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Summary. We investigate some properties of equilibrium liquid drops lying on a
horizontal plane, when small periodic perturbations arise in the properties of that
plane (due for example to chemical contamination or roughness). We prove the ex-
istence of a minimizer for the energy functional and study its regularity. Then, we
show that the free interface stays in a small neighborhood of a portion of sphere (cor-
responding to the equilibrium drop seating on a homogeneous plane), thus showing
the existence of sphere-like capillary drops.

1 Introduction

The energy of a drop described by the set E ⊂ Rn+1 and resting on a hori-
zontal plane (z = 0) is given by

σ

∫ ∫
z>0

|DϕE | − σ

∫
z=0

βϕE(x, 0)dx +
∫

z>0

ρΓϕEdx (1)

where ϕE is the characteristic function of E, σ is the surface tension, β is
the relative adhesion coefficient between the fluid and the solid, Γ is the
gravitational energy and ρ is the local density of the fluid. In this paper, we
neglect the effect of gravity and assume

Γ = 0.

The Euler-Lagrange equation associated to the minimization of (1) under
a volume constrain gives rise to a mean-curvature equation, together with
a contact angle condition (see [Fin86]). This last condition, known as the
Young-Laplace equation reads:

cos γ = β,
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where γ denotes the angle between the free surface of the drop ∂E and the
horizontal plane {z = 0} along the contact line ∂(E ∩ {z = 0}) (measured
within the fluid). The coefficient β is determined experimentally and depends
on the properties of the materials (solid and liquid). It is usually assumed to
be constant, but it is very sensitive to small perturbations in the properties of
solid plane (chemical contamination or roughness). These inhomogeneities are
responsible for many interesting phenomena such as contact angle hysteresis
and sticking drop on inclined surfaces (see [JdG84], [LJ92]). In [HM77], C. Huh
and S. G. Mason investigate the effect of roughness of the solid surface on the
equilibrium shape of the drop by solving approximately the Young-Laplace
equation, for some particular type of periodic roughness.

The purpose of this paper is to investigate the properties of the equilibrium
drop in the case of general periodic inhomogeneities, that is when the relative
adhesion coefficient satisfies

β = β(x/ε),

with y 7→ β(y) Zn-periodic.
The existence of equilibrium drops (minimizing the energy functional) will

be shown, within the class of sets of locally finite perimeter. Then, we will
investigate the properties of that minimizer, showing in particular that the
contact line has finite Hausdorff measure. Finally, we will prove that the equi-
librium drop converges uniformly to a spherical cap when the size of the
inhomogeneities (ε) goes to zero (homogenization limit).

Note that this implies the existence of “sphere-like” viscosity solutions to
the following free boundary problem (which is the Euler-Lagrange equation
for the minimization of (1) when ∂E is a graph):

div

(
Du√

1 + |Du|2

)
= κ in {u > 0}

Du√
1 + |Du|2

· ν = β(x/ε) on ∂{u > 0}.

In [CM], we investigate further consequences of those results, justifying
in particular the two phenomena that we mentioned earlier: Contact angle
hysteresis and sticking drop on an inclined plane (for non-vanishing gravity).

2 Notations and definitions

2.1 Sets of finite perimeter

We recall here the main facts about sets of finite perimeter and BV functions.
The standard reference for BV theory is Giusti [Giu84]. Let Ω be an open
subset of Rn+1; BV (Ω) denotes the set of all functions in L1(Ω) with bounded
variation:
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BV (Ω) =
{

f ∈ L1(Ω) :
∫

Ω

|Df | < +∞
}

.

where ∫
Ω

|Df | = sup
{∫

Ω

f(x)div g(x)dx : g ∈ [C1
0 (Ω)]n+1, |g| ≤ 1

}
.

If E is a Borel set, and Ω is an open set in Rn+1, we recall that the perimeter
of E in Ω is defined by

P (E,Ω) =
∫

Ω

|DϕE |.

A Caccioppoli set is a Borel set E that has locally finite perimeter (i.e.
P (E,B) < ∞ for every bounded open subset B of Ω).

Note that sets of finite perimeter are defined only up to sets of measure 0.
We shall henceforth normalize E (as in [Giu84]) so that

0 < |E ∩B(x, ρ)| < |B(x, ρ)| for all x ∈ ∂E and all ρ > 0.

Furthermore, it is well known that if the boundary ∂Ω of Ω is locally
Lipschitz, then each function f ∈ BV (Ω) has a trace f+ in L1(∂Ω) (see
Giusti [Giu84]).

From now on, we denote by Ω the upper half space:

Ω = Rn × (0,+∞),

and we denote by (x, z) an arbitrary point in Ω, with x ∈ Rn and z ∈ [0,+∞).

We denote by E (V ) the class of closed Caccioppoli sets in Ω with total
volume V > 0:

E (V ) =
{

E ⊂ Ω :
∫

Ω

|DϕE | < +∞, |E| = V

}
,

where |E| =
∫

Ω
ϕE demotes the Lebesgue measure of E. Since Caccioppoli

sets have a trace on ∂Ω = Rn×{z = 0}, we can define the following functional
for every E ∈ E (V ):

J (E) =
∫ ∫

z>0

|DϕE | −
∫

z=0

β(x)ϕE(x, 0)dx (2)

= P (E,Ω)−
∫

E∩{z=0}
β(x) dH n(x).

In this framework, equilibrium liquid drops are solutions of the minimization
problem:

J (E) = inf
F∈E (V )

J (F ) (3)
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2.2 Constant adhesion coefficient

When β = βo is constant, the existence of a minimizer was established by E.
Gonzalez [Gon76]. The corresponding functional reads

Jo(E) =
∫

Ω

|DϕE
| − βo

∫
ϕE(x, 0) dx. (4)

When βo = −1 (hydrophobic surface), the absolute minimizers are the
spheres of volume V in {z > 0}. In particular, the equilibrium drop does not
touch the support plane. On the contrary, if βo > −1, it is easy to see that,
though a sphere of volume V is still a local (degenerate) minimizer of the
functional J , the absolute minimizer must touch the solid support.

An important tool, when the adhesion coefficient is constant, is the
Schwartz symmetrization (see [Gon76]): For every E ∈ E (V ), the set

Es = {(x, z) ∈ Ω ; |x| < ρ(z)}, where ρ(z) =
(

ω−1
n

∫
ϕE(x, z)dx

) 1
n

(5)

is a Caccioppoli set with volume V satisfying

Jo(Es) ≤ Jo(E)

with equality if and only if E was already symmetric. This clearly implies that
any minimizer should have axial symmetry. Actually, it can be shown that the
minimizers are spherical caps; that is the intersection of a ball Bρo

(0, zo) in
Rn+1 with the upper-half space Ω. We denote by

B+
ρo

(zo) = Bρo(0, zo) ∩ {z > 0}

such a spherical cap.
Our main result is a stability/uniqueness result for the minimization prob-

lem with constant coefficient:

Theorem 1. Let E be such that

E ∈ E (V ), E lies in a bounded subset BR of Ω, (6)
∃δ > 0 s.t. Jo(E) ≤ Jo(F ) + δ ∀F ∈ E (V ). (7)

Then there exists a universal α > 0 and a constant C (depending on R) such
that

|E∆B+
ρo
| ≤ Cδα,

where B+
ρo

is such that |B+
ρo
| = V and the cosine of the contact angle is βo.

Note that we recover in particular the fact that the gravity-free equilibrium
drop is a constant mean-curvature surface satisfying the Young-Laplace con-
dition.
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If moreover E satisfies some non-degeneracy conditions, then Theorem 1
implies the uniform stability in the following sense: For any η > 0, there exists
δo such that if (7) holds with δ < δo, then

B+
(1−η)ρ ⊂ E ⊂ B+

(1+η)ρ.

In other words, the free surface ∂E ∩ {z > 0} stays between ∂B+
(1+η)ρ and

∂B+
(1−η)ρ.

2.3 Periodic adhesion coefficient

First of all, note that when the relative adhesion coefficient β depends on x,
the rearrangement (5) could increase the wetting energy∫

β(x)ϕE(x, 0)dx.

However, if β = β(x/ε) is periodic with small period ε, the wetting energy
should not increase by more that Cε after symmetrization. If we can prove
that fact, Theorem 1 will allow us to show that the minimizer associated with
a periodic adhesion coefficient is almost a spherical cap (in L1 and L∞).

We now make our framework precise: We consider the following energy
functional:

J (E) =
∫ ∫

z>0

|DϕE | −
∫

z=0

β(x/ε)ϕE(x, 0)dx. (8)

where β satisfies
−1 < β(x) < 1, for all x ∈ Rn

and
x 7→ β(x) periodic

We denote by 〈β〉 the average of β:

〈β〉 =
∫

[0,1]n
β(x) dx,

and by B+
ρo

(zo) = Bρo
(0, zo)∩{z > 0} the minimizer of the constant adhesion

coefficient functional

Jo(E) =
∫ ∫

z>0

|DϕE | −
∫

z=0

〈β〉ϕE(x, 0)dx.

Then we prove:

Theorem 2.
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(i) For all V and ε > 0, there exists E minimizer of J in E (V ). Moreover,
up to a translation, we can always assume that

E ⊂ {|x| ≤ RoV
1

n+1 , z ∈ [0, ToV
1

n+1 ]}

with Ro and To universal constants.
(ii) The contact line ∂(E ∩ {z = 0}) has finite (n− 1) Hausdorff measure in
Rn.
(iii) There exists a constant C such that if ε ≤ C(V )η(n+1)/α, then

B+
(1−η)ρo

⊂ E ⊂ B+
(1+η)ρo

.

In other words, the free surface ∂E ∩ {z > 0} lies between ∂B+
(1+η)ρo

and
∂B+

(1−η)ρo
for ε small enough.

The proof of (i) is very classical and will be developed in Sections 3 and 4; It
relies on the properties of BV functions and some monotonicity formulas for
the minimizers of J . The regularity result (ii) is established in Section 5 and
allows us to show that the energy of the minimizer only differs by ε from the
energy corresponding to the wetting coefficient 〈β〉. The last point will then
follow using Theorem 1, the proof of which is presented in Section 6.

3 Constrained minimizer

The lower semi-continuity of the functional (2) in the L1(Ω) topology is easy
to establish. Moreover, it is a classical result that bounded sets of BV are
pre-compact in L1

loc(Ω). Those two facts give the convergence of a minimizing
sequence to a minimizer if |Ω| < +∞. Since we are considering drops lying in
the upper half space, we can only prove the existence of minimizers if we first
restrict ourself to Caccioppoli sets lying in a bounded subset of Ω (constrained
minimizers); this is the object of this section. In Section 4, we will show that
this minimizer is actually an unconstrained minimizer

To guarantee the compactness of minimizing sequences, we first look for
minimizers that stay within a bounded subset of Rn+1. Let

ΓR,T = {(x, z) ∈ Rn+1 ; |x| ≤ R, z ∈ [0, T ]},

and
ER,T (V ) = {E ∈ E (V ) ; E ⊂ ΓR,T }.

We call constrained minimizer a set E ∈ ER,T (V ) satisfying

J (E) = min
F∈ER,T (V )

J (F ). (9)

We have the following proposition:
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Proposition 1. If R and T are such that there exists a ball B̃ with volume
V in ΓR,T , then there exists a minimizer ER,T for (9). Moreover, we have

P (ER,T ) ≤ CV
n

n+1 and H n(ER,T ∩ {z = 0}) ≤ CV
n

n+1 . (10)

The proof is very classical. The key is to establish the lower continuity of the
functional in a topology that makes minimizing sequences pre-compact. We
recall the following classical result for functions with bounded variation (see
[Giu84]):

Lemma 1. Let Ω ⊂ Rn be an open set, and (fj) a sequence of functions in
BV (Ω) which converges in L1

loc(Ω) to a function f . Then∫
Ω

|Df | ≤ lim inf
j→∞

∫
|Dfj |.

It follows:

Lemma 2. The functional J is lower continuous with respect to the L1 topol-
ogy: If (Ej) is a sequence of Caccioppoli sets such that Ej −→ E in L1 then

J (E) ≤ lim inf
j→∞

J (Ej)

Proof: Assume on the contrary that there exists δ > 0 such that

J (Ej) ≤ J (E)− δ,

or ∫ ∫
z>0

|DϕEj
| ≤

∫ ∫
z>0

|DϕE |+
∫

z=0

β(ϕE − ϕEj
)dx− δ

We recall the following estimate (see [Giu84]):∫
z=0

|ϕE − ϕEj
|dx ≤

∫ ∫
ΓR,t

|DϕE |+
∫ ∫

ΓR,t

|DϕEj
|

+C(t)
∫ ∫

z>0

|ϕE − ϕEj
|dxdz − δ.

The last term clearly goes to zero as j goes to infinity, so

lim inf
∫ ∫

Ω\ΓR,t

|DϕEj
| ≤

∫ ∫
z>0

|DϕE |+
∫ ∫

ΓR,t

|DϕE | − δ,

from which we derive a contradiction, taking into account the lower continuity
of the perimeter (Lemma 1), and letting t goes to zero. ut

Next, we recall the following compactness result for functions of bounded
variations:

Lemma 3. Let Ω be a bounded open set in Rn with Lipschitz boundary. Then
sets of functions uniformly bounded in BV -norm are relatively compact in
L1(Ω).
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The existence of a constrained minimizer is therefore a consequence of the
following lemma:

Lemma 4 (A priori estimates). If −1 < β < 1, then

J (E) ≥ 1− βmax

2

∫
z>0

|DϕE |+
1− βmax

2

∫
z=0

ϕEdx

for all E ∈ E (V ).

Note that Lemma 4 and the fact that B̃ lies in ΓR,T give (10), since

J (E) ≤ J (B̃) = µV
n

n+1

Proof: Note that if g(x) is a non-negative function, then∫
z>0

g(x)|DϕE | ≥
∫

z=0

g(x)ϕEdx.

Hence ∫
z>0

1 + β(x)
2

|DϕE | ≥
∫

z=0

1 + β(x)
2

ϕEdx

and therefore∫
z>0

(
1− 1− β(x)

2

)
|DϕE | ≥

∫
z=0

(
1− β(x)

2
+ β(x)

)
ϕEdx

or

J (E) ≥
∫

z>0

1− β(x)
2

|DϕE |+
∫

z=0

1− β(x)
2

ϕEdx

ut

Lemma 2, 3 and 4, together with the fact that ER,T (V ) 6= ∅ gives Propo-
sition 1.

We now have to prove that if R and T are large enough, ER,T is in fact
an unconstrained minimizer.

4 Unconstrained minimizer

In this section we prove the following result:

Proposition 2. There exists To and Ro such that if

R ≥ RoV
1

n+1 and T ≥ ToV
1

n+1 ,

then ER,T ∈ ERo,To
. In particular, ER,T is an unconstrained minimizer.

After rescaling, we only have to prove the result when |E| = V = 1.
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4.1 Bounded above.

First, we prove that for T large enough, the minimizer for J in ER,T (V ) is
actually a minimizer in ER(V ). This follows from the following result:

Proposition 3. There exists T1 such that for all T ≥ T1, there exists a min-
imizer E of JR,T with E ∈ ER,T1(V ).

The proof relies on a slight modification of an argument first presented by E.
Barozzi in [Bar83] (see also E. Barozzi and E. Gonzalez, [BG84]). The key
lemma is the following:

Lemma 5. There exists T1 ≥ To such that for T ≥ T1 and E minimizer of J
in ER,T (V ), there exists t, To ≤ t ≤ T1 with

H n(E ∩ {z = t}) = 0.

Let us recall here that the coarea formula gives

|E| =
∫ +∞

0

H n(E ∩ {z = t}) dt,

which in particular implies that

H n(E ∩ {z = t}) < ∞ a.e. t ∈ R.

Proof of Proposition 3: Let E be a minimizer of J in ER,T (V ), and let
t be as in Lemma 5. Then, the part of E that lies above z = t contribute to
the perimeter of E by at least

1
µn+1

|E ∩ {z > t}|
n

n+1 ,

where µn+1 is the isoperimetric constant. Thus, if we define

Eo =

E in {0 < z < t} \ B̃
∅ in {z > t}
E ∪ ρB̃ in B̃

,

with ρ such that |Eo| = |E|, we have

J (Eo) ≤ J (E) = min
F∈ER,T (V )

J (F ),

and Eo ∈ ER,T1(V ).

Taking T → ∞, the compactness property of the minimizing sequence
gives the existence of a set E ∈ ER,T1(V ) such that

J (E) = min
F∈ER(V )

J (F ).
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In other words, E is a vertically-unconstrained minimizer. ut

Proof of Lemma 5: Let t1, t2 and t3 be three positive numbers with

0 < t1 < t2 < t3 < T.

We denote
v1 = |E ∩ {t1 < z < t2}|
v2 = |E ∩ {t2 < z < t3}|

and
m = max

i=1,2,3
H n(E ∩ {z = ti}).

The isoperimetric inequality yields:

v
n

n+1
1 ≤ µ(2m + S1)

v
n

n+1
2 ≤ µ(2m + S2),

where Si is the surface of the lateral boundary:

Si =
∫
{ti<z<ti+1}

|DϕE | = P (E, {ti < z < ti+1})

In particular, we have:

v
n

n+1
1 + v

n
n+1
2 ≤ µ(4m + S) (11)

Let us now define the set F by

F =

E in ΓR,T \ {t1 < z < t3} \ B̃
∅ in {t1 < z < t3}
E ∪ ρB̃ in B̃

,

where we recall that B̃ is a ball with volume V lying in ΓR,T , and ρ is such
that |F | = |E|. Then,

J (F ) ≤ J (E)− S + 2m +
1
µ

(v1 + v2)
n

n+1 .

Since E is a minimizer, we deduce:

S ≤ 2m +
1
µ

(v1 + v2)
n

n+1 (12)

Thus, inequalities (11) and (12) implies

v
n

n+1
1 + v

n
n+1
2 − (v1 + v2)

n
n+1 ≤ Cm
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and therefore
min(v1, v2) ≤ Cm

n
n+1 (13)

Let ao = To and bo = T1. Given ak and bk, we define

vk = |E ∩ {ak < z < bk}|.

Then, for hk = bk−ak

4 it is possible to find t1 ∈ (ak, ak + hk), t2 ∈ (ak+bk

2 −
hk

2 , ak+bk

2 + hk

2 ) and t3 ∈ (bk − hk, bk) such that

H n(E ∩ {z = ti}) ≤
vk

hk
for i = 1, 2, 3

Setting {
vk

i = |E ∩ {ti < z < ti+1}|, i = 1, 2
vk+1 = min(vk

1 , vk
2 )

we choose

(ak+1, bk+1) =
{

(t1, t2) if vk
1 ≤ vk

2

(t2, t3) if vk
2 < vk

1

Let
mk = max

i=1,2,3
H n(E ∩ {z = ti}),

It follows from (13) that

vk+1 ≤ Cm
n+1

n

k

mk ≤
vk

hk

and bk+1 − ak+1 ≥ bk−ak

8 (and thus hk+1 ≥ hk

8 ). It follows that

mk+1 ≤
C

hk
m

n+1
n

k

and therefore, with the motation α = n
n+1 ,

mk ≤
C1+α+α2+···+αk

hk+1hα
k · · ·hαk

1

vαk+1

o

≤

(
Cα−k+···+1

hα−k

k+1hα−k+1

k · · ·h1

vo

)αk

.

Since hk ≥ bo−ao

8k , we deduce

mk ≤
(

C
vo

bo − ao

)αk

.

Thus, choosing T1 large enough so that
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C
vo

bo − ao
= C

vo

T1 − To
< 1

we have
mk −→ 0 as k →∞,

which conclude the proof of Lemma 5. ut

4.2 Monotonicity Formula

The proof of Proposition 2 now relies on some monotonicity formula that we
derive in this section. We start with a simple observation:

min
ER(Vo)

J ≤ min
ER(Vo+δV )

J ≤ min
ER(Vo)

J + V
− 1

n+1
o δV. (14)

To establish this fact, take E minimizer of J in ER(Vo). The vertical dilatation
of E:

Ẽt = {(x, z) ∈ Rn+1 ; (x, (1 + t)−1z) ∈ E},

satisfies

|Ẽt| = (1 + t)|E|, and P (Ẽt, Ω) ≤ (1 + t)P (E,Ω),

but the wetting energy is left unchanged. Thus

J (Ẽt) ≤ J (E) + tP (E,Ω).

So if we take t = δV/Vo, we get

Ẽt ∈ ER(Vo + δV ),

and

J (Ẽt) ≤ J (E) + tP (E,Ω)
≤ min

ER(Vo)
J + C(Vo)δV,

where C(Vo) = 1
Vo

P (E,Ω), thus giving the second inequality in (14) (using
the fact that P (E,Ω) ≤ |Vo|

n
n+1 ).

Similarly, if F is a minimizer of J in ER(V + δV ), then the set

F̃t = {(y, z) ∈ Rn+1 ; (y, (1 + t)z) ∈ E},

with t = δV/V satisfies

|F̃t| = (1 + t)−1|F | = V, and P (F̃t, Ω) ≤ P (F,Ω)

and therefore
J (F̃t) ≤ J (F ),
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proving (14).

The first monotonicity formula guarantee the non-degenerescence of E
near a point of the contact line. It will allow us to show that E lies in a
bounded set of Ω. Let Γr(xo) denote the cylinder

Γr(xo) = Bn
r (xo)× R = {(x, z) ∈ Rn+1 ; |x− xo| < r},

then we have the following:

Lemma 6. There exists c1, co > 0 such that for any minimizer E of J in
ER(V ), if xo lies in the projection of E onto {z = 0} (i.e. there exists zo such
that (xo, zo) ∈ E) then

|E ∩ Γr(xo)| > cor
n+1,

for all r such that |E ∩ Γr(xo)| ≤ c1|E|.

Proof: We denote

U(r) = |E ∩ Γr(xo)|,
S(r) = H n(E ∩ ∂Γr(xo) ∩ {z > 0})

Note that U ′(r) = S(r). We also introduce

A1(r) = P (E,Γr ∩ {z > 0})

the area of the free surface in Γr and

A2(r) =
∫

Bn
r (xo)

ϕE(x, 0)dx

the wetted area in Γr. Since E is bounded above, if x ∈ E ∩ {z = 0}, going
from the slice {z = 0} to the slice {z = T}, we must cross ∂E. Therefore we
have

A2 ≤ A1.

The isoperimetric inequality then gives:

V (r)n/(n+1) ≤ µ(2A1 + S(r)).

Consider now the set F = E \ Γr(xo). It satisfies:

J (F ) ≤ J (E)−A1 + βmaxA2 + S, and |F | = |E| − U(r),

and using (14), with |F | = Vo and δV = U , we get

J (E) = min
E (|E|)

J = min
E (Vo+U)

J ≤ J (F ) + C(|E|)U(r).

It follows that
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min(1, 1− βmax)A1 ≤ A1 − βmaxA2 ≤ S + C(|F |)U(r),

with C(F ) ≤ 1
Vo

P (E,Ω) ≤ C(|E|) as long as U ≤ |E|/2. Thus

U(r)n/(n+1) ≤ CU ′(r) + CU(r),

and if U ≤ C−(n+1)/2, we deduce

U(r)n/(n+1) ≤ CU ′(r),

and Gronwall’s Lemma gives the result. ut

Using similar arguments, we can also establish the following monotonicity
formula:

Lemma 7. Let (xo, zo) ∈ ∂E with zo > 0. There exists c, universal constant,
such that for all r ≤ zo we have

|Br(xo, zo) ∩ E| ≥ crn+1

|Br(xo, zo) \ E| ≥ crn+1

Proof. For r ≤ zo, we define

U1(r) = |Br(xo, zo) ∩ E| S1(r) = H n(∂Br(xo, zo) ∩ E)
U2(r) = |Br(xo, zo) \ E| S2(r) = H n(∂Br(xo, zo) \ E)

As in the previous proof, the minimality of E and the fact that Br lies entirely
in Ω for r < zo give (by estimating J (E \Br) and J (E ∪Br) respectively):

P (E,Br(xo, zo)) ≤ S1(r) + CU1(r)
P (E,Br(xo, zo)) ≤ S2(r),

which together with the isoperimetric formula yields

U1(r)
n

n+1 ≤ 2µ(S1(r) + CU1(r))
U2(r)

n
n+1 ≤ 2µS2(r),

Since U ′
i(r) = Si(r), Gronwall’s Lemma gives the result. ut

4.3 Unconstrained minimizers

We now complete the proof of Proposition 2: Let G denote the projection of
E onto {z = 0}. As a consequence of Lemma 6, there exists ρo = C|E|

1
n+1

such that if x ∈ G, then

|E ∩ Γρo
(x)| ≥ Cρn+1

o
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Consider the familly {Bρo
(x) |x ∈ G}. We can extract a subfamilly Bρo

(xj)
with finite overlapping still covering G. In particular,

|E| = |
⋃
j

E ∩ Γρo
(xj)|

≥ C(n)
∑

j

|E ∩ Γρo(xj)|

≥ C(n)
∑

j

ρn+1
o .

This implies that the subfamilly contains at most |E|/ρo
n+1 balls. Using the

periodicity of β, we deduce that G has at most radius

|E|
Cρn+1

o

ρo = C|E|
1

n+1 .

So the proof of Proposition 2 is complete. ut

5 Properties of the minimizers

In this section, we investigate the regularity of the minimizer E. The regularity
of the free surface ∂E ∩ Ω is a consequence of classical regularity results for
minimal surface. We then determine the Hausdorff dimension of the contact
line ∂E ∩ {z = 0}.

5.1 Regularity of the free surface.

Note that if E is a solution of (3), then E also minimizes the functional

F(F ) =
∫

Ω

|DϕF |+
∫

z=0

|ϕF − ϕE |dx

among the Caccioppoli subsets of Ω satisfying |F | = |E|. We can therefore
apply the classical regularity results for minimal surfaces (see E. Gonzalez et
al. [GMT83]):

Theorem 3. If E minimizes the functional J in E (V ), then ∂∗E ∩ Ω is an
analytic (n-1)-manifold and Hs[(∂E \ ∂∗E) ∩ Ω] = 0 for all s > n − 8. In
particular, if n + 1 ≤ 7, the singular set is empty.

5.2 Hausdorff measure of the contact line

We now establish the following proposition:
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Proposition 4. The contact line ∂(E ∩ {z = 0}) in Rn has finite n − 1
Hausdorff measure in Rn and

H n−1(∂(E ∩ {z = 0})) ≤ CV
n−1
n+1 .

The proof relies on the monotonicity formula and a couple of lemma. We start
with the following:

Lemma 8. Let xo be a point in Rn. There exists a critical δo > 0 such that if

B+
r (xo, 0) \ {z < δor} ⊂ E,

then
B+

r/2(xo, 0) ⊂ E

Proof. Let us renormalize and take r = 1. The proof relies on a De Giorgi
type argument: Consider the vertical cylinders

Γk = Bn
rk
× R, and Γ δ

k = Bn
rk
× (0, δ) with rk =

1
2

+ 2−k,

and consider
Vk = |Ec ∩ (Γ δ

k \ Γ δ
k+1)|

Then, between Γk and Γk+1, there is a cylinder Γr, such that

H n(∂Γr ∩ Ec ∩ {0 < z < δ}) ≤ 2kVk.

If we consider F = Ec ∪ Γ δ
r , we get

J (F )− J (E) ≤ −(1− βmax)P (E,Γ δ
r ) + H n(∂Γr ∩ Ec ∩ {0 < z < δ})

Since E is a minimizer, the previous quantity must be positive, that is

(1− βmax)P (E,Γ δ
r ) ≤ H n(∂Γr ∩ Ec ∩ {0 < z < δ}) ≤ 2kVk

By the isoperimetric inequality, we get

|Ec ∩ Γr| ≤ γ(2P (E,Γ δ
r ) + H n(∂Γr ∩ Ec ∩ {0 < z < δ}))

n+1
n

and thus
Vk+1 ≤ C(2kVk)

n+1
n .

Therefore, 2kVk −→ 0 if V0 is small enough (That is if δ is small enough). ut
This Lemma, together with the monotonicity formula (Lemma 7) allows

us to control the perimeter of E in the neighborhood on the contact line:

Corollary 1. If (xo, 0) ∈ ∂E, then for every r,

P (E,B+
r (xo, 0)) ≥ rn
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Proof. Let

V1 = |E ∩Br(xo)|, S1 = H n(E ∩ ∂Br(xo))
V2 = |Br(xo) \ E| S2 = H n(∂Br(xo) \ E).

By the previous lemma, either B+
r (xo, 0) \ {z < δor} ⊂ Ec, or there exists

(yo, zo) ∈ ∂E ∩Br/2(xo, 0), with zo ≥ δor/2. In the first case, we clearly have

V2(r) ≥ crn+1

and
V1(r) ∼ |E ∩ Γr(xo)| ≥ crn+1

by Lemma 6. In the second case Lemma 7 gives:

V1 ≥ |E ∩Bδoryo, zo| ≥ c(δor)n+1

and
V2 ≥ |Bδoryo, zo \ E| ≥ c(δor)n+1.

In either case, we deduce

Vi(r) ≥ crn+1 i = 1, 2. (15)

Moreover, the isoperimetric inequality gives

V
n

n+1
1 ≤ µn+1(S1 + P (E,Br(yo)))

V
n

n+1
2 ≤ µn+1(S2 + P (E,Br(yo)))

and
(2(V1 + V2))

n
n+1 = µn+12(S1 + S2).

It follows that

V
n

n+1
1 + V

n
n+1

2 − (V1 + V2)
n

n+1 ≤ µn+1P (E,B+
r (yo)),

which yields the result thanks to (15). ut
Proposition 4 will now be a consequence of the following Lemma:

Lemma 9. There exists a constant C such that

P (E, {0 < z < t}) ≤ CV
n−1
n+1 t

Proof of Proposition 4. Let ∪jBδ(xj) be a covering of ∂{E ∩ {z = 0}} with
finite overlapping. Then by Corollary 1, we have

P (E,Bδ(xj)) ≥ δn.

But thanks to the finite overlapping property,



18 L. A. Caffarelli and A. Mellet∑
P (E,Bδ(xj)) ≤ CP (E, {0 < z < δ}) ≤ CV

n−1
n+1 δ,

and therefore the number of balls is less than CV
n−1
n+1 δ1−n, hence the result.

ut

Proof of Lemma 9. Let F the set obtained by cutting E at level t:

F = {(x, z) ∈ Rn+1 ; (x, z + t) ∈ E} ∩ {z > 0}.

Then

|F | = |E| − {E ∩ {0 < z < t}}
≥ |E| − ωnRnt

and thanks to (14) we have

J (E) ≤ J (F ) + Ct.

Moreover

J (E)− J (F ) = P (E, {0 < z < t})−
∫

β(x/ε)
[
ϕE(x, 0)− ϕE(x, t)

]
dx,

but if x belongs to the symmetric difference of E ∩ {z = 0} and E ∩ {z = t},
then, going from the slice {z = 0} to the slice {z = t}, we must cross ∂E, and
therefore ∫

|ϕE(x, 0)− ϕE(x, t)|dx ≤ P (E, {0 < z < t}).

we deduce
min(1, 1− βmax)P (E, {0 < z < t}) ≤ CV

n−1
n+1 t

which completes the proof. ut

5.3 Sphere-like minimizers

We can now prove the following result:

Proposition 5. There exists a spherical cap B+
ρo

such that

|E∆B+
ρo
| ≤ C(V

n−1
n+1 ε)α.

Moreover, |B+
ρo
| = V and the cosine of the contact angle is 〈β〉.

Proof. We observe that∫
|〈β〉 − β(x/ε)|ϕE(x, 0)dx ≤

∑∫
Ci

(βmax − βmin)dx, (16)
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where we sum on all the cells Ci of εZn that intersect the contact line. Thanks
to the results of the previous section, the number of such cells cannot exceed
V

n−1
n+1 ε1−n. Since the area of each cell is εn, we deduce:

−
∫
〈β〉ϕE(x, 0)dx ≤ −

∫
β(x/ε)ϕE(x, 0)dx + CV

n−1
n+1 ε.

Thus, if we introduce the energy functionnal in which the adhesion coefficient
β(x/ε) is replaced by its average 〈β〉:

Jo(F ) = σ

∫ ∫
z>0

|DϕF | −
∫

z=0

〈β〉ϕF (x, 0) dx

we have
Jo(E) ≤ J (E) + CV

n−1
n+1 ε.

Moreover, if Eo denotes the minimizer of Jo, we also have

J (Eo) ≤ Jo(Eo) + CV
n−1
n+1 ε,

hence (using the fact that J (E) ≤ J (Eo))

Jo(E) ≤ Jo(Eo) + CV
n−1
n+1 ε, (17)

and so E satisfies (7) with δ = CV
n−1
n+1 ε, and Theorem 1 gives the proposition.

ut

5.4 Proof of Theorem 2-(iii)

We conclude this section by proving that this implies Theorem 2-(iii): It is a
consequence of the following nondegeneracy result:

Lemma 10. Let 0 < η < 1/2, then
(i) If there exists (x, z) ∈ E \B+

(1+η)ρ then

|E \B+
ρ | ≥ C(ηρ)n+1.

(ii) If there exists (x, z) ∈ B+
(1−η)ρ \ E then

|B+
ρ \ E| ≥ C(ηρ)n+1.

Proof of Theorem 2-(iii). Let 0 < η < 1/2. Theorem 1 yields that if δ =
CV

n−1
n+1 ε ≤ C(ρη)(n+1)/α then

|E \B+
ρ | < C(ηρ)n+1 and |B+

ρ \ E| < C(ηρ)n+1

Thus, for ε ≤ C(V )η(n+1)/α, Lemma 10 implies
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E \B+
(1+η)ρ = ∅, and B+

(1−η)ρ \ E = ∅,

which gives the last part of Theorem 2. ut

Proof of Lemma 10. We only give the detailed proof of (i). We have to
distinguish the case z ≥ ηρ and z ≤ ηρ. When z ≥ ηρ, the monotonicity
formula Lemma 7 yields

|Bηρ(x, z) ∩ E| ≥ C(ηρ)n+1,

and this Bηρ(x, z) ∩ B+
ρ = ∅, the result follows. When z ≥ ηρ, then the

monotonicity formula Lemma 6 gives

|Γηρ/2(x) ∩ E| ≥ C(ηρ)n+1

A simple geometric argument shows that if η < 1/2, then

Γηρ/2(x) ∩B+
ρ = ∅.

The Lemma follows ut

6 Stability

We now turn to the proof of Theorem 1. Throughout this section, we assume
that E is such that (6) and (7) hold.

6.1 Schwartz symmetrisation

The first step is to prove that E has almost axial symmetry. More precisely,
we prove:

Proposition 6. If E is such that (6) and (7) hold, then there exists a uni-
versal constant C and α > 0 such that

|E∆Es| ≤ Cδα.

Moreover, Es also satisfies (7).

For the sake of simplicity, we restrict ourself to the 3-dimensional case (n = 2).
We recall that Es denotes the Schwartz symmetrization of E:

Es = {(x, z) ; |x| ≤ ρE(z)}

with

ρE(z) =
(
π−1AE(z)

) 1
2 (18)

AE(z) =
∫

ϕE(x, z) dx = H n(Ez), (19)
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with the notation
Ft = F ∩ {z = t}.

We recall that Es is a Cacciopolli set satisfying |Es| = |E| (the schwartz
symmetrisation preserves the volume) and so (7) yields

Jo(Es) ≤ Jo(E) ≤ Jo(Es) + δ.

Since
βo

∫
ϕE(x, 0) dx = βo

∫
ϕEs(x, 0) dx,

we deduce
P (Es, Ω) ≤ P (E,Ω) ≤ P (Es, Ω) + δ, (20)

To deduce something on the symmetry of the drop, we establish the fol-
lowing proposition:

Proposition 7. Let F be a subset in Ω, such that F ⊂ ΓR,T , and let F ∗ be
the set obtained by replacing each horizontal slices of F by a disk with same
area and same center of gravity:

F ∗ = ∪{z ; ρ(z) 6=0}D(aF (z), ρF (z)),

with
aF (z) =

1
AF (z)

∫
xϕF (x, z) dx

Then there exists a constant C(R, T, P (F )) such that

F∆F ∗ ≤ C(P (F )− P (F s))1/3.

The proof relies on the following Bonnesen type inequality: If we define the
Fraenkel asymmetry of each horizontal slices Fz of F by

λF (z) =
Hn(Fz∆D(a(z), ρ(z)))

Hn(Fz)
, (21)

then there exists a constant µ1 such that

p(z) ≥ 2πρ(z)(1 + µ1λ(z)2). (22)

So we need to estimate the isoperimetric default p(z)− 2πρ(z), which will
be done using the following lemma, the proof of which is postponed to the
appendix:

Lemma 11. Let F be a set in Ω, let p(z) denotes the (n−1)-perimeter of the
slice Fz. Let ρ(z) be defined by (18), and let F s be the Schwartz symmetrization
of F . Then
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P (F ) ≥
∫ √

p2 + (2πρρ′)2 dz

and
P (F s) =

∫ √
(2πρ)2 + (2πρρ′)2 dz

Proof of Proposition 7. Lemma 11, implies

P (F )− P (F s) ≥
∫

(p− 2πρ)
2πρ√

p2 + (2πρρ′)2
dz.

For any borel set Ao in R+, we have∫
Ao

λ(z)Hn(Fz) dz =
∫

Ao

λ(z)πρ(z)2 dz

≤ C

(∫
Ao

λ(z)2ρ2 dz

)1/2(∫
Ao

ρ(z)2 dz

)1/2

≤ CRT 1/2

(∫
Ao

(p− 2πρ)ρ dz

)1/2

.

So if Ao is the set

Ao =
{

z ;
√

p2 + (2πρρ′)2 ≥ (P (F )− P (F s))−1/3
}

,

we have |Ao| ≤ P (F )(P (F )− P (F s))1/3, and∫
R\Ao

Hn(Fz∆D(a(z), ρ(z))) dz =
∫

R\Ao

λHn(Fz) dz

≤ CRT 1/2

(
P (F )− P (F s)

(P (F )− P (F s))1/3

)1/2

≤ CRT 1/2(P (F )− P (F s))1/3.

It follows that

|F∆F ∗| ≤ C(R2P (F ) + RT 1/2)(P (F )− P (F s))1/3

which gives Proposition 7. ut

Proof of Proposition 6. If we tried to apply Proposition 7 directly to E,
we would still have to determine how Es differs from E∗. This means that we
need to control the variations of the center of gravity a(z), which appears to
be a delicate task. Instead, we make use of a different approach:

Let H be an hyperplane in Rn+1, perpendicular to {z = 0}, and let H+

and H− be the two half space defined by H. By sliding H in the normal
direction, we can positioned H in such a way that it cuts the set E into two
sets E+ = E ∩H+ and E− = E ∩H− with same volume V/2.



Capillary Drops on an Inhomogeneous surface 23

If we denote E1 the set formed by adjoining to E+ its reflexion with respect
to H, and E2 the set form by adjoining to E− its reflexion with respect to H,
we obtain two set E1 and E2 such that

|E1| = |E2| = V , P (E1, Ω) + P (E2, Ω) = 2P (E,Ω).

Repeating the same operation with E1 and E2, with respect to an hyperplane
H ′ perpendicular to H and {z = 0}, we obtained four sets satisfying:

|E1| = |E2| = |E3| = |E4| = V ,
P (E1, Ω) + P (E2, Ω) + P (E3, Ω) + P (E4, Ω) = 4P (E,Ω).

Moreover, each of those set is symmetric with respect to the axis H ∩ H ′,
which we assume to be given by x = 0, and therefore

E∗
i = Es

i = ∪{z ; ρi(z) 6=0}D(0, ρi(z)) (23)

Now, if we denote

S(E) =
∫
{z=0}

ϕE(x, 0) dx,

we have
S(E1) + S(E2) + S(E3) + S(E4) = 4S(E),

and using (17), we deduce:

Jo(E1) + Jo(E2) + Jo(E3) + Jo(E4) = 4Jo(E) ≤ 4Jo(Eo) + δ,

for any Eo ∈ E (V ). If we choose Eo to be a minimizer for Jo, we also have
Jo(Eo) ≤ Jo(Ei) for each i = 1 · · · 4, and thus

Jo(Ei) ≤ Jo(Eo) + δ, i = 1 · · · 4.

But P (Es
i ) ≤ P (Ei) and S(Es

i ) = S(Ei); therefore

P (Ei)− P (Es
i ) ≤ δ, i = 1 · · · 4.

Proposition 7, together with (23) implies

|Ei∆Es
i | ≤ Cδ1/3 i = 1 · · · 4. (24)

In order to conclude, we now reconstruct the set

Ẽs = (Es
1∩H+∩H ′+)∪(Es

2∩H+∩H ′−)∪(Es
3∩H−∩H ′+)∪(Es

4∩H−∩H ′−),

We clearly have |E∆Ẽs| ≤ Cδ1/3, so we only have to check that
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|Es∆Ẽs| ≤ Cδ1/3.

To that purpose, we need to show that for a given z, the slices Es
i z have almost

the same radii for i = 1 · · · 4. This is a consequence of the strict convexity of
the square function: We note that the sum of the area of the slices Eiz is equal
to four times the area of Ez, and the same is true for the perimeter. In other
words: ∑

pi(z) = 4p(z)∑
ρ2

i = 4ρ2,

where pi and ρi denote respectively the perimeter of Eiz and the radius of Es
iz.

Thus, if we denote by µi = pi−2πρi the defect in the isoperimetric inequality
for the slice Eiz, we have:

2πρ ≤ p =
1
4

∑
pi ≤

1
4

∑
(2πρi + µi).

It follows that
1
4

∑
ρ2

i ≤
(

1
4

∑
ρi + µi

)2

by strict convexity of the square function, we deduce:∑
|ρi − ρj |2 ≤

∑
µ2

i +
∑

µiρj , i = 1 · · · 4.

Proceeding as in the proof of Proposition 7, we show that∫
Ao

µ2
i dz ≤

∫
Ao

µipi dz ≤ C(P (Ei)− P (Es
i ))2/3

with Ao = {z ;
√

p2 + (2πρρ′)2 ≥ (P (Ei)− P (Es
i ))−1/3}. We deduce that∫

R\Ao

|ρi − ρj |2dz ≤ Cδ2/3,

which implies that ∫
R\Ao

|ρ2
i − ρ2|dz ≤ Cδ1/3.

Since |Ao| ≤ Cδ1/3, the result follows. ut

6.2 Sphere-like minimizer

Proposition 6 shows that E has almost axial symmetry. We now complete the
proof of Theorem 1 by showing that a symmetric set satisfying (7) cannot
differ too much from a spherical cap:
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Proposition 8. There exists a ball Bρo
(xo, zo) in Rn+1 such that

|E∆(Bρo(xo, zo) ∩Ω)| ≤ Cδα.

Moreover, Bρo(xo, zo) ∩ Ω is the minimizer associated to the averaged func-
tional Jo and is fully determined by the conditions

|Bρo
∩Ω| = V, cos γ = 〈β〉.

Proof. For any given ball Bρ(x, z), we denote

B+
ρ = Bρ(x, z) ∩Ω and B−

ρ = Bρ(x, z) \Ω.

In view of the result of the previous section, we only have to show that

|Es∆B+
ρo
| ≤ Cδα (25)

where Es denotes the Schwartz symmetrisation of E. Again, after rescaling,
we assume that V = 1.

Let Σ denotes the wetting surface

Σ = Es ∩ {z = 0}.

Note that Σ is a disk, so there exists a ball Bρ(xo, zo) in Rn satisfying

B ∩ {z = 0} = Σ, |B ∩ {z > 0}| = V.

To establish inequality (25), we compare the perimeter of B and that of the
set obtained by adjoining B−

ρ = Bρ(xo, zo) ∩ {z < 0} to Es:

G = Es ∪B−
ρ .

We have∫
Rn+1

|DϕG| = Jo(Es) + H n(Σ)βo +
∫
{z<0}

|DϕB−ρ
|∫

Rn+1
|DϕBρ

| = Jo(B+
ρ ) + H n(Σ)βo +

∫
{z<0}

|DϕB−ρ
|

Moreover, (7) implies
Jo(E) ≤ Jo(B+

ρ ) + δ

and since Jo(Es) ≤ Jo(E) + δ, we deduce∫
Rn+1

|DϕG| ≤
∫

Rn+1
|DϕBρ

|+ δ

or
0 ≤ P (G, Rn+1)− P (Bρ, Rn+1) ≤ Cε (26)



26 L. A. Caffarelli and A. Mellet

which measure the quantitative loss in the isoperimetric inequality.
R.R. Hall proved in [Hal92] that if we introduce

λ(F ) = sup
a

|F ∩Bρ(a)|
|Bρ(a)|

with ρ such that |Bρ(a)| = |F |, then there exists a constant c such that

P (F ) ≥ P (Bρ)(1 + cλ(F )4).

Moreover, the exponent 4 can be replaced by 2 in the case of axially symmetric
domains (which is the case of G). Therefore, we have

λ(G) ≤ C

√
P (E)− P (Bρ)

P (Bρ)

Finally, since V = 1, the measure of the wetting surface H n(Σ) is bounded,
and so the radius ρ (and therefore P (Bρ)) is bounded. It follows that

λ(G) ≤ Cδ1/2

which gives (25).

To complete the proof of Proposition 8, it remains to see that

|B+
ρ ∆B+

ρo
| ≤ Cδ,

where B+
ρo

is a spherical cap with volume V such that the cosine of the contact
angle is βo. First, we notice that B+

ρ satisfies (7), and in particular

Jo(B+
ρ ) ≤ Jo(B+

ρo
) + Cδ. (27)

So the result will follow from a simple computation: If B+
r is a spherical cap

with radius r and contact angle γ (see Figure 1), the volume conditions yields

r =
(

3V

π(2 + cos γ)(cos γ − 1)2

)1/3

(28)

which implies

Jo(B+
r ) = J (cos γ) =

π1/3(3V )2/3

(cos γ + 2)2/3(cos γ − 1)1/3
(βo(1 + cos γ)− 2) .

We deduce:

J ′(cos γ) =
2π1/3(3V )2/3

(cos γ − 1)4/3(cos γ + 2)5/3
(cos γ − βo)
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+

γ

γ

r

Br

Fig. 1. B+
r

In particular, the only minimum is reached when cos γ = βo, and since

J ′′(βo) =
2π1/3(3V )2/3

(βo − 1)4/3(βo + 2)5/3
> 0

we deduce that for every βo ∈ (−1, 1), there exists a constant C such that

Jo(B+
r )− Jo(B+

ρo
) ≥ C| cos γ − βo|2

and so (27) gives that the contact angle γ of B+
ρ satisfies

| cos γ − βo|2 ≤ Cδ.

Next, we recall that βo < 1, and so either cos γ ≤ (1+βo)/2, in which case
(28) yields

|ρ− ρo| ≤ C(βo)| cos γ − βo|,

or cos γ ≥ (1 + βo)/2 and in particular | cos γ − βo| ≥ (1− βo)/2 which yields

δ ≥ C(βo).

In either case, using (27), we deduce the existence of constants C and α
such that

|B+
ρ ∆B+

ρo
| ≤ Cδα,

so the proof of Proposition 8 is complete. ut
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A Proof of Lemma 11.

Let n(x, z) be an extension of the unit outward normal vector to ∂Fz in Rn,
and take

Φ(x, z) = (u(z)n(x, z), v(z))

a test function, with u(z) and v(z) satisfying

|u(z)|2 + |v(z)|2 ≤ 1 for all z ∈ R.

Then∫
ϕF divx,zΦdx dz =

∫ ∫
ϕF divx(n(x)) dxu(z) dz +

∫ ∫
ϕF dx ∂zv(z)

= −
∫

p(z)u(z)−
∫

A′(z)v(z) dz.

Taking

u(z) =
p(z)√

p2 + A′2
and v(z) =

A′(z)√
p2 + A′2

,

we check that |u(z)|2 + |v(z)|2 ≤ 1 and therefore∫
|DϕF | ≥

∫ √
p2 + (2πρρ′)2 dz.

We now prove that there is in fact equality in the case of the Schwartz
symmetrisation F s: Let ϕ(x, z) be a test function, then:∫

ϕF s

∂ϕ

∂z
dx dz =

∫ ∫
D(0,ρ)

∂ϕ

∂z
dx dz

and if we denote ν(θ) = (cos θ, sin θ) the unit normal vector, we have

∂

∂z

∫
D(0,ρ)

ϕ(x, z) dx =
∂

∂z

∫ ρ

0

∫ 2π

0

ϕ(rν, z)r dθ dr

=
∫ ∫

D(0,ρ)

∂ϕ

∂z
dx

+
∫ 2π

0

ρ′ϕ(ρν, z)ρ dθ

Therefore ∫
ϕF s

∂ϕ

∂z
dx dz = −

∫ ∫ 2π

0

ρ(ρ′)ϕ(ρν, z) dθ dz

Next, for all φ ∈ (C(Rn+1))2 we have
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ϕEsdivxφdx dz =

∫ ∫
D(0,ρ)

divxφdx dz

= −
∫ ∫ 2π

0

φ(ρν, z) · νρ dθ dz

Thus, if Φ = (φ, ϕ) satisfies |Φ| ≤ 1, we have∫
ϕF sdivx,zΦdx dz = −

∫ ∫ 2π

0

ρ(ρ′)ϕ(ρν, z) dθ dz

−
∫ ∫ 2π

0

φ(ρν, z) · νρ dθ dz

= −
∫ ∫ 2π

0

(
ρ

ρρ′

)
·
(

φ · ν
ϕ

)
(ρν, z) dθ dz

and so ∣∣∣∣∫ ϕFs
divx,zΦdx dz

∣∣∣∣ ≤ ∫ 2π
√

ρ2 + (ρρ′)2 dz.

ut
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