
Anomalous transport of particles in Plasma physics

L. Cesbrona, A. Melletb,1, K. Trivisab,2
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Abstract

We investigate the long time/small mean-free-path asymptotic behavior of the solutions of a
Vlasov-Lévy-Fokker-Planck equation and show that the asymptotic dynamics for the VLFP
are described by an anomalous diffusion equation.

Keywords: Kinetic equations, Fokker-Planck operator, Lévy statistic, anomalous diffusion
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1. Introduction

1.1. The Vlasov-Lévy-Fokker-Planck equation
In this note, we investigate the long time/small mean-free-path asymptotic behavior of

the solutions of the following Vlasov-Lévy-Fokker-Planck equation:{
∂tf + v · ∇xf = νdivv(vf)− (−∆v)sf in RN × RN × (0,∞)

f(x, v, 0) = f0(x, v) in RN × RN
(1)

for s ∈ (0, 1), ν > 0. Such an equation models the evolution of the distribution function
f(x, v, t) of a cloud of particles in a Plasma: The left hand side of (1) models the free
transport of the particles, while the Lévy-Fokker-Planck operator, in the right hand side:

Ls(f) = νdivv(vf)− (−∆v)sf (2)

describes the interactions of the particles with the background. It can be interpreted
as a deterministic description of the Langevin equation for the velocity of the particles,
v̇(t) = −νv(t) + A(t), where ν is the friction coefficient and A(t) is a white noise. The
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classical Fokker-Planck operator corresponds to s = 1 and arises when A(t) is a Gaussian
white noise. In that case, equilibrium distributions (solutions of L1(M) = 0) are Maxwellian
(or Gaussian) velocity distributions M = C exp(−ν|v|

2

2 ). However, some experimental mea-
surements of particles and heat fluxes in confined plasma point to non-local features and
non-Gaussian distribution functions (see for instance [7]). The introduction of fractional
Lévy statistic in the velocity equation (replacing the Gaussian white noise by Lévy white
noise in Langevin equation) can be seen as an attempt at taking into account these non-local
effects in plasma turbulence.

The operator Ls for s ∈ (0, 1) has been studied in particular by Gentil-Imbert [4] (see
also Proposition 1.1 below). Instead of Maxwellian velocity distribution functions, thermo-
dynamical equilibriums for Ls are described by Lévy stable distribution functions. These
are power law (or heavy tail) functions, which are characterized in particular by infinite
second moment of velocity (or infinite variance).

In this paper, we show that the long time/small mean-free-path limit for the kinetic equa-
tion (1) leads to an anomalous (or fractional) diffusion equation for the density of particles.
For the classical Vlasov-Fokker-Planck equation, a similar asymptotic leads to a standard
diffusion equation. The derivation of anomalous diffusion regimes for kinetic equations has
been recently investigated in the framework of linear Boltzmann equation (in which the
Fokker-Planck operator is replaced by an integral operator), see [6, 5, 1, 2]. The common
theme between these works and the present paper is the fact that the equilibrium distribu-
tion functions are heavy tail functions with infinite second moment of velocity. However, the
different nature of the Fokker-Planck operator requires the introduction of new techniques
for the investigation of this limit.

1.2. Properties of Ls

We recall that the fractional Laplace operator (−∆v)s can be defined using the Fourier
transform, by

̂(−∆v)sf(ξ) = |ξ|2sf̂(ξ) (3)

or as the following singular integral

(−∆v)sf(v) = csP.V.
∫

[f(v)− f(w)]
1

|v − w|N+2s
dw (4)

for some constant cs depending on s and the dimension N . We have the following result
(see [4]):

Proposition 1.1. When s ∈ (0, 1), there exists a unique normalized equilibrium distribution
function F (v), solution of

Ls(F ) = νdivv(vF )− (−∆v)sF = 0,
∫

RN
F (v) dv = 1. (5)

Furthermore, F (v) > 0 for all v, and F is a heavy-tail distribution function:

F (v) ∼ C

|v|N+2s
as |v| → ∞.
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This proposition is proved in [4]. An explicit formula can easily be found for the Fourier
transform of F . Indeed, F (v) satisfies (5) if and only if its Fourier transform F̂ (ξ) satisfies
(using (3)):

−|ξ|2sF̂ (ξ)− νξ · ∇ξF̂ (ξ) = 0, and F̂ (0) = 1,

which yields the symmetric Lévy distribution in Fourier space F̂ (ξ) = e−
1
sν |ξ|

2s
(note that

when s = 1, we recover Maxwell’s distribution function).

1.3. Main results
We now turn to our main goal, which is the investigation of the long time/small mean-

free-path-limit of (1). As in [6, 5, 1, 2], we start by rescaling the space and time variable as
follows:

x 7→ εx, t 7→ ε2st.

To simplify the notations, we also take ν = 1 so that (1) becomes{
ε2s∂tf

ε + εv · ∇xfε = divv(vfε)− (−∆v)sfε in RN × RN × (0,∞)

fε(x, v, 0) = f0(x, v) in RN × RN .
(6)

The existence of a unique solution satisfying appropriate a priori estimates can be established
exactly as in the case of the usual Vlasov-Fokker-Planck equation. We refer the reader to
the article of Degond [3] for further details. Note that since there is no acceleration field
here, this is relatively easy. We do not dwell on this issue, which is not the focus of this
paper.

Our main result is the following:

Theorem 1.2. Assume that f0 ∈ L2(R2N , F (v)−1dvdx). Then, up to a subsequence, the so-
lution fε of (6) converges weakly in L∞(0, T ;L2(R2N , F (v)−1dvdx)), as ε→ 0 to ρ(x, t)F (v)
where ρ(x, t) solves {

∂tρ+ (−∆x)sρ = 0 in RN × (0,∞)

ρ(x, 0) = ρ0(x) in RN
(7)

with ρ0(x) =
∫
f0(x, v) dv.

2. Proof of Theorem 1.2

2.1. A priori estimates
In order to prove Theorem 1.2, we need some a priori estimates for fε, which are conse-

quence of the dissipation properties of the operator Ls. These properties have been studied
in particular in [4]. The following result will be of use in the sequel. We present the proof
here for the sake of completeness.

Proposition 2.1. For all f smooth enough,

−
∫

RN
Ls(f)

f

F
dv = D(f) :=

cs
2

∫
R2N

[
f(w)
F (w)

− f(v)
F (v)

]2
F (v)

|v − w|N+2s
dv dw. (8)
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Furthermore, there exists θ > 0 such that

D(f) ≥ θ
∫

RN
|f(v)− ρF (v)|2 1

F (v)
dv (9)

Proof. Inequality (8) is proved in [4] in a more general setting. Let g = f/F . We write

−
∫

RN
Ls(f)(f/F ) dv = −

∫
RN

νdivv(vF )g2/2− (−∆v)s(gF )g dv

= −
∫

RN
(−∆v)s(F )g2/2− (−∆v)s(gF )g dv

=
∫

RN
−1

2
F ((−∆v)s(g2) + Fg(−∆v)s(g) dv

where we used (5). It follows (using (4)):

−
∫

RN
Ls(f)(f/F ) dv

= cs

∫
RN

∫
RN

{
−1

2
[g(v)2 − g(w)2] + g(v)2 − g(w)g(v)

}
F (v)

|v − w|N+2s
dv dw

=
cs
2

∫
RN

∫
RN

F (v)
[g(v)− g(w)]2

|v − w|N+2s
dv dw = D(f)

which gives (8).
Finally, we write f = ρF + h, with

∫
h dv = 0. We then have

D(f) =
cs
2

∫
RN

∫
RN

F (w)
[
h(v)
F (v)

− h(w)
F (w)

]2 1
|v − w|N+2s

dv dw

and since
∫
h(v) dv = 0, Poincare’s inequality (see for instance Mouhot-Russ-Sire [8]) yields

D(f) ≥ θ
∫

RN

(
h(v)
F (v)

)2

F (v) dv

for some θ > 0, which gives (9).

Corollary 2.2. Assume that f0 satisfies the conditions of Theorem 1.2. Then the solution
fε(x, v, t) of (6) satisfies

sup
t∈[0,T ]

∫
(fε)2

F
dx dv + ε−2sθ

∫ T

0

∫
RN

∫
RN

|fε − ρεF |2

F
dv dx dt ≤

∫
(f0)2

F
dx dv

where ρε =
∫
fε dv. In particular, there exists a function ρ(x, t) ∈ L2(RN × (0,∞)) such

that
fε(x, v, t) ⇀ ρ(x, t)F (v) weakly in L2

F−1(RN × (0,∞)).

Proof. Multiplying (6) by fε/F and integrating with respect to x and v, we get

ε2s
d

dt

∫
(fε)2

F
dx dv =

∫
Ls(fε)fε/F dx dv

and Proposition 2.1 gives the result.
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2.2. Proof of the main result.
We can now prove our main result:

Proof of Theorem 1.2. Let ϕ(x, t) be a test function in D(RN × [0,∞)). Multiplying (6) by
φε(x, v, t) = ϕ(x+ εv, t), we get:∫

fε
[
ε2s∂tφ

ε + εv · ∇xφε − v · ∇vφε + (−∆)sφε
]
dx dv dt

+ε2s
∫
f0(x, v)φε(x, v, 0) dx dv = 0.

Next, we note that

v · ∇vφε = εv · ∇xφε and (−∆)sφε = ε2s(−∆)sϕ(x+ εv, t).

We deduce∫
fε
[
∂tϕ+ (−∆)sϕ

]
(x+ εv, t) dx dv dt+

∫
f0(x, v)ϕ(x+ εv, 0) dx dv = 0 (10)

and we conclude thanks to the following lemma:

Lemma 2.3. For all test function ψ ∈ D(Rd × [0,∞)), we have

lim
ε→0

∫
fεψ(x+ εv, t) dx dv dt =

∫
ρ(x, t)ψ(x, t) dx dt

Indeed, passing to the limit in (10), Lemma 2.3 gives∫
ρ(x, t)

[
∂tϕ+ (−∆)sϕ

]
(x, t) dx dt+

∫
ρ0(x)ϕ(x, 0) dx = 0

which is the weak formulation of (7).

Proof of Lemma 2.3. We write∫
fεψ(x+ εv, t) dx dv dt =

∫
fεψ(x, t) dx dv dt+

∫
fε
[
ψ(x+ εv, t)− ψ(x)

]
dx dv dt.

The first term converges to∫
ρ(x, t)F (v)ψ(x, t) dx dv dt =

∫
ρ(x, t)ψ(x, t) dx dt.

For the second term, we note that∫
|v|≤R

∣∣∣fε[ψ(x+ εv, t)− ψ(x)
]∣∣∣ dx dv dt ≤ εCR||Dψ||L∞ ∫ |fε| dx dv dt

and so
lim sup
ε→0

∫
|v|≤R

∣∣∣fε[ψ(x+ εv, t)− ψ(x)
]∣∣∣ dx dv dt = 0.
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Furthermore,∫
|v|≥R

∣∣∣fε[ψ(x+ εv, t)− ψ(x)
]∣∣∣ dx dv dt

≤ C

(∫
|v|≥R

(fε)2

F
dx dv dt

)1/2(∫
|v|≥R

[
ψ(x+ εv, t)− ψ(x)

]2
F (v) dx dv dt

)1/2

and so

lim sup
ε→0

∫
|v|≥R

∣∣∣fε[ψ(x+ εv, t)− ψ(x)
]∣∣∣ dx dv dt

≤ C||ψ||L2RN×(0,T )

(∫
(f0)2

F
dx dv dt

)1/2
(∫
|v|≥R

F (v) dv

)1/2

≤ C||ψ||L2RN×(0,T )

(∫
(f0)2

F
dx dv dt

)1/2

R−α/2.

We deduce
lim sup
ε→0

∫ ∣∣∣fε[ψ(x+ εv, t)− ψ(x)
]∣∣∣ dx dv dt ≤ CR−α/2

and since this holds for all R > 0, the result follows.
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