prove:

Lemma 3.3 The system of equations (27)-(28) has a weak solution (ρ, u) sat-
isfying the following entropy inequality:

d

dt

∫
ρk
u2

2
+

1
1− γ

ργ dx+ ν

∫
|∇u|2 =

∫
(j − nũ)1{|ũ|≤λ}udx. (29)

We can therefore introduce the operator

T : L2((0, T )× Ω) → L2((0, T )× Ω)
ũ 7→ u

and Proposition 3.1 follows if we can prove the existence of a fixed point for T .
This will be a consequence of the following lemma:

Lemma 3.4 There exists a constant C(k, λ, T ) such that

||T ũ||L2((0,T ),H1(Ω)) ≤ C

and
||∂tT ũ||L2((0,T ),H−1(Ω)) ≤ C

From this lemma, it follows that the operator T is compact in L2((0, T ) × Ω)
and that the image of T is bounded in L2((0, T )×Ω). By Schauder’s fixed point
theorem, we deduce that the operator T has a fixed point in L2((0, T ) × Ω).
The corresponding (f, ρ, u) furnishes a solution of (16)-(18), which concludes
the proof of Proposition 3.1.

Proof of Lemma 3.4. Let u = T ũ. Using (26) and Sobolev’s inequalities we
have: ∣∣∣∣∫ (j − nũ)1{|ũ|≤λ}u dx

∣∣∣∣ ≤ ||j||L2 ||u||L2 + λ||n||L2 ||u||L2

≤ (||j||L2 + λ||n||L2)2 + ||u||2L2

14



Hence (29) gives

d

dt

∫
ρk
u2

2
+

1
1− γ

ργ dx+ ν

∫
|∇u|2 dx

≤ ||u||2L2 + C. (30)

Next, we note that since Ω is bounded and
∫
Ω
ρ(t, x) dx =

∫
Ω
ρo(x) dx > 0,

we have ρk(t, x) = ρ ? hk ≥ ck > 0 for all x, t. In particular, it follows that

||u||2L2 ≤ Ck

∫
ρk
u2

2
dx.

Inequality (30) thus becomes

d

dt

∫
ρk
u2

2
+

1
1− γ

ργ dx+ ν

∫
|∇u|2 dx

≤ C(k)
∫
ρk
u2

2
dx+ C,

and Gronwall lemma gives ||u||2L∞(0,T ;L2(Ω)) ≤ C(k), which gives the first esti-
mate in Lemma 3.4.

To deduce the second estimate, we note that (27) yields

∂tρk + divx(ρu)k = 0

so that (28) can be rewritten as

ρk∂tu+ (ρu)k · ∇u+∇xρ
γ − ν∆u =

1
ε
(j − nũ)1{|ũ|≤λ}.

The result follows using once again the fact that ρk ≥ ck > 0. �

3.2 Approximated entropy inequality

In order to obtain further estimates on the solution (f, ρ, u) of the approximated
system (16)-(18), we prove that it satisfies an approximated entropy inequality.

We will use the following notations for the approximated entropy functions:

Ek = E1 + E2,k

with

E1(f) =
∫ [

|v|2

2
f + f log f

]
dv

and

E2,k(ρ, u) = ρk
|u|2

2
+

1
γ − 1

ργ .
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We also introduce the approximated dissipation

Dλ(f, u) =
∫ ∫

|(χλ(u)− v)f −∇f |2 1
f
dx dv.

Then, we have the following result

Proposition 3.2 The weak solution (f, ρ, u) of (16)-(18) given by Proposi-
tion 3.1 satisfies the following entropy inequality:∫

Ek(f(t), ρ(t), u(t)) dx+
∫ t

0

Dλ(f(s), u(s)) ds+ ν

∫ t

0

∫
Ω

|∇u|2 dx ds

≤
∫

Ek(f0, ρ0, u0) dx−
∫ t

0

∫
Σ

(v · r)
(
|v|2

2
+ log γf + 1

)
γf dσ(x) dv ds. (31)

Proof. J. Carrillo proves in [6] that (since χλ(u) ∈ L∞((0, T ) × R3)) the weak
solution f of (23) given by Lemma 3.1 satisfies:

d

dt

∫ [
|v|2

2
f + f log f

]
dv dx+

∫ ∫
|(χλ(u)− v)f −∇f |2 1

f
dx dv

=
∫ ∫

χλ(u)(χλ(u)− v)f dx dv

−
∫ t

0

∫
Σ

(v · r)
(
|v|2

2
+ log γf + 1

)
γf dσ(x) dv ds.

(formally, this equality is obtained by multiplying (23) by |v|2/2 + log f).
Thus, using Lemma 3.3 together with the fact that∫

(j − nu)1{|u|≤λ}u dx =
∫ ∫

(v − u)f1{|u|≤λ}u dx

=
∫ ∫

χλ(u)(χλ(u)− v)f dx dv.

we easily deduce (31). �

3.3 Proof of Theorem 2.1

We now use the results of the previous sections to construct a weak solutions
of (3)-(5). We assume that the initial data (f0, ρ0, u0) satisfy (10)-(12) and
that the boundary data g satisfy (13). In order to use the result of the previous
section, we thus consider approximating sequences (fn

0 , ρ
n
0 , u

n
0 ) and gn satisfying

(10)-(13) uniformly with respect to n and such that for every n, (19)-(20) hold.
For every λ, k, n, we denote by (fn, ρn, un) the solutions of (16)-(18) with

initial data
f |t=0 = fn

0 , ρ|t=0 = ρn
0 , u|t=0 = un

0
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(we do not keep track of the subscripts k and λ for the sake of clarity).

A priori estimates.
Lemma 3.1 yields the existence of a constant C independent on λ, k and n such
that

‖fn‖L∞(0,T ;Lp(R3×Ω) ≤ C

‖γfn‖L∞(0,T ;Lp(Σ) ≤ C

for all p ∈ [1,∞].
Moreover, using Lemma 2.2, we have

−
∫ t

0

∫
Σ

(v · r(x))
(
|v|2

2
+ log γf + 1

)
γf dσ(x) dv ds

≤ −
∫ t

0

∫
Σ+

|v · r(x)|
(
|v|2

2
+ log+(γ+f) + 1

)
γ+f dσ(x) dv ds

+
∫ t

0

∫
Σ+

|v · r(x)| log−(γ+f)γ+f dσ(x) dv ds

+
∫ t

0

∫
Σ−

|v · r(x)|
(
|v|2

2
+ log g + 1

)
g dσ(x) dv ds

≤ −1
2

∫ t

0

∫
Σ+

|v · r(x)|
(
|v|2

2
+ log+(γ+f) + 1

)
γ+f dσ(x) dv ds

+
∫ t

0

∫
Σ−

|v · r(x)|
(
|v|2

2
+ log g + 1

)
g dσ(x) dv ds+ C

and proceeding similarly with E (f, ρ, u), Proposition 3.2 gives∫ (
|v|2

4
+ | log f |

)
f dv dx+

∫
ρk
|u|2

2
+

1
γ − 1

ργ dx

+
1
2

∫ t

0

∫
Σ+

|v · r(x)|
(
|v|2

2
+ log+(γ+f) + 1

)
γ+f dσ(x) dv ds

!+
∫ t

0

Dλ(f, u) ds+ ν

∫ t

0

∫
Ω

|∇u|2 dx ds

≤
∫

Ek(f0, ρ0, u0) dx

+
∫ t

0

∫
Σ−

|v · r(x)|
(
|v|2

2
+ log g + 1

)
g dσ(x) dv ds+ C. (32)

We deduce that there exists a constant C independent on λ, k and n such that∫
Ω×R3

(1 + |v|2)fn(x, v, t) dx dv ≤ C ∀t ∈ [0, T ]∫ T

0

∫
Σ+

(1 + |v|2)γ+fn(x, v, t) |v · r(x)| dσ(x) dv ds ≤ C,
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and

‖ρn‖L∞(0,T ;L1∩Lγ(Ω)) ≤ C

‖√ρnun‖L∞(0,T ;L2(Ω)) ≤ C

||∇un||L2((0,T )×Ω) ≤ C.

This implies in particular the following result (using Lemma 3.2 with m0 = 2):

Lemma 3.5 There exists a constant C independent on λ, k and n such that

||nn(t)||Lp ≤ K ∀p < 5
3

and
||jn(t)||Lp ≤ K ∀p < 5

4

Limits.
We now explain how to take the limit as λ, k and n go to infinity. In order
to keep things simple, we will keep the notation (fn, ρn, un) for the solutions
constructed in the previous section, being understood that the limit with respect
to λ and k are treated in a similar way.

First of all, the a priori estimates gives the existence of a function f such
that

fn ⇀ f L∞(0, T : Lp(Ω× R3))− weak

for all p ∈ (1,∞). Moreover, for any ϕ(x) smooth, compactly supported test
function, we have∫ (

jn −
∫
vf dv

)
ϕ(x) dx

≤
(∫∫

(fn − f)(1 + |v|2)ϕ(x)dxdv
) 2

3
(∫∫

(fn − f)
ϕ(x)

1 + |v|
dxdv

) 1
3

≤ C

(∫∫
(fn − f)

ϕ(x)
1 + |v|

dx dv

)1/3

which goes to zero as n goes to infinity since ϕ(x)
1+|v| lies in L4(Ω × R3) and fn

converges weakly to f in Lp for all p > 1. It follows that

jn ⇀ j L∞(0, T : Lp(Ω× R3))− weak ∀p ∈ (1, 5/4)
nn ⇀ n L∞(0, T : Lp(Ω× R3))− weak ∀p ∈ (1, 5/3)

with j =
∫
vf dv and n =

∫
f dv.

Next, since Ω is bounded and u satisfies homogeneous Dirichlet boundary
conditions, Poincaré inequality yields

||u||L6(Ω) ≤ C||u||H1(Ω) ≤ ||∇u||L2 ,
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so that un is bounded in L2(0, T ;L6(Ω)). We then have

‖nnun‖L2(0,T ;L6/5(Ω)) ≤ ‖un‖L2(0,T ;L6(Ω))‖nn‖L2(0,T ;L3/2(Ω))

where 3/2 < 5/3. In particular, the right hand side in (18), jn−nnun, is bounded
in L2(0, T ;L6/5(Ω)). This is the crucial bound that allows us to proceed as in
P.-L. Lions [12] and E. Feireisl [8] to prove the stability of weak solution for
compressible Navier-Stokes equations. This leads to the following convergences:

ρn → ρ in L1((0, T )× Ω) and C([0, T ];Lγ
weak(Ω))

un → u weakly in L2(0, T ; [W 1,2
0 (Ω)]3)

ρnun → ρu in C([0, T ];L2γ/(γ+1)
weak (Ω))

Moreover, (see Lions [12]), we have

(ρn ? hk)un ⇀ ρu, and ρn
γ ⇀ ρn

γ .

Thus, in order to show that (f, ρ, u) is a weak solution of (3)-(5), it only
remains to show that we can pass to the limit in the coupling terms χλ(un)fn

in (16) and nnun1{|un|<λ} = nnχλ(un) in (18) and in the boundary conditions.
For that purpose, we write

nnun1{|un|<λ} = nnun − nnun1{|un|>λ},

where the second term can be bounded as follows:

‖nnun1{|un|>λ}‖L1((0,T )×Ω)

≤ ||nn||L∞(L3/2)||un||L2(L6)||1{|un|>λ}||L2(L6)

≤ ||nn||L∞(L3/2)||un||L2(L6)

( ||un||L2(L6)

λ

)
≤ C

λ
.

Thus, we only have to show that nnun converges in the sense of distribution
to nu. We recall that nn converges in L2(0, T ;L3/2(Ω))-weak and un converges
in L2(0, T ;L3(Ω))-weak. Moreover, integrating (16) with respect to v, we find
∂tnn = −divxjn, and so

∂tnn is bounded in L2(0, T ;W−1,1(Ω)).

Since ∇xun is bounded in L2((0, T )× Ω), we can make use of a classical result
(see P.-L. Lions [12] for details) to deduce

nnun −→ nu in the sense of distribution.

Therefore
nnχλ(un) −→ nu in the sense of distribution
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when λ, k and n go to infinity.
We proceed similarly with the χλ(un)fn: we only have to show that for any

test functions ϕ(v), we have

un

∫
fnϕ(v) dv ⇀ u

∫
fϕ(v) dv in the sense of distribution.

We note that
∫
fnϕ(v) dv is bounded in L∞(0, T ;Lp(Ω)) for all p. Moreover,

multiplying (16) by ϕ(v) and integrating with respect to v (and using the fact
that ∇vfn is bounded in L2(0, T ;L2(Ω× R3))), it is readily seen that∫

fnϕ(v) dv is bounded in L2(0, T ;W−1,1(Ω)).

We can thus conclude as before.

Finally, we show how to handle the boundary condition for the kinetic equa-
tions: Since γ±fn is bounded in Lp(0, T ;Lp(Σ±)), it converges weakly to some
h± ∈ Lp(0, T ;Lp(Σ±)) satisfying h− = g. Passing to the limit in (8), we get:∫ T

0

∫
Ω×RN

f
[
∂tϕ+ v · ∇xϕ+ (u− v) · ∇vϕ+ ∆vϕ

]
dx dv dt

+
∫

Ω×RN

f0ϕ(x, v, 0) dx dv +
∫ T

0

∫
Σ

(v · r(x))hϕdσ(x) dv dt = 0. (33)

Using Carrillo [6] (see also Mischler [15]), we can now prove that f has trace γf
in L1(0, T ;L1(Σ)) and that it satisfies the Green formula. Equality (33) thus
yields h = γf and f satisfies (8).

Entropy inequality:
So we have proved that as λ, n and k go to infinity, (fλ,k,n, ρλ,k,n, uλ,k,n) con-
verge to a weak solution (f, ρ, u) of (3)-(5) with boundary conditions (6). In
order to complete the proof of Theorem 2.1, it only remains to check that (f, ρ, u)
satisfied the appropriate entropy inequality, but this is a direct consequence of
(31). As a matter of fact, taking the limit in (31) and using the convexity of the
entropy and the weak convergence of fn, fn ? hk, ρn, un and γfn, we deduce:∫

E (f(t), ρ(t), u(t)) dx+
∫ t

0

D(f(s), u(s)) ds+ ν

∫ t

0

∫
Ω

|∇u|2 dx ds

+
∫ t

0

∫
Σ+
|v · r|

(
|v|2

2
+ log γ+f + 1

)
γ+f dσ(x) dv ds

≤
∫

E (f0, ρ0, u0) dx+
∫ t

0

∫
Σ−
|v · r|

(
|v|2

2
+ log g + 1

)
g dσ(x) dv ds.(34)
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4 Proof of Theorem 2.2: Reflection Boundary
conditions

In the section, we detail the proof of the existence result in the case of reflection
boundary conditions. The first idea is to do a fixed point argument on the
trace. Since ‖B‖L(L1,L1) = 1, we introduce an ε ∈ (0, 1), and we first construct
a solution of (3)-(5) with boundary condition

γ−f = (1− ε)Bγ+f ∀(x, v, t) ∈ Σ− × (0, T ) (35)

Such a solution is constructed by an iterative argument: Using Theorem 2.1,
we construct a sequence (fn, ρn, un) of solution of (3)-(5) with Dirichlet bound-
ary condition

γ−fn+1 = (1− ε)Bγ+fn ∀(x, v, t) ∈ Σ− × (0, T )

(we can take, for example, γ+f0 = 0 to initiate the sequence). Then, we note
that for every n, we have (using (22)):

||γ+fn+1||Lp(0,T ;Lp(Σ+)) ≤ ||f0||Lp + (1− ε)||γ+fn||Lp(0,T ;Lp(Σ+))

for all p ∈ [1,∞]. Morever, Lemma 2.1 yields∫ T

0

∫
Σ−

|v · r|
(
|v|2

2
+ log(γ−fn+1) + 1

)
γ−fn+1 dσ(x) dv dt

≤ (1− ε)
∫ T

0

∫
Σ+

|v · r|
(
|v|2

2
+ log(γ+fn) + 1

)
γ+fn dσ(x) dv dt.

and so, using (34), we get:∫
E (fn+1(t), ρn+1(t), un+1(t)) dx

+
∫ t

0

D(fn+1, un+1) ds+ ν

∫ t

0

∫
Ω

|∇un+1|2 dx ds

+
∫ t

0

∫
Σ+
|v · r|

(
|v|2

2
+ log(γ+fn+1) + 1

)
γ+fn+1 dσ(x) dv ds

≤
∫

E (f0, ρ0, u0) dx

+(1− ε)
∫ t

0

∫
Σ+
|v · r|

(
|v|2

2
+ log(γ+fn) + 1

)
γ+fn dσ(x) dv ds. (36)

Since ε > 0, we deduce (by iterating those estimates):

||γ+fn+1||Lp(0,T ;Lp(Σ+)) ≤
1
ε
||f0||Lp + (1− ε)n||γ+f1||Lp(0,T ;Lp(Σ+)).
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for all p ∈ [1,∞], and∫ T

0

∫
Σ+
|v · r|

(
|v|2

2
+ log(γ+fn+1) + 1

)
γ+fn+1 dσ(x) dv ds

≤ 1
ε

∫
E (f0, ρ0, u0) dx

+(1− ε)n

∫ T

0

∫
Σ+
|v · r|

(
|v|2

2
+ log(γ+f1) + 1

)
γ+f1 dσ(x) dv ds.

We thus have all the necessary estimates to proceed as in the previous section
and take the limit n→∞. we deduce the following proposition:

Proposition 4.1 Assume that (f0, ρ0, u0) satisfies (10)-(12), then for every
ε > 0, there exist a weak solution (fε, ρε, uε) of (3)-(5) with boundary value γfε

in Lp(0, T ;Lp(Σ+)) satisfying

γ−fε = (1− ε)Bγ+fε ∀(x, v, t) ∈ Σ− × (0, T ).

Moreover, the following entropy inequality holds (by taking the limit n → ∞ is
(36)):∫

E (fε(t), ρε(t), uε(t)) dx+
∫ t

0

D(fε(s), uε(s)) ds+ ν

∫ t

0

∫
Ω

|∇uε|2 dx ds

+ε
∫ t

0

∫
Σ+
|v · r|

(
|v|2

2
+ log(γ+fε) + 1

)
γ+fε dσ(x) dv ds ≤

∫
E (f0, ρ0, u0) dx.

Limit ε→ 0.
In order to prove Theorem 2.2, it only remains to show take the limit ε → 0.
Using (25) and (35) we see that the solution (fε, ρε, uε) given by Proposition
4.1 satisfies

d

dt

∫
fp

ε dx dv+(1−(1−ε)p)
∫

Σ+
|v·r(x)|

∣∣γ+fε

∣∣p dσ(x) dv ≤ 3(p−1)
∫
fp

ε dx dv .

In particular, fε is bounded in Lp for all p ∈ [1,∞) (and ε‖γ+fε‖L1(0,T ;L1(Σ+))

is bounded).
Next, we note that Lemma 2.2 yields:∫

Σ+
|v · r| log−(γ+fε)γ+fε dσ(x) dv ds ≤

∫
Σ+
|v · r| |v|

2

2
γ+fε dσ(x) dv + C

and thus ∫ t

0

∫
Σ+
|v · r|

(
|v|2

2
+ log γ+fε + 1

)
γ+fε dσ(x) dv ds ≥ −C
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We deduce∫
E (fε(t), ρε(t), uε(t)) dx+

∫ t

0

D(fε, uε) ds+ ν

∫ t

0

∫
Ω

|∇uε|2 dx ds

≤
∫

E (f0, ρ0, u0) dx+ Cε. (37)

In particular
∫

E (fε(t), ρε(t), uε(t)) dx is bounded uniformly with respect to ε,
and so (fε, ρε, uε) satisfies the same a priori estimate as in Section 3.3 uniformly
with respect to ε, except for the estimate on the trace of fε. In particular, we
can proceed as in Section 3.3 to take the limit in the fluid equations (4)-(5), and
the entropy inequality (15) follows directly from (37), using the convexity of E .

So, we are left with the task of passing to the limit in the weak formulation
of (3) in order to get (9). For all ϕ ∈ C∞c ((0, T )× Ω× R3), (33) gives:∫ T

0

∫
Ω×RN

fε

[
∂tϕ+ v · ∇xϕ+ (u− v) · ∇vϕ+ ∆vϕ

]
dx dv dt

+
∫

Ω×RN

f0ϕ(x, v, 0) dx dv +
∫ T

0

∫
Σ

(v · r(x))hε ϕdσ(x) dv dt = 0. (38)

Moreover, hε is a non-negative function such that h−ε = (1 − ε)Bh+
ε , so if we

take ϕ such that
γ+ϕ = B∗γ−ϕ

we get∣∣∣∣∣
∫ T

0

∫
Σ

(v · r)hε ϕdσ(x) dv dt

∣∣∣∣∣ = ε

∣∣∣∣∣
∫ T

0

∫
Σ+

(v · r)γ+hε γ
+ϕdσ(x) dv dt

∣∣∣∣∣ .
If we had γ+hε bounded in L1(0, T ;L1(Σ+)), it would be easy to deduce that
this last term goes to zero when ε → 0. However, this is not true for general
reflection condition because of the lack of regularity due to grazing collisions
(this is a very classical difficulty when dealing with boundary value problems
for transport equations, see for instance Hamdache [10] or Cercignani et al.
[7]). In general, the best we can hope for is to prove that (v · r)γ±h is bounded
in L1(0, T ;L1(Σ±)), which is typically not enough to pass to the limit in the
weak formulation. There are several way to handle this difficulty. In the case
of Maxwell reflexion, for instance, it is actually possible to show that γ+hε is
bounded in L1(0, T ;L1(Σ±)), and for more general operator, one method is to
decompose γ+hε into its projection on ker(I −B) (which is typically a constant
times a maxwellian distribution) and on ker(I − B)⊥ (for which the norm of B
is strictly less than 1). We refer to [7] for more details on this issue.

Here, we chose a different approach, which was first used in [13] for the
Vlasov equation, but which applies only to the case of elastic reflection operator
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(such operators are the most physically relevant operator that satisfy all of the
conditions listed in Section 2.2).

First, multiplying (3) by (v · r(x))fεψ(v) where r(x) is an extension of the
normal unit vector to Ω and ψ(v) is a compactly supported function (supp ϕ ∈
BR), we can show that there exists a constant C(R, ‖n‖W 1,∞) such that∫ T

0

∫
Σ

ψ(v)h2
ε(v · r(x))2 dσ(x) dv dt

≤ C
[
||fε||2L∞(0,T ;L2(Ω×R3)) + ||∇vfε||2L2(0,T ;L2(Ω×R3))

+‖u‖|L2((0,T )×R3)‖fε‖4L∞(0,T ;L∞(Ω×R3))

]
In particular, taking ψ(v) such that ψ = 1 on BR, ψ = 0 on B2R, we deduce∫ T

0

∫
∂Ω×BR

h2
ε(v · r(x))2 dσ(x) dv dt ≤ C

and so (using Cauchy-Schwartz inequality):∫ T

0

∫
∂Ω×BR

hε|v · r(x)| dσ(x) dv dt ≤ C.

This is enough to pass to the limit in (38), if we take as a test function
ϕn(x, v, t) = ϕ(x, v, t)ψn(|v|2) with ψn(e) = 1 on [0, n] and φn(e) = 0 for e >
n+ 1. As a matter of fact, we then have∣∣∣∣∣
∫ T

0

∫
Σ

(v · r)hε ϕn dσ(x) dv dt

∣∣∣∣∣ ≤ ε‖γ+hε‖L1(0,T ;L1(∂Ω×Bn))‖γ+ϕ‖L∞((0,T )×Σ+)

which allows us to take the limit ε → 0 for n fixed in (38). We can then let n
goes to infinity to obtain (9) and conclude the proof of Theorem 2.2.
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