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Abstract

We consider Navier-Stokes equations for compressible viscous fluids in
one dimension. It is a well known fact that if the initial datum are smooth
and the initial density is bounded by below by a positive constant, then a
strong solution exists locally in time. In this paper, we show that under
the same hypothesis, the density remains bounded by below by a posi-
tive constant uniformly in time, and that strong solutions therefore exist
globally in time. Moreover, while most existence results are obtained for
positive viscosity coefficients, the present result holds even if the viscosity
coefficient vanishes with the density. Finally, we prove that the solution is
unique in the class of weak solutions satisfying the usual entropy inequal-
ity. The key point of the paper is a new entropy-like inequality introduced
by Bresch and Desjardins for the shallow water system of equations. This
inequality gives additional regularity for the density (provided such regu-
larity exists at initial time).

1 Introduction

This paper is devoted to the existence of global strong solutions of the following
Navier-Stokes equations for compressible isentropic flow:

ρt + (ρu)x = 0 (1)
(ρu)t + (ρu2)x + p(ρ)x = (µ(ρ) ux)x, (x, t) ∈ R× R+, (2)

with possibly degenerate viscosity coefficient.
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Throughout the paper, we will assume that the pressure p(ρ) obeys a gamma
type law

p(ρ) = ργ , γ > 1, (3)

(though more general pressure laws could be taken into account).

The viscosity coefficient µ(ρ) is often assumed to be a positive constant.
However, it is well known that the viscosity of a gas depends on the temperature,
and thus on the density (in the isentropic case). For example, the Chapman-
Enskog viscosity law for hard sphere molecules predicts that µ(ρ) is proportional
to the square root of the temperature (see [CC70]). In the case of monoatomic
gas (γ = 5/3), this leads to µ(ρ) = ρ1/3. More generally, µ(ρ) is expected to
vanish as a power of the ρ on the vacuum. In this paper, we consider degenerate
viscosity coefficients that vanish for ρ = 0 at most like ρα for some α < 1/2. In
particular, the cases µ(ρ) = ν and µ(ρ) = νρ1/3 (with ν positive constant) are
included in our result (see conditions (6)-(7) for details).

One-dimensional Navier-Stokes equations have been studied by many au-
thors when the viscosity coefficient µ is a positive constant. The existence of
weak solutions was first established by A. Kazhikhov and V. Shelukhin [KS77]
for smooth enough data close to the equilibrium (bounded away from zero).
The case of discontinuous data (still bounded away from zero) was addressed
by V. Shelukhin [She82, She83, She84] and then by D. Serre [Ser86a, Ser86b]
and D. Hoff [Hof87]. First results concerning vanishing intial density were also
obtained by V. Shelukhin [She86]. In [Hof98], D. Hoff proved the existence of
global weak solutions with large discontinuous initial data, possibly having dif-
ferent limits at x = ±∞. He proved moreover that the constructed solutions
have strictly positive densities (vacuum states cannot form in finite time). In
dimension greater than two, similar results were obtained by A. Matsumura and
T. Nishida [MN79] for smooth data and D. Hoff [Hof95] for discontinuous data
close to the equilibrium. The first global existence result for initial density that
are allowed to vanish was due to P.-L. Lions (see [Lio98]). The result was later
improved by E. Feireisl et al. ([FNP01] and [Fei04]).

Another question is that of the regularity and uniqueness of the solutions.
This problem was first analyzed by V. Solonnikov [Sol76] for smooth initial
data and for small time. However, the regularity may blow-up as the solution
gets close to vacuum. This leads to another interesting question of whether
vacuum may arise in finite time. D. Hoff and J. Smoller ([HS01]) show that
any weak solution of the Navier-Stokes equations in one space dimension do
not exhibit vacuum states, provided that no vacuum states are present initially.
More precisely, they showed that if the initial data satisfies∫

E

ρ0(x) dx > 0

for all open subsets E ⊂ R, then∫
E

ρ(x, t) dx > 0

2



for every open subset E ⊂ R and for every t ∈ [0, T ].

The main theorem of this paper states that the strong solutions constructed
by V. Solonnikov in [Sol76] remain bounded away from zero uniformly in time
(i.e. vacuum never arises) and are thus defined globally in time. This result
can be seen as the equivalent of the result of D. Hoff in [Hof95] for strong
solutions instead of weak solutions. Another interest of this paper is the fact
that unlike all the references mentioned above, the result presented here is valid
with degenerate viscosity coefficients.

Note that compressible Navier-Stokes equations with degenerate viscosity
coefficients have been studied before (see for example [LXY98], [OMNM02],
[YYZ01] and [YZ02]). All those papers, however, are devoted to the case of
compactly supported initial data and to the description of the evolution of the
free boundary. We are interested here in the opposite situation in which vacuum
never arises.

The new tool that allows us to obtain those results is an entropy inequal-
ity that was derived by D. Bresch and B. Desjardins in [BD02] for the multi-
dimensional Korteweg system of equations (which corresponds to the case µ(ρ) =
ρ and with an additional capillary term) and later generalized by the same
authors (see [BD04]) to include other density-dependent viscosity coefficients.
In the one dimensional case, a similar inequality was introduced earlier by V.
A. Văıgant [Văı90] for flows with constant viscosity (see also V. V. Shelukhin
[She98]).

The main interest of this inequality is to provide further regularity for the
density. When µ(ρ) = ρ, for instance, it implies that the gradient of

√
ρ re-

mains bounded for all time provided it was bounded at time t = 0. This has
very interesting consequences for many hydrodynamic equations. In [She98],
V. V. Shelukhin establishes the existence of a unique weak solution for one
dimensional flows with constant viscosity coefficient. In higher dimension, D.
Bresch, B. Desjardin and C.K. Lin use this inequality to establish the stability
of weak solutions for the Korteweg system of equations in [BDL03] and for the
compressible Navier-Stokes equations with an additional quadratic friction term
in [BD03]. In [MV06], we establish the stability of weak solutions for the com-
pressible isentropic Navier-Stokes equations in dimension 2 and 3 (without any
additional terms). We also refer to [BD05] for recent developments concerning
the full system of compressible Navier-Stokes equations (for heat conducting
fluids).

At this point, we want to stress out the fact that in dimension 2 and higher,
this inequality holds only when the two viscosity coefficients satisfy a relation
that considerably restricts the range of admissible coefficients (and in particular
implies that one must have µ(0) = 0). This necessary condition disappear in
dimension 1, as the two viscosity coefficients become one (the derivation of the
inequality is also much simpler in one dimension).

Another particularity of the dimension 1, is that the inequality gives control
on some negative powers of the density (this is not true in higher dimensions).
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This will allow us to show that vacuum cannot arise if it was not present at
time t = 0.

Finally, we point out that the present result is very different from that of
[MV06] where the density was allowed to vanish (and the difficulty was to control
the velocity u on the vacuum). Naturally, a result similar to that of [MV06]
holds in dimension one, though it is not the topic of this paper.

Our main result is made precise in the next section. Section 3 is devoted to
the derivation of the fundamental entropy inequalities and a priori estimates.
The existence part of Theorem 2.1 is proved in Section 4. The uniqueness is
addressed in Section 5.

2 The result

Following D. Hoff in [Hof98], we work with positive initial data having (possibly
different) positive limits at x = ±∞: We fix constant velocities u+ and u− and
constant positive density ρ+ > 0 and ρ− > 0, and we let u(x) and ρ(x) be two
smooth monotone functions satisfying

ρ(x) = ρ± when ± x ≥ 1 , ρ(x) > 0 ∀x ∈ R, (4)

and
u(x) = u± when ± x ≥ 1. (5)

We recall that the pressure satisfies p(ρ) = ργ for some γ > 1 and we assume
that there exists a constant ν > 0 such that the viscosity coefficient µ(ρ) satisfies

µ(ρ) ≥ νρα ∀ρ ≤ 1 for some α ∈ [0, 1/2),
µ(ρ) ≥ ν ∀ρ ≥ 1,

(6)

and
µ(ρ) ≤ C + Cp(ρ) ∀ρ ≥ 0. (7)

Note that (7) is only a restriction on the growth of µ for large ρ. Examples of
admissible viscosity coefficients include µ(ρ) = ν and µ(ρ) = ρ1/3.

Our main theorem is the following:

Theorem 2.1 Assume that the initial data ρ0(x) and u0(x) satisfy

0 < κ0 ≤ ρ0(x) ≤ κ0 < ∞,
ρ0 − ρ ∈ H1(R),
u0 − u ∈ H1(R),

(8)

for some constants κ0 and κ0. Assume also that µ(ρ) verifies (6) and (7). Then
there exists a global strong solution (ρ, u) of (1)-(2)-(3) on R+×R such that for
every T > 0:

ρ− ρ ∈ L∞(0, T ;H1(R)),
u− u ∈ L∞(0, T ;H1(R)) ∩ L2(0, T ;H2(R)).
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Moreover, for every T > 0, there exist constants κ(T ) and κ(T ) such that

0 < κ(T ) ≤ ρ(x, t) ≤ κ(T ) < ∞ ∀(t, x) ∈ (0, T )× R.

Finally, if µ(ρ) ≥ ν > 0 for all ρ ≥ 0, if µ is uniformly Lipschitz and if γ ≥ 2
then this solution is unique in the class of weak solutions satisfying the usual
entropy inequality (16).

Note that he assumption (8) on the initial data implies, in particular that
the initial entropy (or relative entropy) is finite.

When the viscosity coefficient µ(ρ) satisfies

µ(ρ) ≥ ν > 0 ∀ρ ≥ 0, (9)

the existence of a smooth solution for small time is a well-known result. More
precisely, we have:

Proposition 2.1 ([Sol76]) Let (ρ0, u0) satisfy (8) and assume that µ satisfies
(9), then there exists T0 > 0 depending on κ0, κ0, ||ρ0 − ρ||H1 and ||u0 − u||H1

such that (1)-(2)-(3) has a unique solution (ρ, u) on (0, T0) satisfying

ρ− ρ ∈ L∞(0, T1,H
1(R)) , ∂tρ ∈ L2((0, T1)× R) ,

u− u ∈ L2(0, T1;H2(R)) , ∂tu ∈ L2((0, T1)× R)

for all T1 < T0.
Moreover, there exist some κ(t) > 0 and κ(t) < ∞ such that κ(t) ≤ ρ(x, t) ≤
κ(t) for all t ∈ (0, T0).

In view of this proposition, we see that if we introduce a truncated viscosity
coefficient µn(ρ):

µn(ρ) = max(µ(ρ), 1/n),

then there exist approximated solutions (ρn, un) defined for small time (0, T0)
(T0 possibly depending on n). To prove Theorem 2.1, we only have to show that
(ρn, un) satisfies the following bounds uniformly with respect to n and T large:

κ(T ) ≤ ρn ≤ κ(T ) ∀t ∈ [0, T ],
ρn − ρ ∈ L∞(0, T ;H1(R)),
un − u ∈ L∞(0, T ;H1(R)).

In the next section, we derive the entropy inequalites that will be used to
obtain the necessary bounds on ρn and un.

3 Entropy inequalities

In its conservative form, (1)-(2)-(3) can be written as

∂tU + ∂x[A(U)] =
[

0
(µ(ρ)ux)x

]
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with the state vector

U =
[

ρ
ρ u

]
=
[

ρ
m

]
and the flux

A(U) =
[

ρ u
ρ u2 + ργ

]
=

 m
m2

ρ
+ ργ

 .

It is well known that

H (U) = ρ
u2

2
+

1
γ − 1

ργ =
m2

2ρ
+

1
γ − 1

ργ ,

is an entropy for the system of equations (1)-(2)-(3). More precisely, if (ρ, u) is
a smooth solution, then we have

∂tH (U) + ∂x

[
F (U)− µ(ρ)uux

]
+ µ(ρ)u2

x = 0 (10)

with

F (U) = ρu
u2

2
+

γ

γ − 1
uργ .

In particular, integrating (10) with respect to x, we immediately see that

d

dt

∫
R

[
ρ
u2

2
+

1
γ − 1

ργ

]
dx +

∫
R

µ(ρ)|ux|2 dx ≤ 0. (11)

However, since we are looking for solutions ρ(x, t) and u(x, t) that converges
to ρ± and u± at ±∞, we do not expect the entropy to be integrable. It is thus
natural to work with the relative entropy instead of the entropy.

The relative entropy is defined for any functions U and Ũ by

H (U |Ũ) = H (U)−H (Ũ)−DH (Ũ)(U − Ũ)
= ρ(u− ũ)2 + p(ρ|ρ̃),

where p(ρ|ρ̃) is the relative entropy associated to 1
γ−1ργ :

p(ρ|ρ̃) =
1

γ − 1
ργ − 1

γ − 1
ρ̃γ − γ

γ − 1
ρ̃γ−1(ρ− ρ̃).

Note that, since p is strictly convex, p(ρ|ρ̃) is nonnegative for every ρ and
p(ρ|ρ̃) = 0 if and only if ρ = ρ̃.

We recall that ρ(x) and u(x) are smooth functions satisfying (4) and (5),
and we denote

U =
[

ρ
ρ u

]
.

It is easy to check that there exists a positive constant C (depending on inf ρ)
such that for every ρ and for every x ∈ R, we have

ρ + ργ ≤ C[1 + p(ρ|ρ)] , (12)
lim infρ→0 p(ρ|ρ) ≥ C−1 . (13)
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The first inequality we will use in the proof of Theorem 2.1 is the usual
relative entropy inequality for compressible Navier-Stokes equations:

Lemma 3.1 Let ρ, u be a solution of (1)-(2)-(3) satisfying the entropy inequal-
ity

∂tH (U) + ∂x[F (U)− µ(ρ)uux] + µ(ρ)|ux|2 ≤ 0, (14)

Assume that the initial data (ρ0, u0) satisfies∫
R

H (U0|U) dx =
∫

R

[
ρ0

(u0 − u)2

2
+ p(ρ0|ρ)

]
dx < +∞. (15)

Then, for every T > 0, there exists a positive constant C(T ) such that

sup
[0,T ]

∫
R

[
ρ
(u− u)2

2
+ p(ρ|ρ)

]
dx +

∫ T

0

∫
R

µ(ρ)|ux|2 dx dt ≤ C(T ). (16)

The constant C(T ) depends only on T > 0, U , the initial value U0, γ, and on
the constant C appearing in (7).

Note that when both ρ and ρ0 are bounded above and below away from zero,
it is easy to check that

p(ρ0|ρ) ≤ C(ρ0 − ρ)2

and thus (15) holds under the assumptions of Theorem 2.1.

Proof of Lemma 3.1. First, we have (by a classical but tedious computation,
see [Daf79]):

∂tH (U |U) =
[
∂tH (U) + ∂x(F (U)− µ(ρ)u∂xu)

]
− ∂tH (U)

−∂x[F (U)− µ(ρ)u∂xu] + ∂x[DF (U)(U − U)]
−D2H (U)[∂tU + ∂xA(U)](U − U)
−DH (U)[∂tU + ∂xA(U)]
+DH (U)[∂tU + ∂xA(U)]
+DH (U)∂x[A(U |U)],

where the relative flux is defined by

A(U |U) = A(U)−A(U)−DA(U) · (U − U)

=
[

0
ρ(u− u)2 + (γ − 1)p(ρ|ρ)

]
.

Since U is a solution of (1)-(2)-(3) and satisfies the entropy inequality, and
using the fact that U = (ρ, ρu) satisfies (4) and (5) (and in particular ∂tU = 0),
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we deduce

∂tH (U |U) ≤ −µ(ρ)|∂xu|2

−D2H (U)[∂xA(U)](U − U)
−D2H (U)[∂x(µ(ρ)∂xu)]
+DH (U)∂x[A(U |U)]
+DH (U)[∂xA(U)]
−∂x[F (U)− µ(ρ)uux] + ∂x[DF (U)(U − U)],

where D2H (U) = u. We now integrate with respect to x ∈ R, using the fact
that supp (∂xU) ∈ [−1, 1], and we get

d

dt

∫
R

H (U |U) dx +
∫

R
µ(ρ)|∂xu|2

≤ −
∫ 1

−1

D2H (U)[∂xA(U)](U − U) dx

+
∫ 1

−1

(∂xu)µ(ρ)∂xu dx

−
∫ 1

−1

∂x[DH (U)]A(U |U) dx

−
∫ 1

−1

∂x[DH (U)]A(U) dx.

Writing∣∣∣∣∫ 1

−1

(∂xu)µ(ρ)∂xu dx

∣∣∣∣ ≤ ‖∂xu‖2L∞
∫ 1

−1

µ(ρ) dx +
1
2

∫ 1

−1

µ(ρ)|∂xu|2 dx ,

it follows that there exists a constant C depending on ||U ||W 1,∞ such that

d

dt

∫
R

H (U |U) dx +
1
2

∫
R

µ(ρ) |∂xu|2

≤ C + C

∫ 1

−1

|U − U | dx + C

∫ 1

−1

|A(U |U)| dx

+C

∫ 1

−1

µ(ρ) dx. (17)

To conclude, we need to show that the right hand side can be controlled by
H (U |U). First, we note that

|A(U |U)| ≤ max(1, (γ − 1))H (U |U),

and that (12) and (7) yield∫ 1

−1

µ(ρ) dx ≤ C +
∫

R
p(ρ|ρ) dx. (18)
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Next, using (12) we get:∫ 1

−1

|U − U | dx ≤
∫ 1

−1

|ρ− ρ| dx +
∫ 1

−1

ρ|u− u| dx +
∫ 1

−1

|u(ρ− ρ)| dx

≤ C

∫ 1

−1

(1 + p(ρ|ρ)) dx

+
(∫ 1

−1

ρ dx

)1/2(∫ 1

−1

ρ(u− u)2 dx

)1/2

≤ C

∫ 1

−1

(1 + p(ρ|ρ)) dx

+
(∫ 1

−1

(1 + p(ρ|ρ)) dx

)1/2(∫ 1

−1

H (U |U) dx

)1/2

≤ C

∫ 1

−1

H (U |U) dx + C.

So (17) becomes

d

dt

∫
R

H (U |U) dx +
1
2

∫
R

µ(ρ) |∂xu|2 ≤ C + C

∫ 1

−1

|H (U |U)| dx,

and Gronwall’s lemma gives Lemma 3.1.
For further reference, we note that this also implies

d

dt

∫
R

H (U |U) dx ≤ C(T ). (19)

�

Unfortunately, it is a well-known fact that the estimates provided by Lemma
3.1 are not enough to prove the stability of the solutions of (1)-(2)-(3). The key
tool of this paper is thus the following lemma:

Lemma 3.2 Assume that µ(ρ) is a C2 function, and let (ρ, u) be a solution of
(1)-(2)-(3) such that

u− u ∈ L2((0, T );H2(R)), ρ− ρ ∈ L∞((0, T );H1(R)), 0 < m ≤ ρ ≤ M.
(20)

Then there exists C(T ) such that the following inequality holds:

sup
[0,T ]

∫ [
1
2
ρ
∣∣(u− u) + ∂x(ϕ(ρ))

∣∣2 + p(ρ|ρ)
]

dx

+
∫ T

0

∫
R

∂x(ϕ(ρ))∂x(ργ) dx dt ≤ C(T ), (21)
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with ϕ such that

ϕ′(ρ) =
µ(ρ)
ρ2

. (22)

The constant C(T ) depends only on T > 0, (ρ, u), the initial value U0, γ, and
on the constant C appearing in (7).

Since the viscosity coefficient µ(ρ) is non-negative, (22) implies that ϕ(ρ) is
increasing. The lemma thus implies that

sup
[0,T ]

∫ [
1
2
ρ
∣∣(u− u) + ∂x(ϕ(ρ))

∣∣2 + p(ρ|ρ)
]

dx ≤ C(T ),

which, together with Lemma 3.1, yields

||√ρ∂x(ϕ(ρ))||L∞(0,T ;L2(Ω)) = 2||µ(ρ)(ρ−1/2)x||L∞(0,T ;L2(Ω)) ≤ C(T ).

This inequality will be the corner stone of the proof of Theorem 2.1 which is
detailed in the next section.

As mentioned in the introduction, Lemma 3.2 relies on a new mathematical
entropy inequality that was first derived by Bresch and Desjardins in [BD02]
and [BD04] in dimension 2 and higher. Of course, the computations are much
simpler in dimension 1.

We stress out the fact that it is important to know exactly what regularity
is needed on ρ and u to establish this inequality. Indeed, unlike inequality
(16) which is quite classical, there is no obvious way to regularize the system
of equations (1)-(2)-(3) while preserving the structure necessary to derive (21).
Fortunately, it turns out that (20), which is the natural regularity for strong
solutions, is enough to justify the computations, as we will see in the proof.

Proof. We have to show that

d

dt

∫ [
1
2
ρ|u− u|2 + ρ(u− u)(ϕ(ρ))x +

1
2
ρ(ϕ(ρ))2x

]
dx +

d

dt

∫
p(ρ|ρ) dx

is bounded

Step 1. From the proof of the previous lemma (see (19)), we already know that:

d

dt

∫ [
1
2
ρ|u− u|2

]
dx +

d

dt

∫
p(ρ|ρ) dx ≤ C(T ). (23)

Step 2. Next we show that:

d

dt

∫
ρ
(ϕ(ρ))2x

2
dx = −

∫
ρ2ϕ′(ρ)(ϕ(ρ))xuxx dx

−
∫

(2ρϕ′(ρ) + ρ2ϕ′′(ρ))ρx(ϕ(ρ))xux dx. (24)

10



This follows straightforwardly from (1) when the second derivatives of the den-
sity are bounded in L2((0, T ) × R). In that case, it is worth mentionning that
the right hand side can be rewritten as∫

ρ2ϕ′(ρ)(ϕ(ρ))xxux dx.

However, we do not have any bounds on ρxx. It is thus important to justify the
derivation of (24):

First, we point out that (24) makes sense when (ρ, u) satisfies only (20) (we
recall that since ρ and u are constant outide (−1, 1), (20) implies that ρx ∈
L∞((0, T );L2(R)) and ux ∈ L2((0, T );H1(R))). Moreover, we note that the
computation only makes use of the continuity equation. The rigorous derivation
of (24) (under assumption (20)) can thus be achieved by carefully regularizing
the continuity equation. The details are presented in the appendix (see Lemma
A.1).

Step 3. Next, we evaluate the derivative of the cross-product:
d

dt

∫
ρ(u− u)∂x(ϕ(ρ)) dx

=
∫

∂x(ϕ(ρ))∂t(ρ(u− u)) dx +
∫

ρ(u− u)∂t∂x(ϕ(ρ)) dx

=
∫

∂x(ϕ(ρ))∂t(ρ(u− u)) dx−
∫

(ρ(u− u))xϕ′(ρ)∂tρ dx . (25)

Multiplying (2) by ∂xϕ(ρ), we get:∫
∂x(ϕ(ρ))∂t(ρ(u− u)) dx =

∫
∂x(ϕ(ρ))∂t(ρu) dx−

∫
∂x(ϕ(ρ))(∂tρ)u dx

=
∫

(ϕ(ρ))x(µ(ρ)ux)x dx

−
∫

∂x(ϕ(ρ))∂x(ργ) dx

−
∫

∂x(ϕ(ρ))∂x(ρu2) dx

+
∫

ϕ′(ρ)(ρu)xρxu dx.

The continuity equation easily yields:∫
(ρ(u− u))xϕ′(ρ)∂tρ dx = −

∫
((ρu)x)2ϕ′(ρ) dx +

∫
(ρu)x(ρu)xϕ′(ρ) dx.

Note that those equalities hold as soon as ρ and u satisfy (20).

Step 4. If ϕ and µ satisfy (22) then we have∫
(ϕ(ρ))x(µ(ρ)ux)x dx =

∫
ρ2ϕ′(ρ)(ϕ(ρ))xuxx dx

+
∫

(2ρϕ′(ρ) + ρ2ϕ′′(ρ))ρx(ϕ(ρ))xux dx,

11



so (24) and (25) yields

d

dt

{∫
ρ(u− u)∂xϕ(ρ) + ρ

|∂xϕ(ρ)|2

2
dx

}
+
∫

∂xϕ(ρ)∂x(ργ) dx

= −
∫

∂x(ϕ(ρ))∂x(ρu2) dx +
∫

((ρu)x)2ϕ′(ρ) dx

+
∫

(ρu)xϕ′(ρ)[ρxu− (ρu)x] dx

=
∫

ϕ′(ρ)[−ρx(ρu2)x + ((ρu)x)2] dx−
∫

(ρu)xϕ′(ρ)ρux dx

=
∫

ρ2ϕ′(ρ)u2
x dx−

∫
(ρu)xϕ′(ρ)ρux dx,

and using (22), we deduce

d

dt

{∫
ρ(u− u)∂xϕ(ρ) + ρ

|∂xϕ(ρ)|2

2
dx

}
+
∫

∂xϕ(ρ)∂x(ργ) dx

=
∫

µ(ρ)(ux)2 dx−
∫

µ(ρ)uxux dx−
∫

ρ ∂x(ϕ(ρ))u ux dx. (26)

Moreover, since ux has support in (−1, 1) and using the bounds given by
Lemma 3.1 and inequality (18), it is readily seen that the right hand side in
this equality is bounded by:

C

∫
R

µ(ρ)|ux|2 dx + C

∫ 1

−1

µ(ρ) dx + C

∫
ρ|∂xϕ(ρ)|2 dx + C

∫ 1

−1

ρu2 dx

≤ C

∫
µ(ρ)|ux|2 dx + C

∫
R

p(ρ, ρ) dx + C

∫
R

ρ|(u− u) + ∂xϕ(ρ)|2 dx + C(T ).

Putting (26) and (23) together, we deduce

d

dt

∫
R

[
1
2
ρ
∣∣(u− u) + ∂x(ϕ(ρ))

∣∣2 + p(ρ|ρ)
]

dx +
∫

R
∂x(ϕ(ρ))∂x(ργ) dx

≤ C

∫
R

µ(ρ)|ux|2 dx + C

∫
R

[
1
2
ρ|(u− u) + ∂xϕ(ρ)|2 + p(ρ, ρ)

]
dx + C(T ).

Finally, using the bounds on the viscosity from Lemma 3.1 and Gronwall’s
inequality we easily deduce (21). �

4 Proof of Theorem 2.1

In this section, we prove the existence part of Theorem 2.1.
The proof relies on the following proposition:

12



Proposition 4.1 Assume that the viscosity coefficient µ satisfies (6)-(7) and
consider initial data (ρ0, u0) satisfying (8). Then for all T > 0, there exist
some constants C(T ), κ(T ) and κ(T ) such that for any strong solution (ρ, u) of
(1)-(2)-(3) with initial data (ρ0, u0), defined on (0, T ) and satisfying

ρ− ρ ∈ L∞(0, T, H1(R)) , ∂tρ ∈ L2((0, T )× R) ,

u− u ∈ L2(0, T ;H2(R)) , ∂tu ∈ L2((0, T )× R),

with ρ and ρ−1 bounded, the following bounds hold

0 < κ(T ) ≤ ρ(t) ≤ κ(T ) ∀t ∈ [0, T ],
‖ρ− ρ‖L∞(0,T ;H1(R)) ≤ C(T ),
‖u− u‖L∞(0,T ;H1(R)) ≤ C(T ).

Moreover the constants C(T ), κ(T ) and κ(T ) depend on µ only through the
constant C arising in (6) and (7).

Proof of Theorem 2.1. We define µn(ρ) to be the following positive approx-
imation of the viscosity coefficient:

µn(s) = max(µ(s), 1/n).

Notice that µn verifies
µ ≤ µn ≤ µ + 1.

In particular µn satisfies (6) and (7) with some constants that are independent
on n.

Next, for all n > 0, we let (ρn, un) be the strong solution of (1)-(2)-(3) with
µ = µn:

ρt + (ρu)x = 0
(ρu)t + (ρu2)x + p(ρ)x = (µn(ρ) ux)x.

This solution exists at least for small time (0, T0) thanks to Proposition 2.1
(note that T0 may depend on n). Proposition 4.1 then implies that for all T > 0
there exists C(T ), κ(T ), and κ(T ) > 0, independent on n, such that

κ(T ) ≤ ρn(t) ≤ κ(T ) ∀t ∈ [0, T ],
‖ρn − ρ‖L∞(0,T ;H1(R)) ≤ C(T ),
‖un − u‖L∞(0,T ;H1(R)) ≤ C(T ).

In particular we can take T0 = ∞ in Proposition 2.1 (for all n). Moreover, since
the bound from below for the density is uniform in n for any T > 0, by taking n
large enough (namely n ≥ 1/κ(T )), it is readily seen that (ρn, un) is a solution
of (1)-(2)-(3) on [0, T ] with the non-truncated viscosity coefficient µ(ρ). From
the uniqueness of the solution of Proposition 2.1, we see that, passing to the
limit in n, we get the desired global solution of (1)-(2)-(3). �
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The rest of this section is thus devoted to the proof of Proposition 4.1. First,
we will show that ρ is bounded from above and from below uniformly by some
positive constants. Then we will investigate the regularity of the velocity by
some standard arguments for parabolic equations.

4.1 A priori estimates

Since the initial datum (ρ0, u0) satisfies (8), we have∫
ρ0(u0 − u)2 dx < ∞ and

∫
Ω

ρ0|∂x(ϕ(ρ0))|2 dx < +∞.

Moreover, (ρ, u) satisfies (20), so we can use the inequalities stated in Lemmas
3.1 and 3.2. We deduce the following estimates, which we shall use throughout
the proof of Proposition (4.1):

||√ρ(u− u)||L∞(0,T );L2(Ω)) ≤ C(T ),
||ρ||L∞(0,T ;L1

loc∩Lγ
loc(Ω)) ≤ C(T ),

||ρ− ρ||L∞(0,T ;L1(Ω)) ≤ C(T ),
||
√

µ(ρ)(u)x||L2(0,T ;L2(Ω)) ≤ C(T ).

(27)

and
||µ(ρ)∂x(ρ−1/2)||L∞(0,T ;L2(Ω)) ≤ C(T ),
||
√

µ(ρ)∂x(ργ/2−1/2)||L2(0,T ;L2(Ω)) ≤ C(T ).
(28)

4.2 Uniform bounds for the density.

The first proposition shows that no vacuum states can arise:

Proposition 4.2 For every T > 0, there exists a constant κ(T ) > 0 such that

ρ(x, t) ≥ κ(T ) ∀(x, t) ∈ R× [0, T ].

The proof of this proposition will follow from two lemmas. First we have:

Lemma 4.1 For every T > 0, There exists δ > 0 and R(T ) such that for every
x0 ∈ R and t0 > 0, there exists x1 ∈ [x0 −R(T ), x0 + R(T )] with

ρ(x1, t0) > δ.

This nice result can be found in [Hof98]. We give a proof of it for the sake of
completeness.
Proof. Let δ > 0 be such that

p(ρ|ρ) ≥ C−1

2
∀ρ < δ

14



(such a δ exists thanks to (13)). Then, if

sup
x∈[x0−R,x0+R]

ρ(x, t0) < δ

we have ∫
p(ρ|ρ) dx ≥ C−1R

and since the integral in the left hand side is bounded by a constant (see
Lemma 3.1), a suitable choice of R leads to a contradiction. �

Lemma 4.2 Let

w(x, t) = inf(ρ(x, t), 1) = 1− (1− ρ(x, t))+.

Then there exists ε > 0 and a constant C(T ) such that

||∂xw−ε||L∞(0,T ;L2(R)) ≤ C(T ).

Proof. We have
∂xw = ∂xρ1{ρ≤1}.

In particular (28) gives

||µ(w)
w3/2

wx||L∞(0,T ;L2(Ω)) ≤ C

so using (6) we deduce:

||wα−3/2∂xw||L∞(0,T ;L2(Ω)) = ||∂xwα−1/2||L∞(0,T ;L2(Ω)) ≤ C,

and the result follows with ε = 1/2− α > 0. �

Proof of Proposition 4.2. Together with Sobolev-Poincaré inequality, Lemma
4.1 and 4.2 yield that w−ε is bounded in L∞((0, T )× R):

w−ε(x, t) ≤ C(T ) ∀(x, t) ∈ R× (0, T ).

This yields Proposition 4.2 with κ(T ) = C(T )−1/ε. �

Next, we find a bound for the density in L∞:

Proposition 4.3 For every T > 0, there exist a constant κ(T ) such that

ρ(x, t) ≤ κ(T ) ∀(x, t) ∈ R× (0, T ).

Let s = (γ − 1)/2, then (21) with (6) and (22) yields ∂x(ρs) bounded in
L2((0, T )× R). Moreover, for every compact subset K of R, we have∫

K

|∂xρs| dx =
∫

K

|ρs−1∂xρ| dx

≤
(∫

K

ρ1+2s dx

)1/2(∫
K

1
ρ3

(∂xρ)2 dx

)1/2

≤
(∫

K

ργ dx

)1/2(∫
K

ρϕ′(ρ)2(∂xρ)2 dx

)1/2
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and so using (12) we get∫
K

|∂xρs| dx ≤ C

(
|K|+

∫
K

p(ρ|ρ) dx

)1/2(∫
K

ρϕ′(ρ)2(∂xρ)2 dx

)1/2

.

Since
ρs ≤ 1 + ργ

we deduce that
ρs is bounded in L∞(0, T ;W 1,1

loc(R)),

and the W 1,1(K) norm of ρs(t, ·) only depends on |K|. Sobolev imbedding thus
yields Proposition 4.3. �

Proposition 4.4 There exists a constant C(T ) such that

‖ρ(x, t)− ρ(x)‖L∞(0,T ;H1(R)) ≤ C(T ).

Proof. Proposition 4.3 yields∫
(∂xρ)2 dx ≤ κ3

∫
1
ρ3

(∂xρ)2 dx

≤ κ3

∫
ρ

(µ(ρ))2
(φ′(ρ))2(∂xρ)2 dx

≤ νκ3

inf (1, κ2α)

∫
ρ(∂xφ(ρ))2 dx

≤ C(T ).

And the result follows. �

4.3 Uniform bounds for the velocity

Proposition 4.5 There exists a constant C(T ) such that

‖u− u‖L2(0,T ;H2(R)) ≤ C(T )

and
‖∂tu‖L2(0,T ;L2(R)) ≤ C(T ).

In particular, u− u ∈ C0(0, T ;H1(R)).

Proof. First, we show that u−u is bounded in L2(0, T ;H1(R)). Since ρ ≥ κ > 0,
and using (6), it is readily seen that there exists a constant ν′ > 0 such that

µ(ρ(x, t)) ≥ ν′ ∀(x, t) ∈ R× [0, T ],

and so (16) gives
∂xu is bounded in L2((0, T )× R)
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and
u− u is bounded in L∞(0, T ;L2(R)).

Therefore u− u is bounded in L2(0, T ;H1(R)).

Note that this implies that ∂tρ is bounded in L2((0, T )× R). Since ρ− ρ is
bounded in L∞(0, T ;H1), it follows (see [Ama00] for example) that

ρ ∈ Cs0((0, T )× R)

for some s0 ∈ (0, 1).

Next, we rewrite (2) as follows:

∂tu−
(

µ(ρ)
ρ

ux

)
x

= −γργ−2ρx + uux + (∂x(ϕ(ρ))− (u− u))ux (29)

where we recall that ϕ, which is defined by ϕ′(ρ) = µ(ρ)/ρ2, is the function
arising in the new entropy inequality (see Lemma 3.2).

In order to deduce some bounds on u, we need to control the right hand
side of (29). The first term, ργ−2ρx, is bounded in L∞(0, T ;L2(R)) (thanks
to Proposition 4.4). The second term is bounded in L2((0, T ) × R) since u is
in L∞. For the last part, we write (using Hölder inequality and interpolation
inequality):

||(∂x(ϕ(ρ))− (u− u)ux||L2(0,T ;L4/3(R))

≤ ||∂x(ϕ(ρ))− (u− u)||L∞(0,T ;L2(R))||ux||L2(0,T ;L4(R))

≤ ||∂x(ϕ(ρ))− (u− u)||L∞(L2)||ux||2/3
L2(L2)||ux||1/3

L2(0,T ;W 1,4/3(R))

≤ C||ux||1/3

L2(0,T ;W 1,4/3(R))

(here we make use of (21) and Proposition 4.2). So regularity results for
parabolic equation of the form (29) (note that the diffusion coefficient is in
Cs0((0, T )× R)) yield

||ux||L2(0,T ;W 1,4/3(R)) ≤ C||ux||1/3

L2(0,T ;W 1,4/3(R))
+ C,

and so
||ux||L2(0,T ;W 1,4/3(R)) ≤ C.

Using Sobolev inequalities, it follows that ux is bounded in L2(0, T ;L∞(R)).

Finally, we can now see that the right hand side in (29) is bounded in
L2(0, T ;L2(R)), and classical regularity results for parabolic equations give

u− u is bounded in L2(0, T ;H2(R))

and
∂tu is bounded in L2(0, T ;L2(R)),
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which concludes the proof. �

It is now readily seen that Proposition 4.1 follows from Propositions 4.2, 4.3,
4.4 and 4.5.

5 Uniqueness

In this last section, we establish the uniqueness of the global strong solution
in a large class of weak solutions satisfying the usual entropy inequality. This
result can be rewritten as follows:

Proposition 5.1 Assume that

µ(ρ) ≥ ν > 0 for all ρ ≥ 0,

and that there exists a constant C such that

|µ(ρ)− µ(ρ̃)| ≤ C|ρ− ρ̃| for all ρ, ρ̃ ≥ 0.

Assume moreover that γ ≥ 2, and let (ρ, u) be the solution of (1)-(2)-(3) given
by Theorem 2.1.

If (ρ̃, ũ) is a weak solution of (1)-(2)-(3) with initial data (ρ0, u0) and satis-
fying the entropy inequality (14) and relative entropy bound (16), and if

lim
x→±∞

(ρ̃− ρ±) = 0 , lim
x→±∞

(ũ− u±) = 0,

then
(ρ̃, ũ) = (ρ, u).

Notice that we do not need to assume that ρ̃ does not vanish. This Propo-
sition will be a consequence of the following Lemma:

Lemma 5.1 Let Ũ = (ρ̃, ρ̃ũ) be a weak solution of (1)-(2)-(3) satisfying the
inequality (14) and let U = (ρ, ρu) be a strong solution of (1)-(2)-(3) satisfying
the equality (10). Assume moreover that Ũ and U are such that

lim
x→±∞

(ρ̃− ρ) = 0 , lim
x→±∞

(ũ− u) = 0. (30)

Then we have:
d

dt

∫
R

H (Ũ |U) dx +
∫

R
µ(ρ̃) [∂x(ũ− u)]2

≤ C

∫
|∂xu|H (Ũ |U) dx

−
∫

R
∂xu[µ(ρ̃)− µ(ρ)] [∂x(ũ− u)] dx

+
∫

R

∂x(µ(ρ)∂xu)
ρ

(ρ̃− ρ) (u− ũ) dx. (31)
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The proof of this lemma relies only on the structure of the equation and not on
the properties of the solutions. We postpone it to the end of this section.

Proof of Proposition 5.1. In order to prove Proposition 5.1, we have to show
that the last two terms in (31) can be controled by the relative entropy H (Ũ |U)
and the viscosity. Since γ ≥ 2 and ρ ≥ κ > 0, we note that there exists C such
that

p(ρ̃|ρ) ≥ C|ρ̃− ρ|2 for all ρ̃ ≥ 0.

Then, we can write∣∣∣∣∫
R

∂xu[µ(ρ̃)− µ(ρ)] [∂x(ũ− u)] dx

∣∣∣∣
≤ C‖∂xu‖L∞(R)

(∫
R
|ρ̃− ρ|2 dx

)1/2(∫
R
|∂x(ũ− u)|2 dx

)1/2

≤ C‖∂xu‖2L∞(R)

∫
R
|ρ̃− ρ|2 dx +

1
4

∫
R

µ(ρ̃)|∂x(ũ− u)|2 dx

≤ C‖∂xu‖2L∞(R)

∫
R

H (Ũ |U) dx +
1
4

∫
R

µ(ρ̃)|∂x(ũ− u)|2 dx

which does the trick for the first of the last two terms in (31). For the last
term, we see that if we had ∂x(µ(ρ)∂xu) bounded in L∞((0, T ) × R), a similar
computation would apply. However, writing

∂x(µ(ρ)∂xu) = µ′(ρ)(∂xρ) (∂xu) + µ(ρ)∂xxu

it is readily seen that ∂x(µ(ρ)∂xu) is only bounded in L2((0, T )× R). For that
reason, we need to control |ũ−u| in L∞, which is made possible by the following
Lemma:

Lemma 5.2 Let ρ̃ ≥ 0 be such that
∫

p(ρ̃|ρ) dx < +∞. Then there exists a
constant C (depending on

∫
p(ρ̃|ρ) dx) such that for any regular function h:

‖h‖L∞(R) ≤ C

(∫
R

ρ̃|h|2 dx

)1/2

+ C

(∫
R
|hx|2 dx

)1/2

.

Using Lemma 5.2 with h = ũ− u, we deduce:∫
R

∂x(µ(ρ)∂xu)
ρ

(ρ̃− ρ) (u− ũ) dx

≤
∥∥∥∥∂x(µ(ρ)∂xu)

ρ

∥∥∥∥
L2(R)

‖ρ̃− ρ‖L2(R)‖u− ũ‖L∞(R)

≤ C

∥∥∥∥∂x(µ(ρ)∂xu)
ρ

∥∥∥∥
L2(R)

H (Ũ |U)
1
2

(
H (Ũ |U)

1
2 +

(∫
R

|∂x(u− ũ)|2 dx

) 1
2
)

≤ C

∥∥∥∥∂x(µ(ρ)∂xu)
ρ

∥∥∥∥2

L2(R)

H (Ũ |U) +
1
4

∫
R

µ(ρ̃)|∂x(u− ũ)|2 dx.
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So (31) becomes

d

dt

∫
R

H (Ũ |U) dx +
1
2

∫
R

µ(ρ̃) [∂x(ũ− u)]2 ≤ C(t)
∫

H (Ũ |U) dx

where C(t) ∈ L1(0, T ). Gronwall Lemma, together with the fact that

H (Ũ |U)(t = 0) = 0

yields Proposition 5.1. �

Proof of Lemma 5.2. Using (13), we see that there exists some δ > 0 and C
such that

|{x ∈ R ; ρ̃ ≤ δ}| ≤ C

∫
R

p(ρ̃|ρ) dx.

We take R = C
∫

p(ρ̃|ρ) dx + 1. Then, for every x0 in R, we know that in the
interval (x0 − R/2, x0 + R/2), ρ̃ is larger than δ is a set of measure at least 1
we denote by ω this set:

ω = (x0 −R/2, x0 + R/2) ∩ {ρ̃ ≥ δ}.

Then, for all x ∈ ω, we have

|h(x0)| ≤ |h(x)|+
∫ x

x0

|hx(y)| dy ≤ |h(x)|+ R1/2

(∫
R
|hx(y)|2 dy

)1/2

.

Integrating with respect to x in ω, we deduce:

|h(x0)| ≤ 1
|ω|

∫
ω

|h| dx + R1/2

(∫
R
|hx|2 dx

)1/2

≤ 1
|ω|1/2

(∫
ω

|h|2 dx

)1/2

+ R1/2

(∫
R
|hx|2 dx

)1/2

.

Finally, since ρ̃ ≥ δ in ω, we have

|h(x0)| ≤ 1
δ1/2|ω|1/2

(∫
ω

ρ̃|h|2 dx

)1/2

+ R1/2

(∫
R
|hx|2 dx

)1/2

and since |ω| ≥ 1, the result follows. �

Proof of Lemma 5.1. To prove the lemma, it is convenient to note that the
system (1-2)-(3) can be rewritten in the form

∂tUi + ∂xAi(U) = ∂x

[
Bij(U)∂x (DjH (U))

]
,
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where B(U) is a positive symmetric matrix and DH denotes the derivative
(with respect to U) of the entropy H (U) associated with the flux A(U). The
existence of such an entropy is equivalent to the existence of an entropy flux
function F such that

DjF (U) =
∑

i

DiH (U)DjAi(U) (32)

for all U . Then strong solutions of (1)-(2)-(3) satisfy

∂tH (U) + ∂xF (U)− ∂x(B(U)∂xDH (U))DH (U) = 0.

In our case, we have

A(U) =

 m
m2

ρ
+ ργ

 =
[

ρu
ρu2 + ργ

]
and

B(U) = µ(ρ)
[

0 0
0 1

]
Then, a carefull computation (using (32)) yields

∂tH (Ũ |U) =
=
[
∂tH (Ũ) + ∂x(F (Ũ))− ∂x(B(Ũ)∂xDH (Ũ))DH (Ũ)

]
−
[
∂tH (U) + ∂xF (U)− ∂x(B(U)∂xDH (U))DH (U)

]
−∂x[F (Ũ)− F (U)]
−D2H (U)[∂tU + ∂xA(U)− ∂x (B(U)∂x (DH (U)))](Ũ − U)

−DH (U)[∂tŨ + ∂xA(Ũ)− ∂x

(
B(Ũ)∂x

(
DH (Ũ)

))
]

+DH (U)[∂tU + ∂xA(U)− ∂x (B(U)∂x (DH (U)))]
+∂x[DF (U)(Ũ − U)]
+DH (U)∂x[A(Ũ |U)]

+∂x

[
B(Ũ)∂xDH (Ũ)−B(U)∂xDH (U)

] [
DH (Ũ)−DH (U)

]
+∂x(B(U)∂xDH (U))DH (Ũ |U),

where the relative flux is defined by

A(Ũ |U) = A(Ũ)−A(U)−DA(U) · (Ũ − U)

Using the fact that Ũ and U are solutions satisfying the natural entropy in-
equality and equality, we deduce

∂tH (Ũ |U)
≤ −∂x[F (Ũ)− F (U)] + ∂x[DF (U)(Ũ − U)]

+DH (U)∂x[A(Ũ |U)]

+∂x

[
B(Ũ)∂xDH (Ũ)−B(U)∂xDH (U)

] [
DH (Ũ)−DH (U)

]
+∂x(B(U)∂xDH (U))DH (Ũ |U),
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Integrating with respect to x and using (30), we deduce

d

dt

∫
R

H (Ũ |U) dx

≤ −
∫

∂x[DH (U)]A(Ũ |U) dx

−
∫

R

[
B(Ũ)∂xDH (Ũ)−B(U)∂xDH (U)

]
∂x

[
DH (Ũ)−DH (U)

]
dx

+
∫

R
∂x[B(U)∂xDH (U)]DH (Ũ |U) dx.

Finally, we check that

∂x[DH (U)]A(Ũ |U) = (∂xu)[ρ(u− ũ)2 + (γ − 1)p(ρ|ρ̃)] ,

∂x[B(U)∂xDH (U)]DH (Ũ |U) =
∂x(µ(ρ)∂xu)

ρ
(ρ̃− ρ) (u− ũ),

and [
B(Ũ)∂xDH (Ũ)−B(U)∂xDH (U)

]
∂x

[
DH (Ũ)−DH (U)

]
= [µ(ρ̃)∂xũ− µ(ρ)∂xu] ∂x [ũ− u]

= µ(ρ̃) [∂xũ− ∂xu]2 + ∂xu[µ(ρ̃)− µ(ρ)]∂x [ũ− u] .

It follows that

d

dt

∫
R

H (Ũ |U) dx +
∫

R
µ(ρ̃) [∂x(ũ− u)]2

≤ C

∫
|∂xu|H (Ũ |U) dx

−
∫

R
∂xu[µ(ρ̃)− µ(ρ)] [∂x(ũ− u)] dx

+
∫

R

∂x(µ(ρ)∂xu)
ρ

(ρ̃− ρ) (u− ũ) dx.

which gives the Lemma. �

A Proof of equality 24

Lemma A.1 Let (ρ, u) satisfy (20) and{
∂tρ + ∂x(ρ u) = 0

ρ(x, 0) = ρ0(x).
(33)

Then (ρ, u) satisfies (24).
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Proof. We denote by hε the convolution of any function h by a mollifier. Con-
voluting (33) by the mollifier, we get

∂tρε + ∂x(ρεu) = rε

where
rε = ∂x(ρεu)− ∂x(ρu)ε.

Since ρε is now a smooth function, a straightforward computation yields:

d

dt

∫
ρε

(ϕ(ρε)x)2

2
dx

−
∫

(ρε)2ϕ′(ρε)ϕ(ρε)xuxx dx

−
∫

(2ρεϕ
′(ρε) + (ρε)2ϕ′′(ρε))(ρε)xϕ(ρε)xux dx

=
∫

ρεϕ(ρε)x(ϕ′(ρε)rε)x dx. (34)

In order to pass to the limit ε → 0, we note that

ρε − ρ −→ ρ− ρ in L∞(0, T ;H1(R)) strong,

which is enough to take the limit in the left hand side of (34) (note that it implies
the strong convergence in L∞(0, T ;L∞(R))). To show that the right hand side
goes to zero, we only need to show that rε goes to zero in L2(0, T ;H1(R)) strong
(and thus in L2(0, T ;L∞(R))). We write

∂xrε = 2[∂xρε∂xu− (∂xρ ∂xu)ε]
+ρε∂xxu− (ρ ∂xxu)ε

+∂xxρεu− (∂xxρ u)ε.

The first two terms converge to zero thanks to the strong convergence of ρε in
L∞(0, T ;H1(R)). For the last term, we note that

∂xρ ∈ L∞(0, T ;L2(R)) and u ∈ L2(0, T ;W 1,∞(R))

so the strong convergence to zero in L2((0, T )×R) follows from Lemma II.1 in
DiPerna-Lions [DL89]. �
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[Văı90] V. A. Văıgant. Nonhomogeneous boundary value problems for equa-
tions of a viscous heat-conducting gas. Dinamika Sploshn. Sredy,
(97):3–21, 212, 1990.

[YYZ01] Tong Yang, Zheng-an Yao, and Changjiang Zhu. Compressible
Navier-Stokes equations with density-dependent viscosity and vac-
uum. Comm. Partial Differential Equations, 26(5-6):965–981, 2001.

[YZ02] Tong Yang and Changjiang Zhu. Compressible Navier-Stokes equa-
tions with degenerate viscosity coefficient and vacuum. Comm.
Math. Phys., 230(2):329–363, 2002.

26


