
On representation varieties of Artin groups, projectivearrangements and the fundamental groups of smooth complexalgebraic varietiesMichael Kapovich� and John J. MillsonyNovember 17, 1997AbstractWe prove that for any a�ne variety S de�ned over Q there exist Shephard and Artingroups G such that a Zariski open subset U of S is biregular isomorphic to a Zariskiopen subset of the character variety X(G;PO(3)) = Hom(G;PO(3))==PO(3). Thesubset U contains all real points of S. As an application we construct new examples of�nitely-presented groups which are not fundamental groups of smooth complex algebraicvarieties.1 IntroductionThe goal of this paper is to understand representation varieties of Artin and Shephard groupsand thereby obtain information on Serre's problem of determining which �nitely-presentedgroups are fundamental groups of smooth complex (not necessarily compact) algebraicvarieties. The �rst examples of �nitely-presented groups which are not fundamental groupsof smooth complex algebraic varieties were given by J. Morgan [Mo1], [Mo2]. We �nd anew class of such examples which consists of certain Artin and Shephard groups. Since allArtin and Shephard groups have quadratically presented Malcev algebras, Morgan's testdoes not su�ce to distinguish Artin groups from fundamental groups of smooth complexalgebraic varieties or even from fundamental groups of compact K�ahler manifolds, see x16.Recently Arapura and Nori [AN] have proven that if the fundamental group � of a smoothcomplex algebraic variety is a solvable subgroup of GLn(Q) then � is virtually nilpotent.The examples constructed in our paper are not virtually solvable (see Remark 11.1).Our main results are the following theorems (Artin and Shephard groups are de�ned inx4 below):Theorem 1.1 There are in�nitely many distinct Artin groups that are not isomorphic tofundamental groups of smooth complex algebraic varieties.Theorem 1.2 For any a�ne variety S de�ned over Q there are Shephard and Artin groupsG such that a Zariski open subset U of S is biregular isomorphic to Zariski open subsets ofthe character varieties X(G;PO(3)) = Hom(G;PO(3))==PO(3). The subset U contains allreal points of S.�This research was partially supported by NSF grant DMS-96-26633 at University of Utah.yThis research was partially supported by NSF grant DMS-95-04193 at University of Maryland.1



The surprising thing about Theorem 1.1 is that Artin groups look very similar to thefundamental groups of smooth complex quasi-projective varieties. For example the freegroup on n letters is the fundamental group of C with n points removed and it is theArtin group associated with the graph with n vertices and no edges. On the other extreme,take a �nite complete graph where each edge has the label 2. The corresponding Artingroup is free Abelian, hence it is the fundamental group of the quasi-projective variety(C �)n. Yet another example is the braid group which is the Artin group associated withthe permutation group Sn. Theorem 1.1 is a consequence of Theorems 1.3, 1.5, 1.6, 1.8,1.12 and Corollary 1.7 below. The main body of this paper is concerned with a study ofthe following diagram1:Moduli spaces of arrangementsin the projective plane T�����! �����Geo Varietiesover QAlg????yCharacter varieties of repre-sentations of Shephard groupsinto PO(3) 
�����! Character varieties of repre-sentations of Artin groups intoPO(3)The arrow T is tautological, the arrow 
 is pull-back of homomorphisms. The arrowsGeo and Alg are de�ned below. In xx8.1, 8.4 we de�ne abstract arrangements A (essentiallybipartite graphs �) and their projective realizations. The space R(A) of projective realiza-tions of a given abstract arrangement has a canonical structure of a projective variety (i.e.projective scheme, see the preceding footnote) over Q . In fact we re�ne the notion of projec-tive arrangement to obtain the a�ne variety BR0(A) of �nite based realizations. The varietyBR0(A) injects as an open subvariety into the moduli space M(A) = BR(A)==PGL(3) ofthe arrangement A. Our version of Mnev's theorem [Mn] is thenTheorem 1.3 For any a�ne algebraic variety S de�ned over Q there is a marked basedabstract arrangement A such that the varieties BR0(A), S are isomorphic.Remark 1.4 It appears that Mnev's theorem [Mn] implies only that there is a stable home-omorphism between the sets of real points of BR0(A) and S. In addition Mnev gives onlyan outline of the proof. For our application to Serre's problem it is critical to prove anisomorphism on the scheme level. An analogue of theorem 1.3 is proven in [KM4].The key idea in proving Theorem 1.3 is to construct a cross-section Geo to T (over thecategory of a�ne varieties) by showing that one can do \algebra via geometry", that is onecan describe elementary algebraic operations over any commutative ring using projectivearrangements (see x9). This idea actually goes back to the work of von Staudt [St] (the \fun-damental theorem of the projective geometry"). The abstract arrangement A correspondingto S under Geo depends upon a choice of a�ne embedding ~S (i.e. de�ning equations) for Sand upon a choice of particular formulae describing these equations (including the insertionof parentheses). Moreover we obtain an isomorphism geo : ~S ! BR0(A) of a�ne schemesover Q . Thus if x 2 ~S then  = geo(x) is a point in BR0(A) where A is the abstractarrangement corresponding to S under Geo.1Here and in what follows we do not assume our varieties are reduced or irreducible, i.e. they are schemesof �nite type over the base �eld. 2



We next describe the arrow Alg. To an abstract arrangement A we associate a �nitely-presented (Shephard) group GsA. Then Alg(BR(A)) is the a�ne variety Hom(GsA; SO(3)).We have an associated morphism of the varietiesalg : BR(A;P20)! Hom(GsA; SO(3))which encodes the points and lines of an anisotropic projective realization (see x12 for thede�nition)  of the abstract arrangement A into a representation� = � : GsA �! PO(3; C )of the Shephard group GsA associated to the abstract arrangement A. A choice of a nonde-generate bilinear form on C 3 determines anisotropic points and lines in P2 (we choose thebilinear form so that all real points of P2 are anisotropic). Each anisotropic point P in P2determines the Cartan involution �P in PO(3; C ) around this point or the rotation �P oforder 3 having this point as the neutral �xed point (i.e. a �xed point where the di�erentialof the rotation has determinant 1). There are two such rotations of order 3, we choose oneof them. There is only one vertex v11 of � (corresponding to a point in A) for which wechoose an order 3 rotation �P around P =  (v11). Since the realization  is based (seex8.1),  (v11) = (1 : 1 : 1) 2 P2 for all  , and the choice of rotation is harmless.Similarly every anisotropic line L uniquely determines the reection �L in PO(3; C )which keeps L pointwise �xed. Finally one can encode the incidence relation betweenpoints and lines in P2 using algebra: two involutions generate the subgroup Z=2� Z=2 inPO(3; C ) i� the neutral �xed point of one belongs to the �xed line of the other, rotationsof orders 2 and 3 anticommute (i.e. ���� = 1) i� the neutral �xed point of the rotation oforder 3 belongs to the �xed line of the involution, etc. We get a morphismalg : based anisotropic arrangements �! representations of GsAalg :  7! �; �(gv) = � (v); v 2 V(�)� fv11g; �(gv11 ) = � (v11);� 2 Hom(GsA; PO(3));  2 BR(A)where V(�) is the set of vertices of bipartite graph � corresponding to A and gv denotesthe generator of Shephard group GsA that corresponds to the vertex v of �. In the followingtheorem we shall identify alg( ) with its projection to the character varietyX(GsA; PO(3)) := Hom(GsA; PO(3))==PO(3) :Theorem 1.5 The mapping alg : BR(A;P20)! X(GsA; PO(3)) is a biregular isomorphismonto a Zariski open (and closed) subvariety Hom+f (GsA; PO(3))==PO(3).The mapping alg has the following important property: Let S be an a�ne varietyde�ned over Q and O 2 S be a rational point. Then we can choose an arrangement A sothat O corresponds to a realization  0 under the mapping geo : S ! BR0(A) such that theimage of the representation alg( 0) is a �nite subgroup of PO(3; C ) with trivial centralizer.There is an Artin group GaA and a canonical epimorphism GaA ! GsA associated withthe Shephard group GsA. It remains to examine the morphism ! : Hom+f (GsA; PO(3)) !Hom(GaA; PO(3)) given by pull-back of homomorphisms.Theorem 1.6 Suppose that A is an admissible2 based arrangement. Then the restric-tion of the morphism ! to Hom+f (GsA; PO(3)) is an isomorphism onto a union of Zariskiconnected components.2See Section 8.1 for the de�nition. 3



Corollary 1.7 The character variety X(GaA; PO(3)) inherits all the singularities of thecharacter variety X(GsA; PO(3)) corresponding to points of BR(A;P20), whence (since allreal points of BR(A) are anisotropic) to all singularities of BR(A) at real points.Combining Corollary 1.7 with Theorem 1.3 we obtainTheorem 1.8 Let S be an a�ne algebraic variety de�ned over Q and O 2 S be a rationalpoint. Then there exists an admissible based arrangement A and a representation �0 :GaA ! PO(3;R) with �nite image such that the (analytic) germ (X(GaA; PO(3; C )); [�0 ]) isisomorphic to (S;O).Thus the singularities of representation varieties of Artin groups at representations with�nite image are at least as bad as germs of a�ne varieties de�ned over Q at rational points.As the other corollary we get:Corollary 1.9 Suppose that � � Rn is a compact real algebraic set de�ned over Q . Thenthere exist Artin group Ga and Shephard group Gs so that the a�ne real-algebraic set � isalgebraically3 isomorphic to a union of components in the a�ne real-algebraic setsHom(Ga; SO(3;R))=SO(3;R); Hom(Gs; SO(3;R))=SO(3;R)Since every smooth compact manifold is di�eomorphic to an a�ne real algebraic setde�ned over Q (see [AK]) we obtain:Corollary 1.10 For every smooth compact manifold M there exists an Artin group Ga sothat the manifold M is di�eomorphic to a union of components (with respect to the Zariskitopology) in Hom(Ga; SO(3;R))=SO(3;R); Hom(Gs; SO(3;R))=SO(3;R)On the other hand, if M is a (connected) smooth complex algebraic variety and G isan algebraic Lie group, then singularities of Hom(�1(M); G) at representations with �niteimage are severely limited by Theorem 1.12 below. We will need the followingDe�nition 1.11 Let X be a real or complex analytic space, x 2 X and G a Lie groupacting on X. We say that there is a local cross-section through x to the G-orbits if thereis a G-invariant open neighborhood U of x and a closed analytic subspace S � U such thatthe natural map G� S ! U is an isomorphism of analytic spaces.Theorem 1.12 Suppose M is a smooth connected complex algebraic variety, G is a reduc-tive algebraic Lie group and � : �1(M)! G is a representation with �nite image. Then thegerm (Hom(�1(M); G); �)is analytically isomorphic to a quasi-homogeneous cone with generators of weights 1 and 2and relations of weights 2; 3 and 4. In the case there is a local cross-section through � toAd(G)-orbits, then the same conclusion is valid for the quotient germ(Hom(�1(M); G)==G; [�]) :3An algebraic isomorphism between two real algebraic sets is a polynomial bijection which has polynomialinverse. 4



We present two proofs of this result: in x14 we deduce it from a theorem of R. Hain[Hai] and, since Hain's paper is still in preparation, in x15 we also deduce Theorem 1.12from results of J. Morgan [Mo2] on Sullivan's minimal models of smooth complex algebraicvarieties.Note that in the case when M is a compact smooth a compact K�ahler manifold then astronger conclusion may be drawn:Theorem 1.13 (W. Goldman, J. Millson [GM], C. Simpson [Si]). Suppose that M is acompact K�ahler manifold, G is an algebraic Lie group and � : �1(M)! G is a representationsuch that the Zariski closure of �(�1(M)) is a reductive subgroup of G. Then the germ(Hom(�1(M); G); �)is analytically isomorphic to a (quasi)-homogeneous cone with generators of weight 1 andrelations of weight 2 (i.e. a homogeneous quadratic cone). In the case there is a localcross-section through � to Ad(G)-orbits, then the same conclusion is valid for the quotientgerm (Hom(�1(M); G)==G; [�]) :Our proof of Theorem 1.12 is in a sense analogous to the proof of Theorem 1.13 in [GM],[Si]: we construct a di�erential graded Lie algebra Q� which is weakly equivalent to thealgebra of bundle-valued di�erential forms A�(M;adP ) on M so that Q� controls a germwhich is manifestly a quasi-homogeneous cone with the required weights.In Figure 16 we describe the graph of an Artin group GaA which admits a representationwith �nite image alg( 0) = �0 : GaA ! PO(3; C ) such that the germ (X(GaA; PO(3; C )); [�0 ])is isomorphic to the germ at 0 de�ned by x5 = 0. Thus Theorem 1.12 implies that the groupGaA is not the fundamental group of a smooth complex algebraic variety.Remark 1.14 Our convention for Coxeter graphs is di�erent from the standard conventionfor Dynkin diagrams. Namely, if two vertices are not connected by an edge it does notmean that corresponding generators commute. If on our diagram an edge has nolabel, we assume that the edge has the label 2. On the diagram for a Shephard group if avertex has no label this means that the corresponding generator has in�nite order.There is a local cross-section to the PO(3)-orbit through the representation �0 (thatappears in Theorem 1.8), hence we apply Theorem 1.12 and conclude that GaA is not thefundamental group of a smooth complex algebraic variety. To see that there are in�nitelymany distinct examples we may proceed as follows.Take the varieties Vp := fxp = 0g, p � 2 are prime numbers. Clearly Vp is not analyt-ically isomorphic to Vq for q 6= p. Thus for all p � 5 the varieties Vp are not analyticallyisomorphic to quasi-homogeneous varieties described in the Theorem 1.12. Hence the Artingroups GaAp corresponding to Vp are not fundamental groups of smooth complex algebraicvarieties. Note that among the groups GaAp we have in�nitely many ones which are notmutually isomorphic. The reason is that for any �nitely-generated group � the charactervariety X(�; PO(3; C )) has only �nite number of isolated singular points whose germs areisomorphic to one of Vp. This proves Theorem 1.1.In x17 we use the results of x16 to show that for every Artin group � and Lie group Gthe germ (Hom(�; G); �) is quadratic where � is the trivial representation.Acknowledgements. The �rst author is grateful to A. Vershik for a lecture on Mn�ev'sresult in 1989. The authors are grateful to E. Bierstone, J. Carlson, P. Deligne, R. Hain,H. King, J. Kollar, P. Millman, C. Simpson and D. Toledo for helpful conversations.5
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16 Malcev Lie algebras of Artin groups 6517 Representation varieties near the trivial representation 68Bibliography 692 Morphisms of analytic germsLet k be either R or C . Let V be a variety de�ned over the �eld k, o 2 V be a point anddOV;o the complete local ring. We denote byTmo (V ) = Homk�alg(dOV;o ;k[t]=tm+1)the m-th order Zariski tangent space at o 2 V and by �m;n : Tmo ! T no (V ) the naturalprojection (m � n � 1). Notice that each space Tmo has a distinguished point 0, zero.Then the �ber ��1m;m�1(0) has a natural structure of k-vector space, which we call thekernel of �m;m�1. We will think of elements in Tmo as formal curves of degree m which aretangent to V at o up to the order m. If (V; o), (W;p) are two analytic germs as above andf : (V; o)! (W;p) is a morphism of germs then it induces isomorphisms D(n)o f between thecorresponding towers of Zariski tangent spaces of �nite order so that we have commutativediagrams: Tmo (V ) �! Tmp (W )�mn??y �mn??yT no (V ) �! T np (W )Lemma 2.1 Suppose that f : (V; o) ! (W;p) is a morphism of analytic germs such thatthe morphisms D(m)o f : Tmo (V )! Tmp (W ) are bijective maps of k-points for all m. Then fis an isomorphism of germs.Proof: Let R := dOV;o and S := [OW;p be the complete local rings and let mR and mS be theirmaximal ideals. By Artin's theorem (see [GM, Theorem 3.1]) it su�ces to prove that theinduced map f� : S ! R is an isomorphism. We observe that D(n+1)o f induces a k-linearisomorphism from ker(�n+1;n : T n+1o (V ) ! T no (V )) to ker(�n+1;n : T n+1p (W ) ! T np (W )).It is clear that the above kernels are canonically isomorphic to the dual vector spaces(mn+1R =mn+2R )� and (mn+1S =mn+2S )�. Hence f� induces an isomorphismGrn(f�) : mnR=mn+1R �! mnS=mn+1Sand consequently the induced map Gr(f�) of the associated graded rings is an isomorphism.The Lemma follows from [AM, Lemma 10.23]. �Remark 2.2 Suppose that (Z; 0); (W; 0) are minimal germs of varieties in A n (i.e. knequals to the both Zariski tangent spaces T0(Z) and T0(W )), and these germs are analyt-ically isomorphic. Then there is an analytic di�eomorphism f : A n ! A n de�ned in aneighborhood of 0 whose restriction to Z induces an isomorphism of germs (Z; 0)! (W; 0).See for instance [Di, Proposition 3.16].Lemma 2.3 Suppose (X;x) and (Y; y) are k-analytic germs and f : (X;x) ! (Y; y) isa morphism such that dfx : Tx(X) ! Ty(Y ) is an isomorphism. Assume that (X;x) issmooth. Then f is an isomorphism. 7



Proof: By Artin's Theorem (see [GM, Theorem 3.1]) it su�ces to prove that the inducedmap of complete local rings f� : dOY;y ! [OX;x is an isomorphism. Let fy1; :::; yNg beelements of the maximal ideal mY;y such that their images in mY;y=m2Y;y form a k-basis. Putxi := f�yi, 1 � i � N . Then the images of x1; :::; xN in mX;x=m2X;x form a k-basis. ByNakayama's Lemma (see [AM, Proposition 2.8]) the elements y1; :::; yN (resp. x1; :::; xN )generate mY;y (resp. mX;x) as an ideal. Since (X;x) is smooth we can say more: by theformal inverse function theorem [OX;x �= k[[x1; :::; xN ]]In particular, the monomials of weight n in x1; :::; xN form a basis for the k-vector spacemnX;x=mn+1X;x .We claim that the monomials fmIg of weight n in y1; :::; yN form a basis for the k-vectorspace mnY;y=mn+1Y;y . First, fmIg generate the ideal mnY;y as an ideal. Hence given f 2 mnY;y,there exists ffIg � dOY;y such that f =PI fImI . But modulo mn+1Y;y we havef =XI fI(0)mIand we have proved that fmIg span the k-vector space mnY;y=mn+1Y;y . However the image offmIg under f� is a basis; hence an independent set. Therefore fmIg is also an independentset and the claim is proved. We have proved thatGr(f�) : Gr(dOY;y)! Gr([OX;x) = k[x1; :::; xN ]is an isomorphism. The lemma follows from Lemma 2.1. �As an easy corollary we get an alternative proof of the following theorem of A. Weil (seealso [LM, Theorem 2.6]).Theorem 2.4 Suppose that � is a �nitely generated group, k is either R or C , G is areductive algebraic group de�ned over k, � : � ! G is a representation. Assume thatH1(�; ad�) = 0, i.e. � is in�nitesimally rigid. Then the germ (Hom(�; G); �) is smooth andthe Ad(G)-orbit of � is open in Hom(�; G) (in the classical topology).Proof: Consider the inclusion morphism� : Ad(G)� ,! Hom(�; G)Then for each g 2 G the adjoint action of g induces an isomorphism0 = H1(�; ad�)! H1(�; ad(g) � ad�)Hence for each � 2 Ad(G)� the morphism � induces isomorphisms of Zariski tangent spacesT�Ad(G)�! Z1(�; ad�) = T�Hom(�; G)The variety Ad(G)� is smooth (it is isomorphic to the quotient of G by the centralizer of�(�) in G). Hence by Lemma 2.3, � is an open isomorphism onto its image. �Below we give another application. Suppose � is a �nitely generated group and G is areductive algebraic group de�ned over k. Suppose s 2 � is a central element. Let � be thesubgroup of � generated by s, � := �=� and � : �! � be the quotient map.Lemma 2.5 Suppose � 2 Hom(�; G) satis�es:8



1. �(s) = 1,2. H0(�; ad�) = 0.Then for each cocycle � 2 Z1(�; ad�) we have: �(s) = 0. Consequently �� : H1(�; ad�) !H1(�; ad�) is an isomorphism.Proof: From �(sg) = �(gs) we deduce�(g)�(s) � �(s) = �(s)�(g) � �(g) = 0Hence �(s) is �xed by �(�) whence by (1) we have �(s) = 0. Thus �� is onto. But �� isclearly injective. �Let �� be the representation of � induced by �. Then under the assumptions of Lemma2.5 we haveLemma 2.6 If Hom(�; G) is smooth at �� then Hom(�; G) is smooth at �.This lemma is an immediate consequence of Lemma 2.5 and Lemma 2.3.In the rest of this section we discuss the following question:Suppose that X 0 � X;Y 0 � Y are subvarieties in smooth quasi-projective varieties X;Yover k, � : X ! Y is a biregular isomorphism which carries X 0 bijectively to Y 0. Does �induce a biregular isomorphism X 0 ! Y 0 ?Clearly the answer is \yes" if both subvarieties X 0; Y 0 are reduced. The simple example:X = Y = C ; X 0 = fz2 = 0g; Y 0 = fz3 = 0g; � = idshows that in the nonreduced case we need some extra assumptions to get the positiveanswer. Our goal is to prove that the answer is again positive if we assume that � inducesan analytic isomorphism between X 0; Y 0 (Theorem 2.9).Let R be a ring, m is a maximal ideal in R, Rm is the localization of R at m and cRm isthe completion of R at m.Lemma 2.7 Suppose R is a Noetherian ring and f 2 R has the property that its image incRm is zero for all maximal ideals m. Then f = 0.Proof: By Krull's theorem [AM, Corollary 10.19], the induced map Rm ! cRm is an injection.Thus the image of f in Rm is zero for all maximal ideals m. Hence for every such m thereexists s =2 m with sf = 0. Therefore Ann(f) is contained in no maximal ideal. This impliesthat Ann(f) = R and f = 0. �Lemma 2.8 Let � : R! S be a ring homomorphism and I � R; J � S be ideals. Supposethat for every maximal ideal m in S with m � J we have�(I)
 cSm � J 
 cSmThen �(I) � J .
9



Proof: It su�ces to prove this when �(I) is replaced by an element f of S. Thus we assumethat the image of f in Sm is contained in J 
Sm for all maximal ideals m � S. We want toconclude that f 2 J . We further simplify the situation by dividing by J . We have an exactsequence 0! J ! S ! S=J ! 0We use [AM, Proposition 10.15] to conclude that\S=Jm=J �= S=J 
 cSmand [AM, Proposition 10.14] to concludeS=J 
 cSm �= cSm=(J 
 cSm)Replace f by its image in S=J . We �nd that the image of f in all completions of S=J atmaximal ideals of S=J is zero. Then f is zero by the Lemma 2.7. �Theorem 2.9 Suppose that X;Y are nonsingular (quasi-) projective varieties over k and� : X ! Y is an isomorphism. Let X 0 � X;Y 0 � Y are subvarieties so that: �0 := �jX0 :X 0 ! Y 0 is a bijection which is an analytic isomorphism. Then �0 : X 0 ! Y 0 is a biregularisomorphism.Proof: It is enough to check the assertion on open subsets, so we may as well assume thatX;Y are a�ne with coordinate rings S;R, a�ne subvarieties Y 0;X 0 are given by idealsI � R; J � S. Coordinate rings of Y 0;X 0 are R=I; S=J . Let m be a maximal ideal in R=I,then there is a maximal ideal M � R such that m =M=I. Thus\R=Im �= dRMI 
dRMLet � : R ! S be the isomorphism induced by � : X ! Y . Since �0 is an analyticisomorphism it induces isomorphisms of all completionsdRMI 
dRM �! \R�(M)J 
dRMThus the assertion of Theorem follows from Lemma 2.8. �3 Quasi-homogeneous singularitiesSuppose that we have a collection of polynomials F = (f1; :::; fm) in kn, we assume thatall these polynomials have trivial linear parts. The polynomial fj is said to be weightedhomogeneous if there is a collection of positive integers (weights) w1 > 0; :::; wn > 0 and anumber uj � 0 so that fj((x1tw1); :::; (xntwn)) = tujfj(x1; :::; xn)for all t 2 k. We will call the numbers wi the weights of generators and the numbers uj theweights of relations. Let Y denote the variety given by the system of equationsff1 = 0; ::::; fm = 0g(Note that the germ (Y; 0) is necessarily minimal.) We say that (Y; 0) is a quasi-homogeneousif we can choose generators f1; :::; fm for its de�ning ideal such that all the polynomials fjare weighted homogeneous with the same weights w1; :::; wn (we do not require uj to beequal for distinct j = 1; :::;m). In particular, if (Y; 0) is a quasi-homogeneous then (Y; 0) isinvariant under the k�-action on kn given by the weights w1; :::; wn.10



Remark 3.1 The variety Y given by a system of quasi-homogeneous equations ffj = 0g isalso called a quasi-homogeneous (or weighted homogeneous) cone.We now give an intrinsic characterization of quasi-homogeneous germs. Suppose that(Y; 0) is quasi-homogeneous . Let Sm � k[x1; :::; xn] be the subspace of polynomials whichare homogeneous of degree m (in the usual sense). We may decompose the subspace Sminto one dimensional eigenspaces under k� (since the multiplicative group of a �eld is areductive algebraic group). We obtain a bigradingk[x1; :::; xn] = �m;nSm;nwhere m is the degree and n is the weight of a polynomial under k� (f transforms to tnf).We obtain a new grading of k[x1; :::; xn] by weightk[x1; :::; xn] = �1n=1S0nwhere S0n is the subspace of polynomials of weight n. We let I be the ideal of Y . Then I isinvariant under the action of k� (since its generators are). We claimI = �1n=1I \ S0nThis follows by decomposing the action of k� in the �nite dimensional subspaces I \�Nm=1Sm. Thus if f 2 I we may writef = 1Xn=1 fn ; with fn 2 I \ S0n(the sum is of course �nite). Let R = k[Y ] = k[x1; ::::xn]=I. Then R is a graded ring,R = �1n=1Rn with R0 = k, Rn = S0n=(I \ S0n).We let bR be the completion of R at m where m is the ideal of zero, i.e. the idealgenerated by fx1; :::; xng. Hence bR �= k[[x1; :::; xn]]=bIwhere bI is the ideal generated by I in k[[x1; :::; xn]]. Hence bR = dOY;o. The ring bR is notgraded but it has a decreasing �ltration W � such that WN bR is the closure of �1n=NS0n.De�ne GrWn ( bR) =W n( bR)=W n+1( bR). The �ltration W � satis�es:(i) GrW0 = k.(ii) \1n=0W n = 0.(iii) dimkGrWn ( bR) <1 for all n.The inclusion R ,! bR induces an isomorphism R �= GrW ( bR) and we obtain:Lemma 3.2 (a) dOY;o admits a decreasing �ltration W � satisfying the properties (i)|(iii)above.(b) There is a monomorphism of �ltered rings GrW (dOY;o)! dOY;o with dense image, sodOY;o is the completion of GrW (dOY;o).(c) Conversely if dOY;o satis�es (a) and (b) then (Y; o) is quasi-homogeneous .Proof: It remains to prove (c). De�ne a k�-action on GrW dOY;o so that the elements in then-graded summand have weight n for the action of k�. Let m be the ideal of o. Choose abasis of eigenvectors under k� action on m=m2. Lift these vectors to eigenvectors f1; :::; fn11



of m. Then by a standard argument (see the proof of Lemma 2.3) if we set �(xi) = fi weobtain a surjection � : k[[x1; :::; xn]] �! dOY;owhich is k�-equivariant. Hence the induced map of graded rings�0 : k[x1; :::; xn] �! GrW dOY;ois also surjective. Let I be the kernel of �0 and let Y be the a�ne variety corresponding toI. �De�nition 3.3 We will say that a complete local ring R is quasi-homogeneous if itsatis�es (a) and (b) as in Lemma 3.2. We will say a germ (Y; o) is quasi-homogeneous ifthe complete local ring dOY;o is quasi-homogeneous .Here are several examples. The polynomial f(x; y; z) = x2+y5+z3 is quasi-homogeneouswith the weights of generators 15, 6 and 10 respectively. The weight of the relation is 30.Let g(x) = xn, then g is quasi-homogeneous for any weight w of the generator and theweight nw of the relation.Another example is the germ (Vp; 0) = (fxp = 0g; 0), p � 2 is prime. Let's prove thatthis germ is not quasi-homogeneous for any weights of relations < p. Indeed, suppose Yis a quasi-homogeneous cone whose germ at zero is isomorphic to (Vp; 0). Since we assumethat Y is minimal, hence Y � k. Polynomials de�ning Y must be monomials (since Yis quasi-homogeneous). Then the analytical germ (Y; 0) clearly can be de�ned by a singlemonomial equation xm = 0. Isomorphism of germs (Y; 0) ! (Vp; 0) induces isomorphismsof �nite order tangent spaces, hence m = p.In a certain sense generic germs are not quasi-homogeneous. This is discussed in detailsin [A1], [A2]. Here is one explanation, in the case of germs in the a�ne plane A 2 , one whichdoesn't require knowledge of singularity theory but is based on 3-dimensional topology.Suppose that Y � A 2 is a minimal a�ne curve (de�ned over C ), which is invariant underweighted action of C � on A 2 (with the weights w1, w2). Then the set of complex pointsY (C ) � C 2is invariant under the C � -action with the weights w1, w2. The corresponding weightedaction of S1 preserves a small sphere S3 around zero and the link YC \S3 = L. Thus S3�Ladmits a free S1-action, therefore S3�L is a Seifert manifold. Generic singularities do nothave such property, see [EN]. For convenience of the reader we describe a way to produceexamples of singularities which do not admit C � -action. Our discussion follows [EN]. Startwith a �nite \Piuseaux series"y = xq1=p1(a1 + xq2=p1p2(a2 + xq3=p1p2p3(:::(as�1 + asxqs=p1:::ps) : : : )where (pi; qi) are pairs of positive coprime integers. The numbers aj are nonzero integers.Then y; x satisfy some polynomial equation f(x; y) = 0 with integer coe�cients, the link Lof the singularity at zero is an iterated torus knot, the number s is the depth of iteration,numbers pi; qi describe cabling invariants. The complement S3�L is not a Seifert manifoldprovided that s � 2. The simplest example is when s = 2,y = xq1=p1(a1 + a2xq2=p1p2)12



For instance take a1 = a2 = 1, p1 = p2 = 2, q1 = q2 = 3 (the iterated trefoil knot), theny2 = x3 + x9 + 2x6 :Another example of a singularity which is not quasi-homogeneous isx2y2 + x5 + y5 = 0see [Di, Page 122].4 Coxeter, Shephard and Artin groupsLet � be a �nite graph where two vertices are connected by at most one edge, there are noloops (i.e. no vertex is connected by an edge to itself) and each edge e is assigned an integer�(e) � 2. We call � a labelled graph, let V(�) and E(�) denote the sets of vertices and edgesof �. When drawing � we will omit labels 2 from the edges (since in our examples mostof the labels are 2). Given � we construct two �nitely-presented groups corresponding toit. The �rst group Gc� is called the Coxeter group with the Coxeter graph �, the second isthe Artin group Ga�. The sets of generators for the both groups are fgv ; v 2 V(�)g. Therelations in Gc� are:g2v = 1; v 2 V(�); (gvgw)�(e) = 1; over all edges e = [v; w] 2 E(�)The relations in Ga� are:gvgwgvgw:::| {z }� multiples = gwgvgwgv:::| {z }� multiples ; � = �(e), over all edges e = [v; w] 2 E(�)We let �(v; w) = �([v; w]) if v; w are connected by the edge [v; w] and �(v; w) =1 if v; w arenot connected by any edge. For instance, if we have an edge [v; w] with the label 4, thenthe Artin relation is gvgwgvgw = gwgvgwgvNote that there is an obvious epimorphism Ga� �! Gc�. We call the groups Gc� and Ga�associated with each other. Artin groups above appear as generalizations of the Artin braidgroup. Each Coxeter group Gc� admits a canonical discrete faithful linear representationh : Gc� �! GL(n;R) � GL(n; C )where n is the number of vertices in �. Suppose that the Coxeter group Gc� is �nite, thenremove from C n the collection of �xed points of elements of h(Gc� � f1g) and denote theresulting complement X�. The group Gc� acts freely on X� and the quotient X�=Gc� is asmooth complex quasi-projective variety with the fundamental group Ga�, see [B] for details.Thus the Artin group associated to a �nite Coxeter group is the fundamental group of asmooth complex quasi-projective variety.The construction of Coxeter and Artin groups can be generalized as follows. Supposethat not only edges of �, but also its vertices vj have labels �j = �(vj) 2 f0; 2; 3; :::g. Thentake the presentation of the Artin group Ga� and add the relations:g�(v)v = 1; v 2 V(�)If �(v) = 2 for all vertices v then we get the Coxeter group, in general the resulting groupis called the Shephard group, they were introduced by Shephard in [Sh]. Again there is acanonical epimorphism Ga� ! Gs�. 13



Given a Coxeter, Artin or Shephard group G associated with the graph � we de�ne ver-tex subgroups Gv; v 2 V(�) and edge subgroups Ge = Gvw; e = [v; w] 2 E(�) as subgroupsgenerated by the elements: gv (in the case of the vertex subgroup) and gv; gw (in the caseof the edge subgroup).We will use the fact that several of Shephard groups are �nite. On Figure 1 we listgraphs of the �nite Shephard groups that we will use (see [C]).
42 p > 1
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p > 1Figure 1: Graphs for certain �nite Shephard groups.All Artin groups we consider in this paper are associated to generalized Cartan matricesN (see [Lo], [Le]) as follows.For each pair of distinct vertices vi; vj of � we have: �(vi; vj) 2 f2; 4; 6;1g. Enumeratevertices of � from 1 to m. The generalized Cartan matrix N is m �m matrix with thefollowing entries:� Diagonal entries nii of N are equal to 2.Now consider o�-diagonal entries nij; nji of N assuming i < j.� If �(vi; vj) = 2 we let nij = nji = 0.� If �(vi; vj) = 4 we let nij = �1; nji = �2.� If �(vi; vj) = 6 then nij = �1; nji = �3.� Finally, if �(vi; vj) =1 we let nij = nji = �2.Thus for i < j we have: nij � 0; nij � nji and �(vi; vj) = 2; 4; 6;1 i� nijnji = 0; 2; 3; 4.5 Local deformation theory of representationsLet k be a �eld of zero characteristic, de�ne the Artin local k-algebra �m as k[t]=tm+1. Takea �nitely-generated group � and an algebraic Lie group G over k, let G := G(k) be the setof k-points of G. Then the Lie group G(�m) splits as the semidirect product G0(�m)oG,where G0(�m) is the kernel of the natural projection pm : G(�m)! G induced by �m ! k,which is given by t 7! 0. The group G0(�m) is k-unipotent. We consider the germ(Hom(�;G); �)for a certain representation � : �! G. Then m-th order Zariski tangent spaceTm� (Hom(�;G)) is naturally isomorphic near � to the space of homomorphismsZ1(m)(�;G; �) := f� : �! G(�m)jpm � � = �g(see [GM]). If m = 1 then Z1(m)(�;G; �) �= Z1(�; ad � �), where ad is the adjoint action ofG on its Lie algebra. 14



We call � 2 Tm� (Hom(�;G)) a trivial deformation of � if there is an element h = h(�) 2G(�m) such that �(g) = h�(g)h�1 for all g 2 �. If m = 1 then the in�nitesimal deformation� is trivial i� the corresponding cocycle is a coboundary.Suppose that Gs is a Shephard group, Ga is the corresponding Artin group, q : Ga !Gs is the canonical projection. Let VL denote the set of vertices with nonzero labels inthe graph of Gs. Let G be a group of k-points of an algebraic Lie group. Consider ahomomorphism � : Gs ! G, let ~� = � � q. The projection q induces an injective morphismof the representation varietiesq� : Hom(Gs;G) �! Hom(Ga;G)and injective morphisms of the corresponding �nite order Zariski tangent spacesD(n)q� : T n� Hom(Gs;G) �! T n~� Hom(Ga;G)Lemma 5.1 Suppose that � 2 T n~� Hom(Ga;G) is an element whose restriction to each cyclicvertex subgroup Gav; v 2 VL is a trivial deformation of ~�jGav . Then � belongs to the imageof D(n)q�.Proof: Recall that we identify T n~� Hom(Ga;G) and T n� Hom(Gs;G) with spaces of certainrepresentations of Ga; Gs into G(�n). We have the exact sequence1 �! hhfg�(v)v ; v 2 VLgii �! Ga �! Gs �! 1Then � belongs to the image of D(n)q� if and only if �(g�(v)v ) = 1 for all v 2 VL. Weassume that the restriction of � to Gav is a trivial deformation, thus there is an elementh := hv 2 G(�n) such that �(gv) = h~�(gv)h�1. Since ~�(g�(v)v ) = 1 we conclude that�(g�(v)v ) = 1 as well. �Corollary 5.2 Suppose that H1(Gs; ad � �) = 0 (i.e. the representation � is in�nitesimallyrigid) and for each v 2 VL the restriction homomorphismResv : H1(Ga; ad � �)! H1(Gav; ad�)is zero. Then q� : (Hom(Gs;G); �) �! (Hom(Ga;G); ~�)is an analytic isomorphism of germs.Proof: Let Z(�) denote the centralizer of �(Gs) if G. Then the representation varietyHom(Gs;G) is smooth near � and is naturally isomorphic to the quotient G=Z(�), seeTheorem 2.4. Now the assertion follows from Lemmas 2.3, 5.1. �One example when the �rst condition of the corollary are satis�ed is the case when theShephard group Gs is �nite.6 Projective reectionsFix the bilinear form [ = x1y1+x2y2+x3y3 = (x1; x2; x3)�(y1; y2; y3) on the vector space V =C 3 , we shall also use the notation h�; �i for [. Let ' denote the quadratic form correspondingto [, let O(3; C ) be the group of automorphisms of [. Let � : V ! P(V ) denote the quotientmap and let CO(3; C ) := C � � O(3; C ) � End(V ). The inclusion CO(3; C ) ! End(V )induces an embedding PO(3; C ) ,! P(End V ). Let p : End(V ) ! P(End V ) be thequotient map. Note that PSL(2; C ) �= PO(3; C ) and SO(3;R) �= PO(3;R).15



6.1 The correspondence between projective reections and their �xedpointsIn this section we study projective properties of elements of order 2 in the group PO(3; C ).Consider an element A 2 O(3; C ) such that the projectivization p(A) is an involution actingon P2(C ). The �xed-point set of p(A) consists of two components: an isolated point a anda projective line l dual to a (with respect to [). Our goal is to describe the correspondencep(A)$ a in algebraic terms.Let R � SO(3; C ) be the a�ne subvariety of involutions. Note that �1 2 O(3; C )doesn't belong to R. We leave the proof of the following lemma to the reader.Lemma 6.1 PO(3; C ) acts transitively by conjugations on PR(C ) (the image of R(C ) inPO(3; C )).We now determine p(R), the Zariski closure of p(R) in P(End V ). We de�ne a morphism� : V ! End(V ) by �(v)(x) = '(v)x � 2hv; xiv. If v is an anisotropic vector then �(v) isa multiple of the reection through the hyperplane in V orthogonal to v. The reader willverify that � is an O(3)-equivariant morphism, i.e. �(gv) = g�(v)g�1, g 2 O(3); v 2 V , andthat � induces an equivariant embedding� : P(V ) �! P(End V )of smooth complex manifolds.Lemma 6.2 The image of � is contained in p(R).Proof: Let V0 be the complement in V of X = fv 2 V : '(v) = 0g. Then P0(V ) := �(V0) isZariski dense in P(V ). But also �(V0) � C �R. Hence P0(V ) � p(R). �We now consider P(V ) and P(End(V ) as varieties over Q .Lemma 6.3 The morphism � induces an isomorphism of varieties P(V ) �= p(R).Proof: Since � : �(V0) ! p(R) is equivariant it is easy to verify that it is onto (in fact abijection). Hence �(�(V0)) = p(R) and accordingly ��(V0) = p(R) = �(P(V )). But we haveseen that the morphism � : P(V )! �(P(V )) is an analytic isomorphism of smooth compactcomplex manifolds. Hence (by the GAGA-principle) it is an isomorphism of projectivevarieties. �Let N := p�1(p(R)) � p�1(p(R)). Then N may be described as follows. The bilinearform [ induces an isomorphism ~[ : V 
 V ! V � 
 V = End(V ). Then N = ~[(X 
X). Wenote that nv := ~[(v
 v) is then given by nv(x) = hv; xiv. Hence the set of real points N(R)is empty.Let Q � End(V ) be the a�ne cone de�ned by Q := p�1(p(R)). Hence N � Q. Wede�ne Q0 := Q�N . Then � induces a commutative diagramV �! Qx?? x??V0 �! Q0Remark 6.4 It can be shown that the cone Q � End(V ) is de�ned by the equations:1. XX> = X>X, 16



2. XX>Eij = EijXX>, 1 � i; j � 3,3. X2Eij = EijX2, 1 � i; j � 3.Here Eij is the matrix with 1 in the (ij)-th position and 0 elsewhere. The equations (1) and(2) de�ne the closure PO(3) � P(End V ). We will not need the explicit equations for p(R)in what follows.We let � : PQ! P2 be the inverse of � and abbreviate P(V0) to P20. Note that� : PR = PQ0 ! P20 assigns to each projective reection its neutral (isolated) �xed-point.Thus we have described the correspondence p(A) $ a algebraically. Note that we haveP2(R) = P20(R) and PQ(R) = PQ0(R). Let b[ : V ! V � be the isomorphism induced by [.De�ne (P20)_ by (P20)_ = b[(P20). Hence the space of anisotropic lines (P20)_ is the space oflines dual to the set of anisotropic points P20.6.2 Fixed pointsSuppose that g 2 PO(3; C ) is a nontrivial element. In this section we discuss the �xed-pointset for the action of g on P2(C ).De�nition 6.5 A �xed point x for the action of g on P2(C ) is called neutral if the deter-minant of the di�erential of g at x is equal to 1.There are two classes of nontrivial elements g 2 PO(3; C ): (a) g is unipotent, (b) g issemi-simple.Case (a). In this case g has a single �xed point a 2 P2, the point a belongs to aninvariant projective line L � P2. If we choose coordinates on L such that a = 1, then gacts on L � fag as a translation. The ag (L; a) is determined by the element g uniquely.On the other hand, the ag (L; a) uniquely determines the 1-parameter maximal unipotentsubgroup in PO(3) which contains g. Finally, the �xed point a of g uniquely determinesthe line L. It is easy to see that a is the neutral �xed point of g.The collection P � P2 of �xed points of all unipotent elements in PO(3; C ) is theprojectivization of the cone f�!x 2 C 3 : '(�!x ) = 0g.Case (b). Each semisimple element of O(3) is conjugate (in GL(3; C )) toA = 0@�� 0 00 ��1 00 0 11A :(up to �). We have two possible cases depending on whether or not A2 = 1. If A2 6= 1then A has three distinct complex eigenvectors, one of them �!f is �xed by A. Thus, in thecase the transformation p(A) has three �xed points on P2(C ), one of them f = p(�!f ) is theneutral �xed point. The maximal torus in PO(3; C ) containing p(A) is uniquely determinedby the (neutral) �xed point f in the both real and complex cases.Finally, consider the case A2 = 1. Then p(A) has one isolated �xed point f on P2(C )(which is neutral) and the �xed projective line disjoint from f .6.3 Commuting and anticommuting elementsSuppose that �; �0 are involutions in PO(3; C ), thus they have isolated �xed points �; �0and �xed projective lines �;�0 � P2(C ). 17



Lemma 6.6 The elements �; �0 commute if and only if either:(1) � = �0 and � = �0;� = �0, or (2) � 2 �0, �0 2 � and � intersects �0 orthogonally(with respect to the quadratic form ').Proof: Proof is obvious and is left to the reader. �Suppose that � is an involution in PO(3; C ) and � 2 PO(3; C ) � f1g. We say that theelements �; � anticommute if ���� = 1 (i.e. ����1 = ��1) and � 6= �.Lemma 6.7 The elements �; � anticommute i� the neutral �xed point � of � belongs tothe �xed projective line � of �.Proof: If �; � anticommute then � must belong to the �xed-point set of �. If � is theneutral point of � then � and � commute (and �2 6= 1) or � = � which contradicts ourassumptions. �Remark 6.8 Suppose that �; � are anticommuting elements as above. Then they satisfythe Artin relation ���� = ����(since both right- and left-hand side are equal to 1).7 Representation theory of elementary Artin and ShephardgroupsIn this section we consider mostly representation varieties of certain elementary Artin andShephard groups (their graphs have only two vertices and one edge). The section is rathertechnical, its material will be needed in Section 12.We will denote the action of elements  of SO(3) on vectors � in the Lie algebra so(3; C )by � := ad()�.7.1 Central quotients of elementary Artin and Shephard groupsLet Gan be an elementary Artin group: its graph �n has 2 vertices and one edge with theeven label n = 2m. We abbreviate gv to a and gw to b. Set c = ab; z := cm. Thenaz = a(ab)m = a(ba)m = (ab)ma = zaSimilarly bz = zb. This provesLemma 7.1 The element z is central in Gan.We set s := z2 and Gan := Gan=hsi. It is clear that we get a short exact sequence:1! Z2! Gan ! S := ha; b; cjab = c; cm = 1i �= Z � Zm! 1Put the label 2 on the vertex v of �n, let Gsn be the corresponding Shephard group. SetGsn := Gns =hz2iThen we get a short exact sequence:1! Z2! Gsn ! ha; b; cjab = c; cm = 1; a2 = 1i �= Z2 � Zm! 1Notice that the groups Gsn and Gan are virtually free, hence their 2-nd cohomologies vanish.Therefore both �G := Gsn and �G := Gan have smooth representation varieties Hom( �G;SO(3)).We begin with a partial classi�cation of real representations of G := Gan into SO(3).18



De�nition 7.2 A representation � : G! SO(3) is called dihedral if �(G) has an invari-ant line but no invariant nonzero vector. If �(G) �xes a nonzero vector and consequentlyis conjugate to a subgroup of SO(2), then we will say that � is toral. The reducible rep-resentations � split into two subclasses: (a) � is central if �(z) 6= 1, (b) � is noncentralotherwise.We will use the notations � := �(a); � := �(b);  := �(c) (as well as notations a; b; c; z; sfor the elements of Ga; Gs and S for the quotient of Gsn) throughout this section and sections7.2, 7.5, 7.6.Remark 7.3 Let � : Ga ! SO(3) be a real representation. Then � is central dihedral ifand only if both �; � have order 2 and their �xed subspaces in R3 are distinct.
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irreducibleFigure 2: The space of conjugacy classes of SO(3;R) representations of the group Gsn.Clearly each reducible real representation � is either dihedral or toral. Suppose that� : Gan ! SO(3) is a real representation which factors through �s : Gsn ! SO(3) and� 6= 1 (i.e has order 2). The following theorem is a direct application of Lemmas 2.5, 2.6,the above short exact sequences for the groups Gan; Gsn; Gan; Gsn and the associated Serre-Hohschild spectral sequences, we leave computations to the reader.Theorem 7.4 Consider a real representation � : Gan ! SO(3) which factors through Gsn.Then:1. �(s) = 1.2. Suppose that � : Gan ! SO(3) is central dihedral. ThenH1(Gan; ad�) = H1(Gsn; ad�s) = 0and hence the representations �; �s are in�nitesimally rigid.3. Suppose that � is either central toral, or noncentral dihedral or irreducible.Then H1(Gan; ad�) �= R2 ; H1(Gsn; ad�s) �= R19



and both germs (Hom(Gan; SO(3)); �); (Hom(Gsn; SO(3)); �s)are smooth. In the central toral case the embedding SO(2) ,! SO(3) induces isomor-phisms of germs (X(Gan; SO(2); [�]) ! (X(Gan; SO(3)); [�]);(X(Gsn; SO(2)); [�s])! (X(Gsn; SO(3)); [�s])4. Suppose that � is noncentral toral (and nontrivial). Then both germs(Hom(Gan; SO(3)); �); (Hom(Gsn; SO(3)); �s)are singular and H1(Gan; ad�) �= R3 ;H1(Gsn; ad�s) �= R2 :On Figure 2 we give a schematic picture of the space of conjugacy classes of SO(3;R)representations of the group Gsn such that � 6= 1, this space is a graph with two components.7.2 2-generated Abelian groupLet � be the graph with two vertices v; w connected by the edge e with the label 2(Figure 3). The corresponding Artin group Ga is free Abelian group on two generatorsa = gv ; b = gw. Take two anti-commuting involutions �; � 2 PO(3) and the homomorphism�0 : Ga ! PO(3; C ) given by �0 : a 7! �, �0 : b 7! �. Hence �0 is central dihedral. Thefollowing results are special cases of Theorem 7.4, however because of their importance wegive separate proofs.Lemma 7.5 The representation �0 is in�nitesimally rigid, i.e. H1(Ga; ad�0) = 0. Thepoint �0 2 Hom(Ga; PO(3; C )) is nonsingular.Proof: Ga = �1(T 2) (where T 2 is the 2-dimensional torus) and the group PO(3) is reductive,hence Poincare duality gives an isomorphism H0(Ga; ad�0) �= H2(Ga; ad�0). The centralizerof �0(Ga) in PO(3; C ) is trivial. Therefore,0 = H0(Ga; ad�0) �= H2(Ga; ad�0)Since the Euler characteristic of T 2 (and hence of Ga) equals zero, we conclude that 0 =H1(Ga; ad�0). The second assertion of Lemma follows from Theorem 2.4. �
v w

2Figure 3: Graph � for 2-generated free Abelian group.Note that the associated Coxeter group Gc is the �nite group Z=2�Z=2. Let �c0 denotethe homomorphism Gc ! PO(3; C ) corresponding to �0.Corollary 7.6 We have natural isomorphism between germs of representation varieties:(Hom(Gc; PO(3; C )); �c0 ) �= (Hom(Ga; PO(3; C )); �0)given by composing homomorphisms Gc ! PO(3; C ) with the projection Ga ! Gc.20



Proof: Follows from the Lemma 7.5 and Corollary 5.2. �Now we consider the global structure of Hom(Ga; PO(3)).Lemma 7.7 The variety Hom(Ga; PO(3; C )) is the disjoint union of two Zariski closedsubsets:(1) Toral representations S1 := f� : dimH0(Ga; ad�) � 1g;(2) The orbit S2 := Ad(PO(3; C ))�0 of the (unique up to conjugation) central dihedralrepresentation �0.Proof: First we verify that Hom(Ga; PO(3; C )) is the union S1 [ S2. Let A � PO(3; C ) bean abelian subgroup, �A is the Zariski closure of A. If A is in�nite then the abelian group �Ais the �nite extension of a 1-dimensional connected abelian Lie subgroup �A0 of PO(3; C ).Hence �A0 is either a maximal torus or a maximal unipotent subgroup of PO(3; C ): bothare maximal abelian subgroups in PO(3; C ), thus A � �A0. We apply this to the groupA = �(Ga) and conclude that in this case dimH0(Ga; ad�) = 1.Now we consider the case when A is �nite, hence, after conjugation, we get: A �SO(3;R). It follows from the classi�cation of �nite subgroups in SO(3;R) that A eitherhas an invariant vector in R3 � f0g (which again means that dimH0(Ga; ad�) � 1 ) orA �= Z=2 � Z=2 is generated by two involutions with orthogonal axes. Hence S1 [ S2 =Hom(Ga; PO(3; C )).It's clear that S1 and S2 are disjoint. Since the representation �0 is locally rigid itfollows that the orbit Ad(PO(3; C ))�0 is open (see Theorem 2.4). The representation �0is stable (see [JM, Theorem 1.1]) since �0(Ga) = Z=2� Z=2 is not contained in a properparabolic subgroup of PO(3; C ). Hence the orbit Ad(PO(3; C ))�0 is closed. �7.3 Finite elementary Shephard groupsTake � be any of the labelled graphs from the Figure 1. The corresponding Shephard groupG := Gs� is �nite, hence we haveProposition 7.8 All representations of G to PO(3) are in�nitesimally rigid andHom(G;PO(3)) is smooth.We will need a slight modi�cation of the above proposition. Let L be a reductivealgebraic group over R with the Lie algebra L, G be a �nitely-generated group such that allrepresentations � : G ! L(C ) are in�nitesimally rigid, pick elements a 2 G and � 2 L(C )and consider the subvarietyF = Fa;�(G;L) = f� : G! Lj�(a) = �g � Hom(G;L)Proposition 7.9 The subvariety F is smooth.Proof: The space Hom(G;L(C )) is the union of L(C )-orbits of representations �j ; 1 � j � m.If � 6= �(a) for all � 2 Hom(G;L(C )) then there is nothing to prove. Otherwise we canassume that � = �j(a), j 2 J � f1; :::;mg. Since the representations �j are locally rigid weget F (C ) �= [j2J ZL(C ) (h�i)=ZL(C ) (�j(G))21



where ZL(C ) (H) denotes the centralizer of a subgroup H � L(C ). It is enough to verifysmoothness of F at the representations �j ; j 2 J . Consider the Zariski tangent spaceT = T�jF (C ). It is naturally isomorphic tof� 2 Z1(G;Lad�j ) : �(a) = 0gHowever in�nitesimal rigidity of �j implies that4 T �= Lhai=LG, where G and hai act on Lvia the adjoint representation ad�j . Hence the dimension of F (C ) (as a complex manifold)at �j is equal to the dimension of its Zariski tangent space at �j, which implies that F issmooth at �j . �As a particular case we let a be one of the generators of G = Gs�, pick an element� 2 PO(3; C ) and consider the subvarietyFa;�(G;PO(3)) = f� : G! PO(3; C )j�(a) = �g � Hom(G;PO(3; C ))Corollary 7.10 Suppose that G = Gs� is a Shephard group as above, a is one of the gen-erators of G, � 2 PO(3; C ). Then the Fa;�(G;PO(3)) is smooth.7.4 The in�nite cyclic groupConsider the in�nite cyclic group G = hbi and a representation � : hbi ! PO(3; C ) so that�(b) = � is a nontrivial semisimple element with the neutral �xed point B.Note that the Lie algebra so(3; C ) has ad�(b)-invariant splitting V � � (V �)? whereV � consists of vectors �xed by ad�. The action of b on (V �)? has no nonzero invariantsubspaces. Thus H1(G; (V �)?) = 0 andH1(G; so(3; C )) �= H1(G;V �)�H1(G; (V �)?) �= H1(G;V �)This proves the followingProposition 7.11 Any cocycle � 2 Z1(G; ad�) has the form �(b) = � + �� � � where�� = � . The element � depends only on the cohomology class of �.Remark 7.12 The vector � measures the in�nitesimal change of the rotation angle of �and � measures the in�nitesimal motion of the �xed point B.7.5 An elementary Shephard group with the edge-label 4.Consider the graph with two vertices v; w connected by the edge with the label 4, we putthe label 2 on the vertex v, see Figure 4. The corresponding Shephard group Gs has thepresentation ha; bja2 = 1; (ab)2 = (ba)2i.
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42 Figure 4: Graph for a Shephard groupConsider a representation � : Gs ! SO(3;R); � : a 7! �; � : b 7! � , where we choose� to be an involution, � 6= 1 is an element such that �; � anticommute, i.e. ���� = 1 and4Recall that LH denotes the subspace of H-invariant vectors for a group H acting on L.22



� 6= �. Hence � is noncentral dihedral (note that we have �(z) = �(c2) = 1). We haveS �= Z=2 � Z=2. The �xed line V � of � is orthogonal to the �xed lines V � and V  of �and . Moreover V � 6= V  , hence so(3) = V � + V � + V  . Note also that � operates by�1 on V �. We already know that H1(Gs; ad�) is 1-dimensional (Theorem 7.4). Below isdescription of a canonical form for cocycles representing cohomology classes.Proposition 7.13 Let [�] 2 H1(G; ad�). Then [�] can be represented by a cocycle � satis-fying: �(a) = 0; �(b) = �; where � 2 V �The vector � depends only on the cohomology class of the restriction �jhbi.Proof: Since �(z) = 1 and �(Gs) has no nonzero �xed vectors we have �(c2) = 0 by Lemma2.5. Hence we may write �(c) = �� �. We may subtract o� a coboundary to arrange that�(a) = 0. If we replace � by ~� = ���v with v 2 V � then ~�(a) = 0 and ~�(c) = ��v�(��v).Hence we may choose � so that � 2 V � + V  . But if we replace � by � � w with w 2 V this does not change the cocycle �. Hence we may assume � 2 V �. Therefore �(c) = ���,� 2 V � and �(b) = �(ac) = ��(c) = �� � ��On the other hand, �� = �� (since � 2 V �) and �� = �� = �. We obtain �(b) = �2� =� 2 V � . This proves existence. Uniqueness of � follows from Proposition 7.11. �Remark 7.14 Note that the cocycles � described in the above Proposition are integrable,they correspond to deformations �t of the representation � which �x �(a) = � and changethe element �(b) = � within the corresponding 1-parameter subgroup in SO(3;R). For suchrepresentations the elements �(a); �t(b) anticommute.7.6 Elementary Artin group with the edge-label 6.Now consider 2-generated Artin group Ga given by the relation (ab)3 = (ba)3, see Figure 5.Take a representation � : Ga ! SO(3;R) which maps a and b to elements �; � so that:� �2 = 1; �2 6= 1,� the product  = �� has the order 3,� [�; �] 6= 1.In particular � is irreducible, hence, according to Theorem 7.4, H1(Ga; ad�) is 2-dimensional.
v w

6Figure 5: Graph for the Artin group GaLemma 7.15 Under the above conditions we have: so(3) = V � + V � + V  .
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Proof: Let A;B;C 2 P2 be the neutral �xed points of �; � and . Since the representationis irreducible all these points are distinct. Notice that � = �. Suppose that there is aprojective line L � P2 which contains all three �xed points. This line is invariant under �and (L) \ L = C since  has the order 3. Thus (B) =2 L and �(B) =2 L. This impliesthat �(B) = �(B) 6= B, which is a contradiction. �Lemma 7.16 Let � 2 Z1(Ga; ad�) be a cocycle such that �(a) = 0 and �(b) = � where�� = � . Then � = 0.Proof: We again use Lemma 2.5 to conclude that �(z) = �(c3) = 0. Hence �(c) = � � �.If � 6= 0 then � 6= 0. Using Lemma 7.15 and arguing as in the previous section we mayassume that � 2 V � . Thus �(c) = � � ��hence �(b) = �(ac) = �� � �We deduce �� = � + � 2 V � and 0 6= � 2 V �. Hence � carries V � into itself and � isdihedral, a contradiction. �7.7 A non-elementary Shephard group.Now suppose that we have a group Gs with the presentation:ha1; a2; a3; bja2j = 1; j = 1; 2; 3 ; (aib)2 = (bai)2; i = 1; 2; (a3b)3 = (ba3)3iSee the graph on the Figure 6.
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Figure 6: Graph for the nonelementary Shephard group GsConsider a representation �0 : Gs ! SO(3;R) so that1. �j := �0(aj) 6= 1, 1 � j � 3;2. The group generated by �3 and � := �0(b) has no �xed point in P2;3. the neutral �xed points of the elements �1; �2; � do not belong to a common projectiveline in P2; 24



4. (�3�)3 = 1.Take the subvariety W � Hom(G;PO(3; C )) which contains �0 and consists of homo-morphisms that are constant on the generators aj ; 1 � j � 3.Lemma 7.17 The point �0 is an isolated reduced point in W .Proof: Notice that our assumptions also imply that �2 6= 1 and [�3; �] 6= 1. Take a cocycle� 2 Z1(Gs; ad�0) which is tangent to the varietyW . Hence �(aj) = 0; 1 � j � 3. Accordingto Proposition 7.11 the value of � on the generator b equals � + b�� �. On the other hand,by Proposition 7.13 we can �nd coboundaries ��j 2 B1(haj ; bi; ad�0), j = 1; 2, so that:�j := � � ��j ; �j(aj) = 0; �j(b) = �Here and below haj ; bi denotes the subgroup of Gs generated by aj and b. Notice that �does not depend on j (see Proposition 7.13). The coboundary ��j is given by��j (x) = �0(x)�j � �j; x 2 haj ; bi; �j 2 so(3)Thus �j�j = �j; �(�1 � �2) = �1 � �2Note however that the condition (3) on the representation �0 implies that the (1-dimen-sional) �xed-point sets for the adjoint actions of �0(a1); �0(a2); �0(b) on so(3) are linearlyindependent. Therefore we conclude that �j = 0, j = 1; 2, thus �(b) = � and by Lemma7.16 we have �(b) = 0. Hence � = 0 and the Zariski tangent space to �0 in W is zero. �7.8 Nondegenerate representationsLet � be a labelled graph where all vertices and edges have nonzero even labels. Let Gsdenote the Shephard group corresponding to the graph �. The following technical de�nitionwill be used in Section 12.1.De�nition 7.18 A representation � : Gs ! PO(3; C ) will be called nondegenerate onthe edge e = [v; w] � � if the element �(gvgw) has the order� �(e) ; if �(v) = �(w) = 2�(e)=2 ; otherwiseA representation � will be called nondegenerate on the vertex v 2 V (�) if �(gv) 6= 1. Arepresentation � will be called nondegenerate if it is nondegenerate on each edge and eachvertex of �. Let Homf (Gs; PO(3; C )) denote the space of all nondegenerate representations.Proposition 7.19 Suppose that for each edge e � � the corresponding edge subgroup Ge �Gs is �nite. Then Homf (Gs; PO(3; C )) is Zariski open and closed in Hom(Gs; PO(3; C )).Proof: Since each Gv; Ge � Gs is �nite, Hom(Gv; PO(3; C )), Hom(Ge; PO(3; C )) are disjointunions of �nite numbers of PO(3; C )-orbits of rigid representations. Since each orbit isZariski open the proposition follows in the case Gs = Gv; Ge. LetRese : Hom(Gs; PO(3; C )) ! Hom(Ge; PO(3; C ));Resv : Hom(Gs; PO(3; C )) ! Hom(Gv; PO(3; C ))be the restriction morphisms. Then Homf (Gs; PO(3; C )) =\v2V(�)Res�1v Homf (Gv; PO(3; C )) \ \e2E(�)Res�1e Homf (Ge; PO(3; C ))and the proposition follows. � 25



8 Arrangements8.1 Abstract arrangementsAn abstract arrangement A is a disjoint union of two �nite sets A = P t L, with the setof \points" P = fv1 ; v2 ; � � � g and the set of \lines" L = (l1 ; l2 ; � � � ) together with theincidence relation � = �A � P � L; �(v; l) is interpreted to mean \the point v lies on theline l ". We may represent the arrangement A by a bipartite graph, � = �A: vertices of �are elements of A, two vertices are connected by an edge if and only if the correspondingelements of A are incident (� is also called the Hasse diagram of the arrangement A).
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Figure 7: Standard triangle.Convention 8.1 When drawing an arrangement we shall draw points as solid pointsand lines as lines. If �(v; l) then we shall draw the point v on the line l.An example of an abstract arrangement is the standard triangle T described on theFigure 7 (this is a triangle with the complete set of bisectors):T = fv00; vx; vy; v1;0; v01; lx; ly; l1; ld; ly1; lx1 : �(v00; lx); �(v01; ly); �(vx; lx); �(vx; l1);�(vy; ly); �(vy ; l1); �(v11; ld); �(v00; ld); �(v00; ly); �(v10; ly1); �(v01; lx1);�(v10; lx); �(vy ; ly1); �(vx; lx1); �(v11; ly1); �(v11; lx1)gHere is another example of arrangement (Figure 8), we take A = fv1; v2; l1; l2g with theincidence relation: �(v1; l1); �(v1; l2); �(v2; l1); �(v2; l2) :Suppose that (A; �A); (B; �B) are abstract arrangements, � : B ! A is a map whichsends points to points and lines to lines. We say that � is a morphism of arrangements if�B(x; y) implies �A(�(x); �(y)). A monomorphism of arrangements is an injective morphism.An isomorphism of arrangements is an invertible morphism. Suppose that � : B ! A isa monomorphism of arrangements, we call the image �(B) a subarrangement in A. Notethat if we work with the corresponding bipartite graphs �A;�B , then morphisms A ! Bare morphisms of these bipartite graphs which send points to points, lines to lines.26
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2Figure 8: Bigon.De�nition 8.2 An abstract based arrangement A is an arrangement together witha monomorphism of the standard triangle T ,! A that we call the canonical embedding.An arrangement A is called admissible if it satis�es the axiom:(A1) Every element of A is incident to at least two distinct elements. (I.e. everypoint belongs to at least two lines and every line contains at least two points.)5Suppose that A, B, C is a triple of arrangements and � : C ! A; : C ! B aremonomorphisms. We de�ne the �ber sum A �C B as follows. First we take the disjointunion of the arrangements A and B. Then identify in A [B the elements �(c);  (c) for allc 2 C. If A;B are based arrangements, C is as above, then their join A �C B is de�ned asA �TtC B, where T is the standard triangle with canonical embedding into A;B. If C isan arrangement which consists of a single point c and �(c) = a 2 A; (c) = b 2 B, then weuse the notation: A �a�b B := A �C B8.2 Fiber productsWe remind the reader of the de�nition of the �ber product of varieties (recall that ourvarieties are neither reduced nor irreducible). Let f : X ! Z; g : Y ! Z be morphisms.Then the �ber product X �Z Y of X and Y with respect to Z is a variety X �Z Y togetherwith canonical morphisms �X : X�ZY ! X and �Y : X�ZY ! Y such that the followingdiagram is commutative X �Z Y �! X# #Y �! ZThese data satisfy the property that given a variety W and a commutative diagramW �! X# #Y �! Zwe obtain a commutative diagramW �����! X& %??y X �Z Y ??y.Y �����! Z5This axiom will be needed only in the Section 12.3.27



The �ber product of quasi-projective (resp. projective) varieties is again a quasi-projective(resp. projective).We recall how to describe graphs of morphisms via �ber products. Suppose thatf : X = A n ! A m = Z is a morphism. Let g : Y = A m ! A m be the identity morphism.De�ne �f , graph of f , to be the subvariety�f = X �Y Y = f(x; y) 2 X � Y : f(x) = g(y) = ygClearly �X : �f ! X is an isomorphism of a�ne varieties.Let f : X = A n ! Y = A m be a morphism, �f its graph and �X : �f �= A n be thecanonical projection. We split A n as A n�k � A k , so x 2 A n is written asx = (x0; x00), x0 2 A n�k ; x00 2 A k . We obtain projections�0X : �f ! A n�k and �00X : �f ! A kde�ned by �0X(x) = x0 and �00X(x) = x00. Now let g : A s ! A n�k be a morphism with graph�g, let y 2 A s denote the variable in this space. Using the morphism�g ! A n�k (the second projection) and �0X : �f ! A n�k we form the �ber product�g �An�k �f :Now let h : A s � A k ! A m be the morphism given byh(y; x00) = f(g(y); x00)Lemma 8.3 The projection mapp : (A s � A n�k )� (A n�k � A k )� A m ! A s � A k � A m = Tgiven by p((y; x0); (u0; u00); z) = (y; u00; z)induces an isomorphism �g �An�k �f �! �h :Proof: Obvious. �Corollary 8.4 The morphism q : �g �An�k �f �! A s � A k(given by the restriction of p to �g �An�k �f and the the projection on the �rst and secondfactor of T ) is an isomorphism.Corollary 8.5 Suppose that k = 0, then the composition of q with the projection on the�rst factor r : �g �An�k �f �! A sis an isomorphism.
28



8.3 Intersection operations in the projective planeLet R be a commutative ring. We recall that the projective space P(M) for a projectiveR-module M of rank n is de�ned byP(M) := fV �M : V is a projective submodule of rank 1 such that M=V is projectivegWe then de�ne Pn(R) and Pn(R)_ byPn(R) := P(Rn+1); Pn(R)_ := P(HomR(Rn+1;R))We refer to [DG, x1.3.4, x1.3.9], to see that this is consistent with the usual de�nition ofPn. Note that an element � 2 P2(R)_ gives rise to a projective R-submodule L � R3 ofrank 2, L := ker(�), such that R3=L is projective. We will call both � and L lines in P2(R).We say that a point V 2 P(M) belongs to a line L (corresponding to � 2 P2(R)_) if andonly if V � L; equivalently �(V ) = 0. Suppose V 2 P2(R) corresponds to a rank one freesubmodule of R3 with the basis u = (x; y; z), then we will write V := [x : y : z] (these arethe homogeneous coordinates of V ).We now show how to do projective geometry over R. We de�ne two elements Span(u1),Span(u2) 2 P2(R) to be independent if the submoduleL = Spanfu1; u2g := Ru1 +Ru2is a projective summand of R3 of rank 2. In this case we will also say that u1; u2 areindependent.Lemma 8.6 If Span(u1) and Span(u2) are independent over R then Spanfu1; u2g is theunique projective summand of R3 containing u1 and u2.Proof: Let M denote Spanfu1; u2g. Suppose that N is a projective summand containingu1 and u2. Then N contains M . We want to prove that M = N . We may assume that Ris local whence M and N are free. Let fv1; v2g be a basis for N . Note that fu1; u2g is abasis for M . Write u1 = av1 + cv2; u2 = bv1 + dv2Let k be the residue �eld of R. The images of u1 and u2 in k3 are independent so the imageof ad� bc in k is nonzero. Hence ad� bc is a unit in R. �Thus two independent points U1 = Span(u1); U2 = Span(u2) 2 P2(R) belong to theunique line L = Spanfu1; u2g in P2(R). We shall use the notationL := U1 � U2for the line L through the points U1; U2. If u 2 R3 we let u_ denote the element of(R3)_ given by u_(v) := u � v = P3i=1 uivi. We have the following su�cient condition forindependence:Lemma 8.7 Suppose that there exists u3 = (x3; y3; z3) 2 R3 such that (u1 � u2) � u3 = 1.Then u1; u2 are independent, moreoverSpanfu1; u2g = ker(u1 � u2)_Proof: The determinant of the matrix with the columns u1; u2; u3 equals 1, whencefu1; u2; u3g is a basis forR3. Furthermore, suppose v = au1+bu2+cu3. Then (u1�u2)�v = c,so c = 0 if and only if v 2 ker(u1 � u2)_. �29



Remark 8.8 We observe that u3 as above always exists (and hence u1; u2 are independent)if one of the coordinates of u1 � u2 is a unit in R. In this case we will say that u1 and u2satisfy the cross-product test for independence.Lemma 8.9 If u1; u2 2 R3 above satisfy the cross-product test, then V1 = Span(u1),V2 = Span(u2) can be joined by the unique projective line V1 � V2 in P2(R) correspondingto (u1 � u2)_.Dual to the correspondence � : P2 � P2 ! (P2)_ there is an operation of intersectionof lines in P2. Namely, if �; � are lines in P2 such that �_; �_ are independent points inP2, then we let (� � �)_ = �_ � �_. Clearly � � � = ker(�) \ ker(�). Suppose Lj 2 (P2)_correspond to rank one free modules with bases �j = (�j ; �j ; j), (j = 1; 2). We will writeLj = [�j : �j : j ]. We haveLemma 8.10 If �1; �2 above satisfy the cross-product test then L1; L2 intersect in theunique point L1 � L2 with the homogeneous coordinates [�1 � �2].The incidence variety I � P2 � (P2)_ is given by the equations:f(p; l) 2 P2 � (P2)_jl(p) = 0gLet x; y; z be the coordinate functions on C 3 relative to the standard basis and �; �;  be thecoordinate functions on (C 3 )� relative to the basis dual to �!e1 ;�!e2 ;�!e3 . Then the homogeneouscoordinate ring of I is isomorphic to C [x; y; z;�; �; ](x�+ y� + z)For a general commutative ring R the set of R-points I(R) � P2(R) � P2(R)_ consists ofpairs (V; �) such that V � L = ker(�).Pick a point t 2 P2(C ). The relative incidence variety I(t) � (P2)_(C ) is given by theequation: fl 2 (P2)_(C )jl(t) = 0gBy dualizing we de�ne the relative incidence variety I(l) for any element l 2 (P2)_(C ). Wede�ne anisotropic incidence varieties I0, I0(t) and I0(l) by intersecting with P20 � (P20)_.The proof of the following lemma is a straightforward calculation and we leave it to thereader.Lemma 8.11 For any t and l the varieties I, I(t), I(l) are smooth.Notation 8.12 We will make the following convention about inhomogeneous coordinatesof points in P2: if q = [x : y : 1] then we let q := (x; y), if q = [0 : 1 : 0] we let q := (0;1),if q = [1 : 0 : 0] we let q := (1; 0) and if q = [1 : 1 : 0] we let q := (1;1).8.4 Projective arrangementsA geometric realization of the abstract arrangement A = P t L is a map� : P t L ! P2(C ) t (P2(C ))_which sends points to points and lines to lines. This map must satisfy the following condi-tion: �(v; l)) [�(v) 2 �(l) () �(l)_ � �(v) = 0 ] (1)The image of � is a projective arrangement in P2. Usually we shall denote lines of arrange-ments A by uncapitalized letters (l;m; etc.), and their images under geometric realizationsby the corresponding capital letters (L;M; etc.).30



Example 8.13 Consider the standard triangle T . De�ne a geometric realization �T of Tin P2 so that:�T (v00) = (0; 0); �T (vx) = (1; 0); �T (vy) = (0;1); �T (v11) = (1; 1)This realization uniquely extends to the rest of T . See Figure 9. We call �T the standardrealization of T .
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Figure 9: Standard realization of the standard triangle.The con�guration space of an abstract arrangement A is the space R(A;P2(C )) of allgeometric realizations of C. The space R(A;P2(C )) is the set of C -points of a projectivevariety R(A) de�ned over Z with equations determined by the condition (1).Remark 8.14 We will consider R(A) as a variety over Q .We now give a concrete description of the homogeneous coordinate ring of R(A) and thefunctor of points R(A)(�). Recall that x; y; z are the coordinate functions on C 3 relativeto the standard basis and �; �;  are the coordinate functions on (C 3)� relative to thebasis dual to �!e1 ;�!e2 ;�!e3 . Now let � be the (bipartite) graph corresponding to the abstractarrangement A. We let fv1; :::; vmg denote the vertices of � corresponding to the points ofA and let `1; :::; `n denote the vertices of � corresponding to the lines of A. Let P be thepolynomial ring de�ned byP := C [x1 ; y1; z1; :::; xm; ym; zm;�1; �1; 1; :::; �n; �n; n]If vi and `j are incident we impose the relation xi�j + yi�j + zij = 0. The resultingquotient of P is the homogeneous coordinate ring of R(A) which we denote C [R(A)]. Wenext describe the functor of pointsR ! R(A)(R) whereR is a commutative ring. It followsfrom the description of P2(R) in x8.3 that the set R(A)(R) is described byLemma 8.15 Let R be a commutative ring. Then an R-point  2 R(A)(R) consists of anassignment of a point Vi 2 P2(R) for each point-vertex vi 2 � and a line Lj 2 P2(R)_for each line-vertex `j 2 � such that �(vi; `j) implies Vi � Lj.31



A based realization is a realization � of a based abstract arrangement such that therestriction of � to the canonically embedded triangle T is the standard realization �T .The space of based realizations of an arrangement A will be denoted by BR(A;P2(C )).It also is the set of C -points of a projective variety BR(A) de�ned over Q . Suppose that Ais a based arrangement which has distinguished set of points � = fv1; :::; vng which lie on theline lx 2 T . We call A� a marked arrangement. A morphism of marked arrangements is amapping h : A� ! B� such that h(�) � �. Note that �ber sum of two marked arrangementshas the natural structure of a marked arrangement. If � = fv1; :::; vng is a marking we de�nethe space of �nite realizations asBR0(A�) = f 2 BR(A) :  (vj) =2 L1 ; vj 2 �gClearly BR0(A) is a quasi-projective subvariety in BR(A).Lemma 8.16 The maps R, BR and BR0 de�ne contravariant functors from the categoryof abstract arrangements, based abstract arrangements and marked arrangements to thecategory of projective and quasi-projective varieties de�ned over Q .Proof: Obvious. �We leave the description of the coordinate rings and functors of points of BR(C) andBR0(C) to the reader.Theorem 8.17 Under the functors R, BR and BR0 the operation of �ber sum of ar-rangements corresponds to the operation of �ber product of projective varieties and quasi-projective varieties.Proof: Note that �ber sum of arrangements �ts into the following commutative diagram ofmonomorphisms of arrangements: A% &C �! A�C B& %BWe shall consider the case of the functor BR, the other two cases are similar. It followsfrom the previous lemma that we have commutative diagram of morphisms of varieties:BR(A)% &BR(A�C B)�����! BR(C)& %BR(B)Thus, by the universal property we get a morphism� : BR(A�C B)! BR(A)�BR(C) BR(B)To see that � is an isomorphism we have only to check that it induces bijections of R-points,for each commutative ring R (see [EH, Proposition IV-2]). This is clear by Lemma 8.15.� 32



8.5 The moduli space of a projective arrangementIn this section we will construct a distinguished Mumford quotient R(A;P2(C ))==PGL(3; C )which we will refer to as the moduli space M(A;P2(C )) for a based arrangement A. Sincethe equations de�ning R(A;P2(C )) are invariant under PGL(3; C ) it su�ces to construct aMumford quotient of (P2)m � ((P2)_)nwhere m is the number of points in A and n is the number of lines. The Mumford quotientR(A;P2(C ))==PGL(3; C ) of R(A;P2(C )) will be then the subvariety of the quotient varietycut out by the incidence equations. In the next section we will identifyM(A;P2(C )) withBR(A;P2(C )) which will be seen to be a cross-section to the action of PGL(3; C ) on anopen subvariety of R(A;P2(C )).To construct a (weighted) Mumford quotient of (P2(C ))m � ((P2(C ))_)n we need aprojective embedding. Such an embedding corresponds to a choice of polarizing line bundleover each factor of the product. Since the group of isomorphism classes of line bundles onP2(C ) is in�nite cyclic this amounts to assigning a positive integer weight to each factor (i.e.to each vertex of the graph � of A). It will be more convenient to assign positive rationalweights to each vertex, then the integer weights are obtained by clearing the denominators.We choose a small positive rational number � and assign the weight 14 � � to each of thefour point vertices v00; vx; vy; v11 of T � A and the weight � to all other vertices. LetW := fv00; vx; vy; v11g.Note that all semistable con�gurations for the four-point case are stable, see below.Thus it is clear that if � is small enough the calculation of stable and semistable pointswill reduce to the corresponding calculation for PGL(3; C ) acting on the product of fourcopies of P2(C ) corresponding to the four point-vertices described above. This calculationis well-known (see [N]). A con�guration is stable (resp. semistable) i� less than (resp. nomore than) 1=3 of the total weight is concentrated on any point and less than 2=3 (resp. nomore than 2=3) of the total weight is concentrated on any line. We obtainLemma 8.18 All semistable con�gurations in R(A;P2(C )) are stable. A realization  :A ! P2(C ) t (P2(C ))_ is stable if and only if no three points of  (W ) lie on the sameprojective line in P2(C ).8.6 The moduli space of the standard triangleAs an important example we consider the con�guration space and moduli space of thestandard triangle T . First of all we note that R(T;P2(C )) is not irreducible. Here is thereason. Let �T 2 R(T;P2(C )) be the standard realization. Then all � 2 R(T;P2(C ))nearby are equivalent to �T under some projective transformation. However there are other(degenerate) realizations  d 2 R(T;P2(C )). Namely, send all the points of T to the origin(0; 0) 2 A 2 � P2. The triangle T has 6 lines, which can be sent to any 6 lines in P2 passingthrough (0; 0). This gives us a 6-parameter family F of degenerate realizations (which is theproduct of six copies of P1). After we mod out by the stabilizer of (0; 0) in PGL(3; C ) we get3-dimensional quotient. There are several other components which interpolate between �Tand  d, namely when three of the points v00; vx; vy; v11 belong to a common projective line.To remedy the problem we consider the Mumford quotient R(T;P2(C ))==PGL(3; C ) wherewe assign weights as in the previous section. Let Rss(T;P2(C )) be the set of semi-stablepoints with respect to these weights. Our de�nition of weights prevents images of any threeof the points v00; vx; vy; v11 from belonging to a common projective line in P2(C ). It is clearthat Rss(T;P2(C )) = PGL(3; C )f�T g. Thus we get33



Lemma 8.19 The weighted quotient M(T )(C ) = R(T;P2(C ))==PGL(3; C ) consists of asingle point which we can identify with the cross-section f�T g for the action of PGL(3; C )on Rss(T;P2(C )).Suppose now that A is a general based arrangement, we assign weights as above. ThenBR(A;P2(C )) � Rs(A;P2(C )) = Rss(A;P2(C )). By Lemma 8.18, BR(A;P2(C )) is a cross-section to the action of PGL(3; C ) on Rs(A;P2(C )). We obtainTheorem 8.20 The inclusion BR(A;P2) ,! R(A) induces an isomorphism BR(A;P2(C ))�=M(A;P2(C )) between projective varieties.8.7 Functional arrangementsSuppose that A is a based marked arrangement with the marking � = fv1; :::; vng (see x8.4).We call the points in � the input points and we shall assume that � \ T = ;. We alsosuppose that A has the second marking � = fw1; :::; wsg, which consists of distinct outputpoints fw1; :::; wsg. (The sets � and � can intersect and we allow � \ T 6= ;.) Recall that�(vi; lx); �(wj ; lx) for all i; j.De�ne the projection maps from the spaces of �nite realizations of � : BR0(A�)! A n ,� : BR0(A�)! Ps by � : � 7! (�(v1); :::; �(vn)) = (z1; :::; zn) 2 A n� : � 7! (�(w1); :::; �(ws)) = (y1; :::; ys) 2 Ps(here we identify Lx � f(1; 0)g with the a�ne line A ).De�nition 8.21 Suppose that arrangement A above satis�es the following axioms:� (A2) BR0(A�) � BR0(A�), i.e. (vj) =2 L1; 1 � j � n )  (wi) =2 L1; 1 � i � s :� (A3) The projection � is a biregular isomorphism of the variety BR0(A�) onto A n .Such arrangement A is called a functional arrangement on n variables.Each functional arrangement de�nes a vector-function f : A n ! A s byf(z1; :::; zn) := �(�) = (�(w1); :::; �(ws))where � 2 BR0(A�) corresponds to (z1; :::; zn) under the map �. We shall record this bywriting A = Af . It's easy to see that the vector-function f must be polynomial. Later onwe will give some examples of functional arrangements and we will prove that any m-tupleof polynomials in Z[x1; :::; xn] can be de�ned by a functional arrangement.Lemma 8.22 The space BR0(Af ) is biregular isomorphic to the graph �f of the functionf : A n ! A s .Proof: Indeed, the natural projection � : �f ! A n is an isomorphism. Compose it with theisomorphism ��1. The result is the required isomorphism �f ! BR0(Af ). �Now suppose that we are given two functional arrangements Af ; Ag which de�ne thefunctions f : A n ! A s and g : A t ! A . We denote the variables for f by (z1; :::; zn) and thevariables for g by (x1; :::; xt). We assume that they correspond to the input points p1; :::; pnand q1; :::; qt respectively. Denote by w0 2 Ag the output point. We would like to �nd anarrangement which de�nes the function h = f(g(x1; :::; xt); z2; :::; zn). To do this we let Ahbe the join Af �p1�w0 Ag. 34



Lemma 8.23 The arrangement Ah is functional and it de�nes the polynomial h which isthe above composition of the functions f; g.Proof: The Axiom (A3) for Ah follows from the Axiom (A2) for the arrangements Af ; Ag.The Axiom (A4) follows from the fact that BR0(Ah) is the �ber product of the varietiesBR0(Af ), BR0(Ag), see Lemma 8.3. �

lx

ly

ld

v
00

v
1

v
11

l∞

v
x

v
y

l1

v

l2 m1

w
1v

2

u

Figure 10: The abstract arrangement CM for the multiplication.9 Algebraic operations via arrangementsThe following theorem goes back to the work of von Staudt [St] in the middle of the lastcentury:Theorem 9.1 There are admissible functional arrangements CA; CM which de�ne the func-tions A(z1; z2) = z1 + z2 ; M(z1; z2) = z1 � z2Proof: Consider the functional arrangement CM described on Figure 10. We omitted fromthe �gure several (inessential) lines and points of the standard triangle T , however westill assume that CM is a based arrangement. A generic projective realization  of thisarrangement is described on Figure 11. Then the point of intersection of the line M1 := (m1) and the x-axis Lx is equal to ab. (See [H, page 45].) The addition is de�ned via theabstract arrangement on the Figure 12. Generic projective realization of CA is describedon the Figure 13. (See [H, page 44].) We will prove that CM is a functional arrangement,leaving similar case of CA to the reader. The Axioms (A1), (A2) are clearly satis�ed bythe arrangement CM , it is also easy to see that the morphism � : BR0(CM ) ! A 2 is abijection of complex points.The problem is to prove that � is invertible as a morphism. The example that thereader should keep in mind is the following. Consider the identity mapid : fx = 0 : x 2 C g �! fx2 = 0 : x 2 C gThen id is a morphism which is bijective on complex points but not invertible as a morphism.35
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Lemma 9.3 For the function D(x; y) = x� y there is a functional arrangement CD whichde�nes the function D(x; y).Proof: Take the arrangement CA corresponding to the function A(x; y) = x+ y and reversethe roles of input-output points v2; w1. �Remark 9.4 Suppose that A is one of the arrangements CA; CM ; CD and 2 BR(A;P2(C )) is a realization such that �( ) = (0; 0), hence  (w1) = 0,  (m1) = Ly.Then  (A) � �T (T )[f(1;1)g. (Recall that �T is the standard realization of the standardtriangle.) Let's verify this for CM . If  (v1) = 0;  (v2) = 0 then  (l1) =  (ly);  (l2) =  (ld).Hence  (u) = (1;1) and  (v) = (0; 0).

lx

ly

ld

v
00

w
1

v
01

v
1

v
dd

l∞

v
x

v
y

l1Figure 14: Projective arrangement for the constant function f�(z) = �1.Lemma 9.5 There exist admissible functional arrangements C+, C� which de�ne the con-stant functions f+(z) = 1; f�(z) = �1We describe con�guration only for the function f�, the other case is similar. Considerthe arrangement on the Figure 14, as usual we omit inessential lines and points form thestandard triangle. Let v1 be the input and w1 be the output points. Under each realization� of C� the image �(w1) is the point (�1; 0). The image of l1 is any vertical line in A 2 .We leave the proof of the fact that the arrangement C� is functional to the reader. �Corollary 9.6 For any polynomial f of n variables with integer coe�cients there exists afunctional arrangement Af which de�nes f .Proof: Any such polynomial is a composition of the constant functions f�, addition andmultiplication. Thus the assertion is a straightforward application of Lemmas 8.23, 9.1, 9.3,9.5 and Corollary 8.17. �Now we construct arrangements corresponding to polynomial vector-functions de�nedover Z.Lemma 9.7 Suppose that f1; :::; fm 2 Z[x1; :::; xn]. Then there exists an admissible abstractfunctional arrangement AF which de�nes the vector-function F = (f1; :::; fm).38



Proof: By Corollary 9.6 there exist functional arrangements Af1 ; :::; Afm which de�ne thepolynomials fj. Let vij be input point of Afi corresponding to the variable xj , 1 � i � m,1 � j � n. Let C = fv1; :::; vng be the arrangement which consists only of points vj andhas no lines, B = C [ T . For each point vj de�ne  i : vj 7! vi, this gives us embeddings i : C ,! Afi . Using these embeddings de�ne A = (Af1 �:::�Afm )�CB. In the arrangementA we have vij � vkj � vj , 1 � j; k � n, these are the input points of A. The output pointsw1; :::; wm correspond to the output points of the functional arrangements Af1 ; :::; Afm . Thenthe fact that A = AF is the functional arrangement de�ning the vector-function F followsby iterated application of Corollary 8.5 and Theorem 8.17 similarly to the proof of Lemma8.23. �10 Systems of polynomial equationsSuppose that we have a system of polynomial equations de�ned over Q :� = 8>>><>>>:f1(x) = 0f2(x) = 0...fm(x) = 0where x = (x1; :::; xn), xj 2 C . These equations determine an a�ne variety S � A n de�nedover Q . In the previous section we had constructed a functional arrangement A = AF whichde�nes the vector-function F = (f1; :::; fm). Recall that we have two projection morphisms� : BR0(A;P2)! A n ; � : BR0(A;P2)! A mso that the diagram of morphismsBR0(A;P2) � ! C n�?y F?yCm == Cmis commutative. By the Axiom (A3) the projection � is an isomorphism. Let T � A be thestandard triangle, w = v00 be its vertex. De�ne the new abstract arrangement A� as thejoin A� = (: : : ((A �w1�w T ) �w2�w T ) : : : �wm�w T )Then BR0(A�) is the �ber product f 2 BR0(A;P2) : �( ) = 0g and BR0(A�) �= fx 2A n : F (x) = 0g, where the isomorphism is given by the restriction � of � to BR0(A). Thuswe get the followingTheorem 10.1 For any system of polynomial equations with integer coe�cients� = 8>>><>>>:f1(x) = 0f2(x) = 0...fm(x) = 0there is an admissible based arrangement A = A� such that � : BR0(A;P2) �= S is anisomorphism of quasi-projective varieties over Q.39



De�nition 10.2 We call the morphism geo = ��1 geometrization: it allows us to doalgebra (i.e. solve the system � of algebraic equations) via geometry (i.e. by studying thespace of projective arrangements).Note that the arrangement A = A� is not uniquely determined by the a�ne varietyS but also by its a�ne embedding (the system of polynomial equations) and particularformulae used to describe these equations. For instance, the equation x5 = 0 can bedescribed as (x2 � x2) � x as well as x � (x2 � x2) and (x � (x2)) � x2, etc.Suppose that the system of equations � is de�ned over Z and has no constant terms.Then we can rewrite the system � so that it does not involve multiplicative constants, forinstance the equation 2x2y + (�1)z = 0 is equivalent tox2y + x2y � z = 0Then the only subarrangements involved in construction of the arrangement A� are ar-rangements for the multiplication, addition and subtraction (described in Lemmas 9.1, 9.3)and we do not need arrangements for the constant functions �1. Let  0 2 BR(A;P2) bethe realization corresponding to the point 0 2 S under the isomorphism � . Take any linel 2 A�T and a point v 2 A�T . Then by using Remark 9.4 and the fact that arrangementfor the composition of functions is a join of their arrangements (so it has no new points orlines) we conclude that the following holds:Lemma 10.3  0(l) is one of the lines Lx; Ly; Ld and  0(v) is one of the points(0; 0) ; (0;1) ; (1; 0) ; (1;1)for each line l 2 A� T and each point v 2 A� T .Suppose now that Q is an a�ne variety de�ned over Q and q 2 Q is a rational point.Then we can realize Q as an a�ne subvariety S � A N de�ned over Z so that q goes to zero.Hence we get the followingCorollary 10.4 For any a�ne variety Q de�ned over Q and a rational point q 2 Q thereexists an abstract admissible arrangement A and an isomorphism6 geo : Q ! BR0(A) sothat the point q corresponds to a realization  so that  (l) is one of the lines Lx; Ly; Ldand  (v) is one of the points(0; 0) ; (0;1) ; (1; 0) ; (1;1)for each line l 2 A� T and each point v 2 A� T .11 Groups corresponding to abstract arrangementsWe will de�ne several classes of groups corresponding to abstract arrangements. Let � = �Abe the bipartite graph corresponding to an abstract arrangement A. We �rst construct theCoxeter group GcA without assuming that A is a based arrangement: we assign the label 2to all edges of � and let GcA := Gc�.From now on we suppose that A is a based arrangement. We start by identifying thepoint v00 with the line l1, the point vx with the line ly and the point vy with the line lx inthe standard triangle T . We also introduce the new edges[v10; v00]; [v01; v00]; [v11; v00]6of varieties de�ned over Q 40



(Where v10; v00; v11; v01 are again points in the standard triangle T .) We will use the notation� = �A for the resulting graph. Put the following labels on the edges of �:1) We assign the label 4 to the edges [v10; v00]; [v01; v00] and all the edges which containv11 as a vertex (with the exception of [v11; v00]). We put the label 6 on the edge [v11; v00].2) We assign the label 2 to the rest of the edges.Let � := � � [v11; v00]. Now we have labelled graphs and we use the procedure from theSection 4 to construct:(a) The Artin group GaA := Ga� .(b) We assign the label 3 to the vertex v11 and labels 2 to the rest of the vertices. Thenwe get the Shephard group GsA := Gs� .We will denote generators of the above groups gv ; gl, where v; l are elements of A (corre-sponding to vertices of �).Remark 11.1 Suppose that A is a based arrangement. Then the group GsA admit an epi-morphism onto a free product of at least 3 copies of Z=2 and the group GaA has an epimor-phism onto a free group of rank r � 3, where r+3 is the number of lines in A. Let's checkthis for G = GaA. Construct a new arrangement B by removing all the points in A (and thelines lx; ly; l1). Then GsB �= Z� ::: �Z is the r-fold free product, where r � 3 is the numberof lines in A � flx; ly; l1g. It is clear that we have an epimorphism GaA ! GaB. Hence allthe groups GaA; GsA are not virtually solvable.As an illustration we describe an example of a labelled graph corresponding to the basedfunctional arrangement de�ning the function x 7! x2, see the Figure 15.12 Representations associated with projective arrangementsThis section is in a sense the heart of the paper. We start with an outline of the main ideabehind it7. A projective arrangement  is anisotropic of  (v) 2 P20;  (l) 2 (P20)_, all pointsand lines v; l 2 A. The anisotropic condition de�nes Zariski open subsets of the previousarrangement varieties to be denoted R(A; P20); BR(A;P20) and BR0(A;P20) respectively.We now describe the morphismalg : BR(A;P20)! Hom(GsA; SO(3))As we already saw in the Section 6, the correspondence between involutions in P2 and theirisolated �xed points is a biregular isomorphism between PQ0 and P20: any point x in P20uniquely determines the \Cartan involution" around this point, i.e. the involution such thatx is the isolated �xed point. The point x = (1; 1) in A 2 � P2 also determines (uniquely upto inversion) the rotation of the order 3 around x, so that x is the neutral �xed point. (Wewill choose one of these rotations once and for all.) Similarly any line L 2 (P20)_ uniquelydetermines the reection which keeps L pointwise �xed. Finally we encode the incidencerelation between points and lines in P2 using algebra: two involutions generate the subgroupZ=2� Z=2 in PO(3) i� the isolated �xed point of one belongs to the �xed line of another,rotations of the orders 2 and 3 anticommute i� the neutral �xed point of the rotation of theorder 3 belongs to the �xed line of the involution, etc. Thus, given a geometric object (ananisotropic projective arrangement) we can constructs an algebraic object (a representationof the associated Shephard group). We call the mappingalg : anisotropic projective arrangements �! representations7Certain versions of this idea were used previously in our papers [KM1], [KM2], [KM3].41
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Figure 15: Labelled graph of the functional arrangement for the function x2. Identifyvertices with the same labels. The point v is the \input", the point w is the \output".algebraization. This mapping is the key in passing from realization spaces of projectivearrangements to representation varieties. The fact that this correspondence is a homeo-morphism between sets of C -points of appropriate subvarieties will be more or less obvious,however we will prove more: the algebraization is a biregular isomorphism of certain (quasi-)projective varieties, the latter requires more work.12.1 Representations of Shephard groupsLet A be an abstract based arrangement with the graph �A and GsA be the correspondingShephard group with the graph �A. For all edges e in the graph �A the edge subgroupsGe � GsA are �nite. Recall that in Section 7.8 we had de�ned the space Homf (G;PO(3; C ))of nondegenerate representations of Shephard groups G. Thus as a direct corollary ofProposition 7.19 we getCorollary 12.1 Homf (Gs; PO(3; C )) is Zariski open and closed in Hom(Gs; PO(3)).The signi�cance of nondegenerate representations of Shephard groups is that they cor-respond to projective arrangements under the \algebraization" morphism alg.42



De�nition 12.2 Suppose that � 2 Homf (Gs; PO(3; C )) is a representation, then we asso-ciate a projective arrangement  = �(�) 2 R(A;P20(C )) as follows:(a) If v 2 A is a point then we let  (v) be the neutral �xed point of �(gv).(b) If l 2 A is a line then we let  (l) be the �xed line of the involution �(gv).Clearly  (v) 2 P20 and  (l) 2 (P20)_. Now we verify that  respects the incidencerelation. Consider edges e in �A connecting points to lines. Suppose that e = [v; w] isan edge in �A where v; w; e have the label 2. Then, � 2 Homf (Ge; PO(3; C )) implies that�(gv); �(gw) anticommute and hence  (v) �  (l) = 0 (see x6.3). All other edges e = [v; l] arelabelled as: �(v) = 3; �(l) = 2; �(e) = 4, thus � 2 Homf (Ge; PO(3; C )) again implies that�(gv); �(gl) anticommute: (�(gv)�(gl))2 = 1and hence  (v) �  (l) = 0 (see x6.3). Note that the mapping� : Homf (Gs; PO(3; C )) ! R(A;P20(C )); � 7!  = �(�)is 2-1. Namely, we can modify any representation � 2 Homf (Gs; PO(3; C )) by taking��(gv11) := �(gv11 )�1 and ��(gw) := �(gw) for all w 2 V (�) � fv11g, then �(�) = �(��).We denote the involution � 7! �� by �. The mapping � is far from being onto R(A;P20(C ))because of extra identi�cations and edges in the graph � (comparing to the �A). Themapping alg will be the right-inverse to � if we restrict the target of � to based realizations:De�nition 12.3 Suppose that A is an abstract based arrangement,  2 BR(A;P20) is arealization.8 We construct a homomorphismalg( ) = � : GsA ! PO(3; C )as follows. If v is a point in A � fv11g, let �(gv) be the rotation of order 2 in P2 withthe neutral �xed point  (v). (Such rotation exists since  (v) is anisotropic.) If v = l is aline in A we let �(gv) be the reection in the line  (l) (equivalently this is the rotation oforder 2 with the isolated �xed point  (l)_ 2 P20. For the vertex v = v11 we take the rotationof the order 3 around the point (1; 1). There are two such rotations, so we shall choose�(gv) :  (v00) 7!  (vx).Below we verify that � respects relations in Gs and determines a nondegenerate repre-sentation. For each v 2 P � fv11g � A and each line l 2 L � A we have (v) 2  (l)) [�(gl); �(gv)] = 1; �(gl) 6= �(gv)Hence all the relations in Gs corresponding to the edges labelled by 2 are preserved by �and � is nondegenerate on such edges. Since the spherical distances between the points(0; 0) and (1; 0), and points (0; 0) and (0; 1) in RP2 equal �=4 we conclude that(gv00gv10)4 = 1 ; (gv00gv01)4 = 1; (gv00gv10)2 6= 1; (gv00 6= gv01)2 6= 1This implies that the Artin relations for the edges [v00; v10]; [v00; v01] are preserved by � and� is nondegenerate on these edges.For each line l incident to the point v11 the rotations �(gl) and �(gv11 ) anticommute byLemma 6.7 and we get:�(gl)�(gv11 )�(gl)�(gv11) = 1 ; �(gv11)�(gl)�(gv11 )�(gl) = 18In particular  (v00) =  (l1)_;  (vx) =  (ly)_;  (vy) =  (lx)_.43



Hence the Artin relations for the edges [l; v11] � � are preserved by �. It is easy to checkthat the order of the element �(gv00gv11) equals 3. Recall that the edge e = [v00; v11] in �has the label 6. Thus the relation(gv00gv11)3 = (gv11gv00)3associated with the edge e is preserved by �. We have provedProposition 12.4 The mapping alg : BR(A;P20(C )) ! Homf (GsA; PO(3; C )) is such that� � alg = id. The space BR(A;P20(C )) lies in the image of the mapping �.Let ResT : Homf (GsA; PO(3; C )) ! Homf (GsT ; PO(3; C )) be the restriction homomor-phism. De�ne the varietiesBHomf (GsA; PO(3; C )) := Res�1T f��T ; �(��T )gBHom+f (GsA; PO(3; C )) := Res�1T f��T gof based representations. Clearly BHom+f (GsA; PO(3; C )) is the image alg(BR(A;P20(C )))(as a set) and the mappingalg : BR(A;P20(C )) ! BHom+f (GsA; PO(3; C ))is a bijection.Lemma 12.5 The representation � = ��T : GsT ! PO(3;R) � PO(3; C ) corresponding tothe canonical realization � = �T of the standard triangle T has �nite image. The centralizerof the group �(GsT ) in PO(3; C ) is trivial.Proof: It is clear that the group �(GsT ) has invariant �nite set� = f(1; 1); (�1; 1); (�1;�1); (1;�1)g � P2(R) � P2(C ) :Any three distinct points of � do not lie on a projective line in P2(C ), thus if g 2 PO(3; C )�xes � pointwise then g = id. This implies �niteness of �(GsT ). It is easy to check that�(GsT ) equals A4, the alternating group of the 4-element set �. Any element of g 2 PO(3; C )centralizing �(GsT ) must �x � pointwise, hence g = 1. �Proposition 12.6 The group PO(3; C ) acts simply-transitively by conjugations on the setHomf (GsT ; PO(3; C )).Proof: Suppose that � 2 Homf (GsT ; PO(3; C )). We note that Gs = GsT contains theabelian subgroup Z=2 � Z=2 � Z=2 generated by the involutions gv00 ; gvx ; gvy . Since � isnondegenerate we conclude that the restriction of � to this subgroup is injective. Thus, bythe classi�cation of �nite subgroups of PO(3; C ), we conclude that � can be conjugate to arepresentation (which we again denote by �) so that the projective arrangement  = �(�)has the property:  (v00) = (0; 0);  (vx) = (0;1);  (vy) = (1; 0)Thus necessarily:  (lx) = Lx;  (ly) = Ly;  (l1) = L1. Let G10 denote the subgroup ofGs generated by gv00 ; gvy = glx ; gv10 . The restriction of � to G10 factors through the �niteCoxeter group Gc10 = G10=hh(gv00gv10)2ii. There are only two homomorphisms�c : Gc10 ! PO(3; C ) such that�c(gv00 ) = �(gv00 ); �c(gvy ) = �(gvy ); �c(gv10 ) 6= �c(gv00); �c(gv10) 6= �c(gvy )44



Namely, for one of them the isolated �xed point of �c(gv10) has the a�ne coordinates (1; 0),for the second it has the a�ne coordinates (�1; 0). The reection in the line Ly conjugatesone representation to the other and commutes with the elements �(gv00); �(gvx); �(gvy ).Thus, after adjusting � by this conjugation (if necessary), we conclude that�(�) =  : v10 7! (1; 0). Similar argument works for the vertex v01. It remains to deter-mine  (lx1);  (ly1);  (v11) and  (ld). Since �(glx1) commutes with the elements �(gv01) and�(gv10) and does not coincide with either, the line  (lx1) contains the points (0; 1) and(1; 0). Similarly the line  (ly1) contains (1; 0) and (0;1).We next determine  (v11). Since the edge [v11; ly1] has label 4, the elements �(gv11 ) and�(gly1) anticommute, so  (v11) 2 Ly1 (the line in P2 joining (1; 0) and (0;1)). Similarly (v11) 2 Lx1. Finally we determine  (ld). Since �(gld) commutes with �(gv00) we have(0; 0) 2  (ld). Also �(gld) anticommutes with �(gv11), so (1; 1) 2  (ld). We conclude that = �(�) = �Tand either � = ��T or � = �(��T ). It now follows from Lemma 12.5 that the action of thegroup PO(3; C ) on Homf (GsT ; PO(3; C )) is free. �Corollary 12.7 Homf (GsT ; PO(3; C )) equals the AdPO(3; C )-orbit of the setf��T ; �(��T )g. In particular, both ��T and �(��T ) are locally rigid.Note however that this corollary doesn't apriori imply that the variety Homf (GsT ; PO(3; C ))is smooth since it could be nonreduced. To prove smoothness we need the following:Proposition 12.8 The representations ��T ; �(��T ) : GsT ! PO(3; C ) are in�nitesimallyrigid.We will prove the proposition only for ��T , the second case easily follows. Proposition12.8 will immediately follow from the more generalProposition 12.9 Let Ga = GaT , de�ne ~� : Ga ! PO(3; C ) by composing ��T with thecanonical projection GaT ! GsT . Then the representation ~� is in�nitesimally rigid.Proof: Our proof is based on the results of Section 7. The reader will notice that theproof follows the lines of the proof of Proposition 12.6. We �rst consider the subgroup Fin Ga generated by gv00 ; glx ; gly , these generators mutually commute, hence the subgroup isabelian. Let � 2 Z1(Ga; ad � ~�). By Lemma 7.5 the restriction of � to each cyclic subgrouphgv00i; hglxi; hgly i is cohomologically trivial, thus �jF comes from a cocycle on the �niteCoxeter group F=hh g2v00 ; g2lx ; g2ly iiwhich implies that �jF is a coboundary. By adjusting the cocycle � by a coboundary we mayassume that �jF = 0. Now we consider the subgroup F10 generated by glx ; gv10 . Because ofthe Artin relations in GaT this is again an abelian subgroup whose image under ~� is dihedral.Hence �jF10 is also a coboundary. Let H10 denote the subgroup generated by elements ofF10 and gv00 , we recall that (gv00gv10)2 = (gv10gv00)2.Since the restriction of � to each generator of H10 is exact, the cocycle �jH10 comes fromthe �nite Coxeter group H10=hhg2v00 ; g2lx ; g2v10 ii. This implies that �jH10 is a coboundary.Since �(glx) = 0; �(gv00 ) = 0 and the �xed points of ~�(glx); ~�(gv00 ) are distinct we concludethat �jH10 = 0. The same argument implies that �(gv01 ) = 0. We repeat our argumentfor the two abelian subgroups generated by glx ; gv10 ; gly1 and by glx ; gv01 ; glx1 , it follows that�(gly1) = 0; �(glx1) = 0. 45



Then we use Lemma 7.17, where a1 = glx1 ; a2 = gly1 ; a3 = gv00 ; b = gv11 , to concludethat �(gv11) = 0. Finally �(gld) = 0 since the Shephard subgroup of Gs generated bygv11 ; gld ; gv00 is again �nite. �Corollary 12.10 The variety Homf (GsT ; PO(3; C )) is smooth. The varietyBHomf (GsT ; PO(3; C )) is a (scheme-theoretic) cross-section for the action of PO(3; C ) byconjugation on the variety Homf (GsT ; PO(3; C )).Proof: Smoothness of Homf (GsT ; PO(3; C )) follows from in�nitesimal rigidity of the repre-sentations ��T ; ���T , see Theorem 2.4. In Proposition 12.6 we proved that the morphism� : PO(3; C ) � BHomf (GsT ; PO(3; C )) ,! Homf (GsT ; PO(3; C ))given by the action of PO(3; C ) by conjugation, is a bijection. Thus Homf (GsT ; PO(3; C ))is also smooth, which implies that the morphism � is actually an isomorphism of varieties.�Corollary 12.11 The variety BHomf (GsA; PO(3; C )) is a (scheme-theoretic) cross-sectionfor the action of PO(3; C ) by conjugation on the variety Homf (GsA; PO(3; C )).Proof: Consider the Ad(PO(3; C ))-equivariant restriction morphismResT : Homf (GsA; PO(3; C )) �! Homf (GsT ; PO(3; C ))It was proven in Corollary 12.10 that the subvariety BHomf (GsT ; PO(3; C )) is a cross-sectionfor the action of PO(3; C ) by conjugation on Homf (GsT ; PO(3; C )). Thus the pull-backvariety Res�1T Homf (GsT ; PO(3; C )) � BHomf (GsA; PO(3; C ))is a cross-section as well. �Our goal is to show that the mapping alg : BR(A;P20(C )) ! BHom+f (GsA; PO(3; C )) isan isomorphism of varieties over Q , this will be proven in the next section.12.2 alg is an isomorphism of varietiesWe �rst establish that alg : BR(A;P20(C )) ! BHom+f (GsA; PO(3; C )) is an isomorphism ofvarieties in two elementary cases. Let C be an arrangement whose graph �C has only oneedge e = [v; l], m is the number of isolated vertices vj in �C . Let A be a based arrangementwhich is the disjoint union of the standard triangle and C.Lemma 12.12 alg : BR(A;P20(C )) ! BHom+f (GsA; PO(3; C )) is an isomorphism of vari-eties over Q .Proof: We already know that alg is a bijection. It is clear that the restriction morphismsRes : BHom+f (GsA; PO(3; C )) ! Homf (GsC ; PO(3; C ))res : BR(A;P2(C )) ! BR(C;P2(C ))are isomorphisms of varieties. Let alg : BR(C;P2(C )) ! Homf (GsC ; PO(3; C )) denote themapping induced by the restriction. The group GsC is the free product46



Gse � Z=2 � ::: � Z=2| {z }m timesHence Homf (GsC ; PO(3)) �= Homf (Gse; PO(3)) � (Homf (Z=2; PO(3)))mSince the edge group Gse and the vertex groups Z=2 are �nite, the variety Homf (GsC ; PO(3))is smooth (Proposition 7.8). The quasi-projective variety R(C;P20) again splits as the directproduct I0 � P20 � :::� P20 ;where I0 is the anisotropic incidence variety, see Section 8.4. The anisotropic incidencevariety is smooth by Proposition 8.11, hence the product smooth as well.Let B denote the arrangement obtained by removing the incidence relation between vand l in C and GsB be the corresponding Coxeter group. Thenalg : R(B;P20) �! Homf (GB ; PO(3))is an isomorphism of smooth varieties (the left-hand side is (P20)m+2 and the right-handside is p(R)m+2, see Lemma 6.3). Thus alg : BR(A;P20) �! BHomf (G;PO(3)) is anisomorphism of smooth varieties. �We now consider a relative version of the above lemma. Suppose that a based abstractarrangement D is the �ber sum T �w�v C where C is the arrangement above, w; v areelements of T and C respectively.Lemma 12.13 alg : BR(D;P20(C )) ! BHom+f (GsD; PO(3; C )) is an isomorphism of vari-eties.Proof: Let � = ��T (gv), Ge � GsD is the edge subgroup corresponding to e = [v; l]. It isclear that the restriction morphismBHom+f (GsA; PO(3; C )) Res�����! f� 2 Homf (GsC ; PO(3; C )) : �(gv) = �g=: Fgv ;�(GsC ; PO(3; C ))is an isomorphism of varieties. The group Ge is �nite, hence by Proposition 7.8 the varietyFgv ;�(GsC ; PO(3; C )) is smooth. Similarly let q := �T (v), the restriction morphismres : BR(D;P20(C )) ! f 2 R(C;P20(C )) :  (v) = qg =: Fv;q(C;P20(C ))is an isomorphism of varieties. Then Fv;q(C;P20(C )) is isomorphic the product of the relativeanisotropic incidence variety I0(q) = fl 2 (P20)_ : q � l = 0g(see x8.4) with m copies of P20. It is clear that the mapping alg induces a bijection of thesets of complex points alg : I0(q)(C ) �! Fgv;�(Ge; PO(3; C ))According to Lemma 8.11 the variety I(q) is smooth and we repeat the arguments from theproof of Lemma 12.12. �Now we consider the case when A is a general based arrangement. Let X := BR(A;P20),Y := BHom+f (GsA; PO(3)). 47



Theorem 12.14 The mapping alg : X ! Y is a biregular isomorphism of quasi-projectivevarieties.Proof: Let F (resp. R) be the functor of points of X (resp. Y ). Then alg is an isomor-phism of the varieties X and Y if and only if F and R are naturally isomorphic (see [EH,Proposition IV-2]). Let B be the based arrangement obtained by removing all edges fromthe graph of A that are not in the graph of T (and retaining all vertices). Let GsB be thecorresponding Shephard group, clearlyGsB �= GsT � Z=2 � ::: � Z=2| {z }m timeswhere m is the cardinality of the vertex set V(A� T ). ThusBR(B;P20(C )) �= P20(C )m ;BHom+f (GsB; PO(3)) �= Homf (Z=2; PO(3; C ))mare smooth varieties andfalg : ~X := BR(B) �! ~Y := BHom+f (GsB ; PO(3))is an isomorphism of smooth varieties (see the proof of Lemma 12.12). We let ~F and ~Rbe the functors of points of ~X and ~Y . The isomorphism falg : ~X ! ~Y induces a naturalisomorphism of functors � : ~F ! ~R. The functors F and R are subfunctors of ~F and ~R.We now make explicit the inclusions F � ~F ;R � ~R.Let E0 be the collection of edges of �A that are not edges of �T . Suppose eij = [vi; `j ] 2E0 is such an edge. Let Xij be the subvariety of BR0(B) de�ned byxi�j + yi�j + zij = 0where [xi : yi : zi] and [�j : �j : j] are homogeneous coordinates on BR0(B) correspondingto vi; lj respectively. We let Fij be the subfunctor of ~F which as the functor of pointsassociated to the subvariety Xij. Then we haveF = \[vilj ]2E0 Fij � ~F (2)Similarly if the edge eij has the label �ij then we let Rij be the subfunctor of ~R correspondingto the subvariety Yij de�ned by the Artin relation(gvig`j )�ij = (g`jgvi)�ij :We have R = \(ij)2E Rij � ~R (3)Lemma 12.15 � : ~F ! ~R induces an isomorphism from Fij to Rij.Proof: Let Xij and Yij be the subvarieties of BR(B;P20);BHom+f (GsB ; PO(3)) correspond-ing to the subfunctors Fij ; Rij . Then Lemmas 12.12 and 12.13 imply that alg inducesan isomorphism of smooth varieties Xij ! Yij. Hence � induces an isomorphism of thecorresponding subfunctors. �The above lemma and equations (2), (3) immediately imply that � induces a naturalisomorphism from F to R. Theorem 12.14 follows. �Now we can prove one of the two main results of this paper. Let S � C n be an a�nevariety de�ned over Q . We will consider S as a quasi-projective variety in Pn(C ).48



Theorem 12.16 For any variety S as above there exists a Zariski open subset U � S(C )containing all real points and a based arrangement A so that the corresponding Shephardgroup GsA has the property:There is a Zariski open subset W in Hom(GsA; PO(3; C ))==PO(3; C ) which is biregularisomorphic to U .Remark 12.17 W is never Zariski dense in the character variety X(GsA; PO(3; C )).Proof: Given the variety S we construct an abstract based arrangement A such thatBR0(A;P2) is biregular isomorphic to S via the isomorphism geo (Theorem 10.1 and Corol-lary 10.4). Let U := �(BR0(A;P20(C ))), it is Zariski open in S(C ) and contains all realpoints since the subvariety BR0(A;P20) is Zariski open in BR0(A;P2) and contains all realpoints. Theorem 12.14 implies that we have an isomorphic embedding with Zariski openimage BHom+f (GsA; PO(3; C ))0alg : BR0(A;P20) ,! BHom+f (GsA; PO(3; C ))Corollary 12.11 implies that BHom+f (GsA; PO(3)) is a cross-section for the action of PO(3; C )by conjugation on the Zariski component Hom+f (GsA; PO(3)) of Hom(GsA; PO(3)). Thus weget an open monomorphism of varietiesBHom+f (GsA; PO(3; C ))0 ,! X(GsA; PO(3; C )) = Hom(GsA; PO(3; C ))==PO(3; C )so that the image is a Zariski open subvariety W in the character variety. Therefore thecomposition� : U geo�! BR0(A;P2(C )) alg�! BHom+f (GsA; PO(3; C ))0 �!W � X(GsA; PO(3; C ))is the required isomorphism onto a Zariski open subvariety W of the character variety. �Proposition 12.18 Suppose that S is an a�ne variety over Q and q 2 Q is a rationalpoint. Then there is an abstract arrangement A (as in Theorem 12.16) so that the represen-tation � = alg � geo(q) has �nite image. The centralizer of the subgroup �(GsA) � PO(3; C )is trivial.Proof: Follows from Corollary 10.4 and Lemma 12.5. �As an example we consider the con�guration space of the arrangement9A = fv; l1; l2 : �(v; l1); �(v; l2)gTake the corresponding Coxeter group G = GcA. Then R(A;P20) �= P20�P10�P10 correspondsto the representations of G which are nondegenerate, i.e. the elements �(gv); �(gl1); �(gl2),�(gvgl1), �(gvgl2) have order 2. However there are some other components ofHom(G;PO(3; C )) which are described by assigning which of the elements�(gv); �(gl1); �(gl2); �(gvgl1), �(gvgl2) are equal to 1. If �(gv) = 1 then any represen-tation factors through the free product Z=2 � Z=2 and the corresponding component ofHom(G;PO(3; C )) is isomorphic to P20 � P20. The reader will verify that besidesHomf (G;PO(3; C )) �= P20 � P10 � P10and the above component isomorphic to P20 � P20 there are 4 components isomorphic toP20 � P10, 4 components isomorphic to P20 and one component which consists of a singlereduced point (the last corresponds to the trivial representation).9This is not a based arrangement. 49



12.3 Representations of Artin groupsOur next goal is to prove a theorem analogous to Theorem 12.16 for Artin groups. Takea based admissible arrangement A, consider the germ (Hom(GaA; PO(3; C )); ~�), where ~� =!(�) is the pull-back of � 2 Homf (GsA; PO(3; C )).Theorem 12.19 The morphism ! : (Hom(GsA; PO(3; C )); �) ! (Hom(GaA; PO(3)); ~�) isan analytical isomorphism of germs.Proof: Let m � 1 be an integer, consider the m-th order Zariski tangent spaces Tm� of thevariety Hom(GsA; PO(3; C )) at � and Tm~� of the variety Hom(GaA; PO(3; C )) at ~�, there isa well-de�ned mapping !m : Tm� ! Tm~� induced by !. We will think of elements of m-thorder Zariski tangent spaces as formal curves or homomorphisms from Gs; Ga to PO(3)(A)which is the set of A-points of PO(3) and A is a certain Artin local C -algebra, see x5.Our goal is to prove that !m is an isomorphism for all m.Lemma 12.20 !m is injective.Suppose that � 6= � 2 Tm~� are formal curves of the order m. We think of them as represen-tations of Gs into PO(3)(A). Then !m(�); !m(�) are homomorphisms of Ga into PO(3)(A)de�ned by composing with the projection Ga ! Gs. Clearly !m(�) 6= !m(�). �Lemma 12.21 !m is surjective.Proof: Let � 2 Tm~� (Ga; PO(3; C )) and v is a point in A� fv11g. To prove that � belongs tothe image of !m it is enough to check that the restriction of !m to each vertex-subgroupof Ga is a trivial deformation (see Lemma 5.1). We �rst consider the points v 2 A distinctfrom v11. Then v is incident to at least one line l 2 A and hence the image of the edge-subgroup �(Gsvl) = ~�(Gavl) is generated by two distinct commuting involutions (since �is \nondegenerate"). Thus by Lemma 7.5 the restriction �jGavl is in�nitesimally rigid, inparticular �jGav is a trivial deformation. In the case v = v11 we use Proposition 12.9 toconclude that the restriction of � to the vertex-subgroup Gav is a trivial deformation as well.Suppose that l 2 A is a line. Then admissibility of the arrangement A implies that l isincident to at least one point w in A�fv11g. Hence we repeat the same argument as in thecase of points in A. �Thus, we established that the morphism ! induces an isomorphism of Zariski tangentspaces of all orders. Hence Theorem 12.19 follows from Lemma 2.1. �Corollary 12.22 For any admissible based arrangement A the morphism! : Homf (GsA; PO(3))! Hom(GaA; PO(3))is open (in the classical topology) and is an analytic isomorphism onto its image.Corollary 12.23 For any admissible based arrangement A the character variety of GaAinherits all singularities of the representation variety of the group GsA corresponding topoints of BR(A;P20(C )).The image Homf (GaA; PO(3; C )) := !(Homf (GsA; PO(3; C ))) is a constructible set.Proposition 12.24 Homf (GaA; PO(3; C )) is closed in Hom(GaA; PO(3; C ))50



Proof: The image Z of the monomorphismHom(GsA; PO(3; C )) �! Hom(GaA; PO(3; C ))is described by the equations �(gv)�(v) = 1; v 2 V(�A)where �(v) is the label of the vertex v. Thus Z is closed. On the other hand, by Corol-lary 12.1, the space Homf (GsA; PO(3; C )) is closed in Hom(GsA; PO(3; C )), the propositionfollows. �Corollary 12.25 For any admissible based arrangement the space Homf (GaA; PO(3; C )) isa union of Zariski connected components of Hom(GaA; PO(3; C )).Proof: The set Homf (GaA; PO(3; C )) is Zariski open since it is constructible and open inthe classical topology. �Theorem 12.26 The morphism ! : Homf (GsA; PO(3)) ! Homf (GaA; PO(3))) is a biregu-lar isomorphism of varieties.Proof: We will �rst prove that the reduced varieties corresponding toX := Homf (GsA; PO(3)) and Y := Homf (GaA; PO(3))are isomorphic. We construct nonsingular varieties U;W containing X;Y and an extensionof ! to an isomorphism U ! W which carries X to Y bijectively as sets. Let C be thearrangement obtained from A by removing the incidence relations everywhere outside ofthe standard triangle. Thus we get two nonsingular varieties Q = Homf (GaC ; PO(3)) andU := Homf (GsC ; PO(3)) with X � U and Y � Q.Clearly ! : U ! V is a biregular isomorphism and it bijectively carries X to Y . Thusthe reduced varieties Xr; Y r are isomorphic via !. Hence the assertion of Theorem followsfrom combination of Corollary 12.22 and Theorem 2.9. �As a corollary we get the following generalization of Theorem 12.16:Theorem 12.27 Let S be an a�ne variety de�ned over Q . Then there exists an admissiblebased arrangement A so that the corresponding Artin group GaA has the property:There is a Zariski open subset in S (containing all real points) which is biregular iso-morphic to a Zariski open and closed subvariety in Hom(GaA; PO(3; C ))==PO(3; C ). Sup-pose that q 2 S is a rational point. Then the abstract arrangement A can be chosen so thatthe representation � = ! � alg � geo(q) has �nite image. The centralizer of the subgroup�(GaA) � PO(3; C ) is trivial.13 Di�erential graded algebras and Lie algebrasIn this section we discuss di�erential graded Lie algebras, di�erential algebras and theirSullivan's minimal models. These de�nitions will be used in the following two sections. Letk be the ground �eld. A graded Lie algebra over k is a k-vector spaceL� = �i�0 Li51



graded by (nonnegative) integers and a family of bilinear mappings[�; �] : Li 
 Lj �! Li+jsatisfying graded skew-commutativity:[�; �] + (�1)ij [�; �] = 0and the graded Jacobi identity:(�1)ki[�; [�; ]] + (�1)ij [�; [; �]] + (�1)jk[; [�; �]] = 0where � 2 Li; � 2 Lj ;  2 Lk. We say that L is bigraded if L is graded as above andL = �q�0Lq = �i;q�0 Liqwhere Liq = Li \ Lq. We also require:[�; �] : Lq 
 Lp �! Lp+qA di�erential graded Lie algebra is a pair (L; d) where d : L! L is a derivation of thedegree `, i.e. d : Li �! Li+`; d � d = 0; andd[�; �] = [d�; �] + (�1)i`[�; d�]Remark 13.1 In this paper we will use only the degree ` = 1.Suppose that L = L�� is a bigraded Lie algebra, then the di�erential graded Lie alge-bra (L; d) is called a di�erential bigraded Lie algebra if there is a number s such that d hasthe bidegree (`; s): d : Liq �! Li+`q+s; for all i; qRemark 13.2 In this paper we will use only the bidegree (`; s) = (1; 0). Similarly onede�nes trigraded di�erential Lie algebras L��;�Let L� be a di�erential graded Lie algebra, and suppose that J � L� is a vectorsubspace. Then J is an ideal in L� if:� J is graded, i.e. J = �1n=0(J \ Ln);� d(J ) � J ;� For each  2 J ; � 2 L we have: [; �] 2 J .Remark 13.3 If L is bigraded then we require ideals in L to be bigraded as well, i.e.J = �n;q�0 (J \ Lnq )Lemma 13.4 If J � L is an ideal in a di�erential graded (bigraded) Lie algebra then thequotient L=J has the natural structure of a di�erential graded (bigraded) Lie algebra so thatthe natural projection L! L=J is a morphism.
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Proof: The proof is straightforward and is left to the reader. �Let (L�; d) be a di�erential graded Lie algebra and g be a Lie algebra. An augmentationis a homomorphism � : L! g such that �i�1Li � ker(�) and � 6= 0. An augmentation idealof � is the kernel of �.We recall the de�nition of the complete local k-algebra RL� (see [Mi]) associated toa di�erential graded Lie algebra L� over k. We will give a de�nition which conveys theintuitive meaning of RL� but has the defect of being non-functorial. We have the sequence0 �! L0 d�! L1 d�! L2 d�! :::Choose a complement C1 � L1 to the 1-coboundaries B1 � L1. Let F : C1 ! L2 be thepolynomial mapping given by F(�) = d� + 12 [�; �]. Then RL� is the completion at 0 of thecoordinate ring of the a�ne subvariety of C1 de�ned by the equation F(�) = 0.Since L1 and C1 are in�nite dimensional in many applications, further de�nitions ofa�ne variety and completion are needed in in�nite dimensional vector spaces. These aregiven in [BuM, x1]. Suppose next that (X;x) is an analytic germ. We will say that L�controls (X;x) if RL� is isomorphic to the complete local ring [OX;x.De�nition 13.5 Let A�; B� be cochain complexes and � : A� ! B� be a morphism. Then� is called a quasi-isomorphism if it induces an isomorphism of all cohomology groups.The morphism is called a weak equivalence if it induces an isomorphism of H0;H1 anda monomorphism of H2.Weak equivalence induces an equivalence relation on the category of di�erential gradedLie algebras: algebras A�1; A�m are (weakly) equivalent if there is a chain of weak equivalences:A�1 ! A�2  A�2 ! ::: A�mIn the following two sections we will use the following theorem about controlling di�er-ential graded Lie algebras proven in [GM]:Theorem 13.6 Suppose that L� and N� are weakly equivalent di�erential graded Lie alge-bras which control analytical germs. Then the germs controlled by the algebras L� and N�are analytically isomorphic.A di�erential graded algebra A� is de�ned similarly to a di�erential graded Lie algebra :just instead of the Lie bracket [�; �] satisfying graded Jacobi identity we have an associativemultiplication: ^ : Ai 
Aj �! Ai+jsatisfying the properties:� d : Ai ! Ai+1, d � d = 0;� d(� ^ �) = d� ^ � + (�1)i� ^ d�, for all � 2 Ai;� � ^ � = (�1)ij� ^ �, for all � 2 Ai, � 2 Aj ;� A has the unit 1 2 A0.To get a di�erential graded Lie algebra from a di�erential graded algebra A� take a Liealgebra g and let L� = A� 
 g (see [GM] for details).Suppose that V is a vector space over k, (A�; d) is a di�erential graded algebra andf : V ! Z2 is a linear mapping, where Z2 is the space of 2-cocycles of A�. Then the Hirsch53



extension A�
f V is a di�erential graded algebra which (as an algebra) equals to A�
�(V )and the restriction of the di�erential on A� 
f V to A� equals d and the restriction to Vequals f .A di�erential graded algebraM� is called 1-minimal if:(a)M0 = k;(b)M� is the increasing union of di�erential subalgebras:k =M[0] �M[1] �M[2] � :::with eachM[i] �M[i+1] a Hirsch extension;(c) The di�erential d onM is decomposable, i.e. for each � 2M we have:d(�) =Xj;i �j ^ i ; �j ; i 2 �s�1MsDe�nition 13.7 Suppose that A� is a di�erential graded algebra. Then a 1-minimalmodel for A� is a morphism � :M� ! A� such that:� The di�erential graded algebra M� is 1-minimal;� The morphism � is a weak equivalence.We refer the reader to [Sul], [GrM], [Mo2] for further discussion of the de�nition, prop-erties and construction of 1-minimal models.14 Hain's theorem and its applicationsIn this section we give an exposition of a work of R. Hain [Hai] which shows that thesingularities in representation varieties of fundamental groups of smooth complex algebraicvarieties are quasi-homogeneous. In fact some assumption on the representation � whichis being deformed is also required. In [Hai] the analogue of our Theorem 14.6 is provenunder the assumption that � was the monodromy representation of an admissible variationof mixed Hodge structure. One does not obtain a restriction on weights working in thisgenerality.Let M be a smooth connected manifold with the fundamental group �. Let G be theLie group of real points of an algebraic group G with the Lie algebra g de�ned over Rand � : � ! G is a homomorphism. Let P be the at bundle over M associated to �and adP the associated g-bundle. Then A�(M;adP ), the complex of smooth adP -valueddi�erential forms on M is a di�erential graded Lie algebra . We de�ne an augmentation� : A�(M;adP )! g by evaluating degree zero forms at a base-point x 2M and sending therest of forms to zero. Let A�(M;adP )0 be the kernel of �. The following theorem followsimmediately from [GM, Theorem 6.8].Theorem 14.1 A�(M;adP )0 controls the germ (Hom(�;G); �).The point of this section is that if M is smooth connected complex algebraic varietyand � has �nite image then A�(M;adP )0 is quasi-isomorphic to a di�erential graded Liealgebra which has a structure of a mixed Hodge complex. By a theorem of Hain this impliesthat RA�(M;adP )0
Cis a quasi-homogeneous ring. We now give details.54



A real mixed Hodge complex (abbreviated MHC) is a pair of complexes K�R and K�C(real and complex respectively), together with a quasi-isomorphism � : K�R
 C ! K�C suchthat K�R is a complex of real vector spaces equipped with an increasing �ltration W� (calledthe weight �ltration) and K�C is equipped with an increasing (weight) �ltration W� and adecreasing �ltration F � ( called the Hodge �ltration). The dataK�R;K�C ; �;W�; F �satis�es the axioms described in [D2, Scholie 8.1.5] (take A = R).By a theorem of Deligne ([D2, Scholie 8.1.9]) the cohomology of a MHC has a mixedHodge structure, [D1, Scholie 2.3.1]. It is important in what follows that the �ltrationson H�(KC ) induced by W� and F � can be canonically split, [D1, Section 1.2.8]. Thusthe �ltration W� induces a canonical grading on H`(KC ) and consequently on H`(KC )�,` = 0; 1; 2.If V is a �nite-dimensional vector space over C we will let C [[V ]] denote the completionof the symmetric algebra C [V ] at the maximal ideal corresponding to 0. Thus C [[H`(KC )�]]has a canonical decreasing �ltration (as an algebra) induced by the grading of H`(KC )�,` = 0; 1; 2.We will say that a MHC is a mixed Hodge di�erential graded Lie algebra if the com-plexes K�R and K�C are di�erential graded Lie algebras ([GM, x1.1]), such that � is bracketpreserving and the �ltrations satisfy(i) [Wp(K�R);Wq(K�R)] �Wp+q(K�R);(ii) [F p(K�C ); F q(K�C )] � F p+q(K�C ).In this case we will use L�R and L�C in place of K�R and K�C . Let m denote the maximalideal of C [[H1(L�C )�]]. We now haveTheorem 14.2 (Hain's Theorem.) Suppose L� = (L�R; L�C ; �;W�; F �) is a mixed Hodgedi�erential graded Lie algebra with H0(L�R) = 0. Then RL�C is quasi-homogeneous (seeSection 3). Moreover there exists a morphism of graded vector spaces� : H2(L�C )� ! GrWC [[H1(L�C )�]]with image of � contained in m2 such that RL�C is the quotient of C [[H1(L�C )�]] by the gradedideal generated by the image of �.Remark 14.3 Hain further proves that � � Q� (mod m3), Q� is dual to Q whereQ : S2H1(L�)! H2(L�)is given by the cup-product Q(�) = [�; �].We will say an element � 2 Hi(L�C ) has weight n if � 2WnHi(L�C ) but � =2Wn�1Hi(L�C ).We will combine Hain's theorem with the following theorem to obtain our desired resultabout the singularities in representation varieties of fundamental groups of smooth complexalgebraic varieties. Suppose now that M is a smooth connected complex algebraic variety,a representation � : �1(M)! G with �nite image, the bundle adP , etc., are as above.Theorem 14.4 Under the conditions above there is a �ltration W� on A�(M;adP ) and a�ltration F � on A�(M;adPC ) such that for the canonical map� : A�(M;adP ) 
 C ! A�(M;adPC ) the algebraL� = (A�(M;adP ); A�(M;adPC ); �;W�; F �)is a mixed Hodge di�erential graded Lie algebra . Moreover the weights of H1(A�(M;adPC ))are 1 and 2 and the weights of H2(A�(M;adPC )) are 2; 3 and 4.55



Proof: Let ~M be the �nite cover of M corresponding to ker(�). Let � �= �(�) be the groupof covering transformations. By [Sum] there exists an equivariant completion ~N of ~M . Butaccording to [BiM] there is also a canonical resolution of singularities N of ~N so that thecomplement N � ~M is a divisor D = D1 [ ::: [Dm with normal crossings.Hence the action of � extends to N , which is a smooth �-equivariant completion of ~M .Hence � acts on the log-complex of ~M de�ned using the compacti�cation N . It is a basicresult of Deligne ([D1, Theorem 1.5]) that one may use the log-complex to de�ne:(a) A subcomplex A�( ~M) � A�( ~M ) so that the inclusion is a quasi-isomorphism.(b) Filtrations W�; F � on A�( ~M) and A�( ~M )
 C which satisfy the axioms of MHC.By construction these �ltrations are �-invariant. We tensor with g (regarded as a mixedHodge di�erential graded Lie algebra concentrated in degree zero). Since � acts on g viaad�, it also acts on the tensor product. We obtain the required mixed Hodge di�erentialgraded Lie algebra L� by taking �-invariants. To derive weight restrictions we use resultsof Morgan [Mo1], [Mo2], who proved it for A�( ~M ) 
 C , etc. The operations of tensoringwith g and taking �-invariants will not change these restrictions on weights. �Remark 14.5 Choose a point m 2 X and a point ~m 2 ~M over m. We de�ne augmen-tations (see [GM, x3.1]) � : A�(M;adP ) ! g and ~� : A�( ~M ) 
 g ! g by evaluation at mand ~m respectively. We let A�(M;adP )0 and A�( ~M )0
g be the augmentation ideals. Thenall statements in Theorem 14.4 hold when A�(M;adP ) and A�(M;adPC ) are replaced byA�(M;adP )0 and A�(M;adPC )0. We abbreviate the corresponding mixed Hodge di�erentialgraded Lie algebras by L�0.Let �; �;G be as above. Let Z be the representation variety Hom(�; G). By combiningTheorems 14.2, 14.4 we obtainTheorem 14.6 The germ (ZC ; �) is analytically equivalent to a quasi-homogeneous conewith generators of weights 1 and 2 and relations of weights 2; 3 and 4. Suppose that G isreductive and there is a local cross-section S through � to G-orbits. Then the conclusion isvalid not just for the germ (ZC ; �) but also for (Hom(�; G)==G; [�]).Proof: We apply Theorems 14.2 and 14.4 to deduce that the complete local C -algebra(RL�0)C has a presentation of the required type. But by Theorem 14.1, (RL�0)C is isomorphicto the complete local ring associated to the germ (ZC ; �). We obtain the correspondingresult for (Hom(�; GC )==GC ; [�]) by replacing L�0 by L� and applying [KM3, Theorem 2.4 ].Note that if S exists then H0(L�) = 0. �There are in�nitely many germs (Y; 0), where Y � C n is an a�ne variety de�ned overZ, so that (Y; 0) is not quasi-homogeneous with the weights of relations between 2 and 4.We can even assume that 0 is an isolated singular point, see the Section 3. Thus as aconsequence of Theorems 14.6, 12.16 we obtain the followingTheorem 14.7 Among the Artin groups GaA there are in�nitely many mutually nonisomor-phic groups which are not isomorphic to fundamental groups of smooth complex algebraicvarieties.Proof: Let Y be an a�ne variety de�ned over Q and y 2 Y be a rational point. Assumethat the analytical germ (Y; x) is not quasi-homogeneous (with the weights of variables1; 2 and weights of generators 2; 3; 4). Let A be an a�ne arrangement corresponding tothe pair (Y; y) as in Proposition 12.18, so that the representation �s : GsA ! PO(3; C )corresponding to y has �nite image and the group �s(GsA) has trivial centralizer in PO(3; C ).56



Let � = !(�s) : GaA ! PO(3; C ), where GaA is the Artin group of the arrangement A. Recallthat we have an open embedding! � alg � geo : Y �= BR0(A) ,! Hom(GaA; PO(3))==PO(3) = X(GaA; PO(3))Suppose that GaA is the fundamental group of a smooth complex algebraic variety. ThenTheorem 14.6 can be applied to the germ (X(GaA; PO(3)); [�]) provided we can construct alocal cross-section through � to the PO(3; C )-orbits. In the de�nition of local cross-sectionwe take U := Homf (GaA; PO(3; C )) and S := ![BHomf (GsA; PO(3; C ))] :Then U is open by Corollary 12.25 and S is a cross-section because BHomf (GsA; PO(3; C ))is a cross-section for the action of PO(3; C ) on Homf (GsA; PO(3; C )) and the morphism! : Homf (GsA; PO(3; C )) ! U is an isomorphism. We get a contradiction. To see thatthere are in�nitely many nonisomorphic examples we refer to the argument at the end ofthe introduction. �As the simplest example of (Y; 0) we can take the germ (fx5 = 0g; 0). We describe theCoxeter graph of the Artin group corresponding to this singularity on the Figure 16. Welet x5 = (x2)2 � x. To get the labelled graph10 � of Ga from the diagram on the Figure 16identify vertices marked by the same symbols.15 Sullivan's minimal models and singularities of represen-tation varietiesThe goal of this section is to give a direct proof of Theorem 15.1 below (which is Theorem1.12 of the Introduction).Theorem 15.1 Let M be a smooth connected complex algebraic variety with the fundamen-tal group �. Let G be the Lie group of real points of an algebraic group G de�ned over R ;let g be the Lie algebra of G. Suppose that � : �! G is a representation with �nite image.Then the germ (Hom(�; G); �) is analytically isomorphic to a quasi-homogeneous cone withgenerators of weights 1 and 2 and relations of weights 2; 3 and 4. In the case there is a localcross-section through � to Ad(G)-orbits, then the same conclusion is valid for the quotientgerm (X(�; G); [�]) of the character variety.Proof: We begin the proof by choosing a smooth �-equivariant compacti�cation ~N = ~M[Dof ~M as in the proof of Theorem 14.4.In what follows we shall use the following simple lemma:Lemma 15.2 Suppose that � is a �nite group andHg??yE f�! Fis a diagram of morphisms of �-modules over C such that f(E) � g(H). Then f admits a�-equivariant lifting ~f : E ! H.10See xx4, 11. 57



Proof: Since f(E) � g(H) there exists a linear mapping h : E ! H which lifts f . Then welet ~f = Av(h) := j�j�1X�2�� � h � ��1 �Recall that Morgan in [Mo2] de�nes a mixed Hodge diagramE(logD) ' � EC1( ~M)
 C �'�! �E(logD)associated with the pair ( ~N;D). The log-complex E(logD) is a subcomplex of C -valueddi�erential forms on ~M and the complex �E(logD) is the log-complex with the oppositecomplex structure.The mixed Hodge diagram must satisfy certain properties described in [Mo2]. In partic-ular, it has a structure of a mixed Hodge complex, i.e. EC1( ~M ) has an increasing �ltrationW and E(logD) has a pair of �ltrations: an increasing weight �ltration W and decreasingHodge �ltration F ; '; �' must preserve the weight �ltrations and be quasi-isomorphisms.Proposition 15.3 There exists a �-invariant mixed Hodge diagram with �-invariant struc-ture of a mixed Hodge complex. The identity embeddingid : E(logD) ,! A( ~M)
 Cis a quasi-isomorphism.Proof: First we describe the log-complex E(logD) on ~M associated with the compacti�cationN . Let z 2 D be a point of p-fold intersectionz 2 Di1 \ ::: \Dipwhere each Dij is locally (near z) is given by the equation zij = 0. Then elements � of E areC -valued di�erential forms on ~M which can be (locally with respect to the zj-coordinates)written as XJ �J dzi1zi1 ^ ::: ^ dzipzipwhere each �j extends to a C1-form in a neighborhood of z in N . Thus near any genericpoint z 2 Dj the form � has at worst a simple pole. Since the group � acts holomorphicallyon N leaving D invariant we conclude that this group acts naturally on the log-complexE(logD). The complex E(logD) has the weight and Hodge �ltrations which are de�ned in acanonical way. Recall that W`(E(logD)) consists of di�erential forms of the type! =XJ !J ^ dzj1zj1 ^ ::: ^ dzjtzjt ; t � `and F p(E(logD)) consists of di�erential forms of the type! =XJ !J ^ dzj1 ^ :::dzjs ^ dzjs+1zjs+1 ^ ::: ^ dzjtzjt ; t � pwhere the forms !J extend smoothly over the divisor D. Thus both �ltrations are �-invariant.Now we describe the second complex EC1( ~M) associated to (N;D). For each com-ponent Dj of D choose a regular neighborhood Nj in �-invariant way, i.e. if � 2 � and� : Di ! Dj then � : Ni ! Nj . Let [!j] 2 H2(Nj ; @Nj ;R) be the Thom's class. By using58



Lemma 15.2 we choose a 2-form !j representing the class [!j] so that for � 2 � mappingDi to Dj we have: ��!j = !i. Then Morgan takes 1-forms j 2 E(logD) supported on Njso that dj = !j. We can choose j so that ��j = i for each � 2 � such that � : Di ! Djby using Lemma 15.2 again.The di�erential graded algebra EC1( ~M) consists of global sections of a certain sheafS of algebras that we will describe below. Let U � ~M be an open subset missing allregular neighborhoods Nj. Then sections of S over U are real-valued in�nitely di�erentiabledi�erential forms on U .Let Np denote subset of ~N consisting of p-fold intersections between the regular neigh-borhoods Nj. Take a connected open subset U � Np which is disjoint from Np+1. Wesuppose that U is contained in the p-fold intersection Ni1 \ ::: \ Nip . Then sections of Sover U are elements of the Hirsch extension:A�(U)
d �(�i1 ; :::; �ip)where A�(U) is the complex of real-valued di�erential forms on U andd�ij = !ij jUIt is clear that the group � acts on the sheaf S and on the di�erential graded algebraEC1( ~M ) of its sections as well. The complex EC1( ~M) has a canonically de�ned weight�ltrationW� which is therefore invariant under the action of �. (This �ltration is similar tothe weight �ltration on the log-complex, just use �j-s instead of the forms dzj=zj .) FinallyMorgan de�nes a morphism � : EC1( ~M )
 C ! E(logD)by mapping �j to j and di�erential forms supported in ~M to themselves. Morgan provesthat this morphism and the identity embeddingE(logD) ,! A�( ~M )
 Cinduce isomorphisms of cohomology groups. The mixed Hodge structure on the diagram is�-invariant by the construction. This �nishes the proof of Proposition 15.3. �Remark 15.4 In what follows we shall use the notation A� to denote the di�erential gradedalgebra EC1( ~M ) and A�C its complexi�cation.Given the weight �ltrationW on A�, Morgan de�nes an increasing Dec-weight �ltrationDecW�(A�) as DecW`(Ak) = fx : x 2Wk�` (Ak); dx 2Wk�`+1 (Ak�1)gLet � : N ! A� denote a 1-minimal model:N = ( 0 �! N 0 = R 0�! N 1 d�! N 2 d�! ::: )Recall the basic properties of N and � proven in [Mo2, x6 and Lemma 7.2]:(a) The Dec-weight �ltration DecW�(A�C ) of A�C pulls back to NC to a weight �ltrationW�(NC ) which splits so that NC becomes bigraded with the di�erential of the bidegree (1; 0):N jC = �i�0N ji , N ji = N jC \Ni, where (Ni)C consists of elements of NC of the weight i,d : Ni ! Ni; ^ : Ni 
Nj ! Ni+j ;59



N0 = N 0 = C and each N ij is �nite-dimensional.(b) The weight �ltration on N induces a weight �ltration on H�(N ) so that the inducedweights on H1(N ) are 1; 2, the induced weights on H2(N ) are 2; 3; 4.(c) The homomorphism � : N ! A� is a weak equivalence.(d)N is a 1-minimal di�erential algebra. Together with (a) it implies that the restrictionof the di�erential d to N 11 is identically zero.Proposition 15.5 Suppose that A� is a di�erential graded commutative algebra (over theground �eld k = C or R) and � is a �nite group acting on A�. Then the action of � on A�lifts to an action of � on a certain 1-minimal model N for A�.Proof: We will prove the proposition by constructing N in �-invariant way. Let N 0 := k.Take N 1[1] := H1(A�) and N[1] be the di�erential graded algebra freely generated by N 0 =N 0[1] and N 1[1]. We need a homomorphism� = �[1] : N[1] ! A�which induces an isomorphism of the 1-st cohomology groups. The group � naturally actson H1(A�). We have the epimorphism of �-modulesZ1(A�) �! H1(A�)By Lemma 15.2 this epimorphism admits a �-invariant splitting �1 : H1(A�) ! Z1(A�).Thus we let � be the identity embedding of N 0 = k to A0 and �jN 1[1] be �1. We continuethe construction of (N ; �) by induction. Suppose that (N[i]; �[i]) are constructed and thehomomorphism of �-modules �[i] : N[i] ! A� induces an isomorphism of H1 but the inducedmapping of H2 has nonzero kernel. This kernel is canonically isomorphic to the relativecohomology group H2(N �[i]; A�). Choose a �-equivariant section �[i] to the projection fromthe space of relative cocycles Z2(N �[i]; A�) onto H2(N[i]; A�). Letp1 : Z2(N �[i]; A�)! Z2(N �[i])and p2 : Z2(N �[i]; A�)! A1be the projections. Both are �-equivariant. De�ned : H2(N �[i]; A�)! Z2(N[i])by d = p1 � �[i] and let �i+1 : H2(N �[i]; A�)! A1 ; � = p2 � �[i]De�ne N[i+1] := N[i] 
d H2(N[i]; A�)and extend �i+1 to �[i+1] : N[i+1] ! A� multiplicatively. The group � acts on N[i+1] in thenatural way and the homomorphism �[i+1] is �-equivariant. �We now assume that we have a mixed Hodge diagram:E ' � AC '�! E60



and a �nite group � acting on the diagram compatibly with the di�erential graded al-gebra structures so that ' and ' are �-equivariant. In [Mo2, x6], Morgan constructs atrigraded 1-minimal model E ' � AC '�! E- " %N ��;�for the above mixed Hodge diagram (see [Mo2, Page 270] for de�nition). We will say thatN ��;� is a �-equivariant trigraded 1-minimal model for the above mixed Hodge diagram if allthree morphisms with the source N are �-equivariant and the trigrading ofN is �-invariant.Remark 15.6 Morgan calls N ��;� a bigraded minimal model.Proposition 15.7 There exists a �-equivariant trigraded 1-minimal model for the mixedHodge diagram E ' � AC '�! EThe �ltration DecW�(AC ) pulls back to a �ltration DecW�(NC ) given byDecWq(NC ) := �r+s�q Nr;sConsequently the �ltration DecW�(NC ) is �-equivariantly split.Proof: We will check that Morgan's construction can be made �-equivariant. To do thiswe examine Morgan's induction step when he passes from a trigrading on N[i] to one onN[i+1]. This step is carried out on the page 176 of Morgan's paper and involves a study ofthe diagram Z2(N[i]; E) j � Z2(N[i]; AC ) j�! Z2(N[i]; E)&- s #" p s0 %.H2(N[i]; AC )By induction H2(N �[i]) has a �-equivariant mixed Hodge structure. Since H2(N �[i]; A�C )is the kernel of the canonical (thus �-equivariant) morphismH2(N �[i])! H2(A�C )it inherits a �-equivariant mixed Hodge structure. Consequently by Deligne's Theorem (see[Mo2, Proposition 1.9]) H2(N �[i]; A�C ) has a canonical (hence �-invariant) bigrading. Thusit su�ces to check that the cross-sections s; p and s0 as well as the maps h; h0 in [Mo2,Page 176] can be chosen to be �-equivariant. The cross-sections s; p; s0 are required tosatisfy the linear conditions (1){(3) of [Mo2, Page 176]. It is immediate that our averagesAv(s); Av(p); Av(s0) (de�ned as in Lemma 15.2 with respect to the action of �) again satisfy(1){(3). Finally the maps h : H2(N �[i]; A�C )! DecWr+s(E)and h0 : H2(N �[i]; A�C )! DecWr+s(E)must satisfy certain lifting conditions. By Lemma 15.2 we can take h; h0 to be �-equivariant.61



By de�nition (see Proposition 15.5) we haveN[i+1] = N[i] 
d H2(N �[i]; A�C )we extend the trigrading from N[i] and H2(N �[i]; A�C ) to N[i+1] multiplicatively. We obtain a�-equivariant trigrading on N[i+1] and a new diagramE  � AC �! E- " %N[i+1]of equivariant maps satisfying Morgan's axioms. This completes the proof of the proposition.�We will no longer need the trigrading on N and instead will consider the bigrading:N kq := �r+s=q N kr;swhich de�nes a splitting of the Dec-�ltration DecW�(NC ).Let P be the at bundle over M associated to � and adP the associated g-bundle;similarly ad ~P = ~M � g. We let adPC , ad ~PC denote the complexi�cations of these vectorbundles. Let A�(M;adP ), A�( ~M;ad ~P ) denote the di�erential graded Lie algebras of adP ,ad ~P{valued di�erential forms. According to [KM3, Theorem 2.4] we have:Theorem 15.8 If there is a local cross-section through � to the Ad(G)-orbits then thedi�erential graded Lie algebra A�(M;adP ) controls the germ (X(�; G); [�]).We tensor A�( ~M ) with the Lie algebra g (regarded as a di�erential graded Lie algebraconcentrated in the degree zero). Since � acts on g via ad�, it also acts on the tensorproduct. Since ad ~P is trivial we have isomorphismsA�(M;adP ) �= A�( ~M;ad ~P )� �= (A�( ~M )
 g)�We conclude that under the conditions of Theorem 15.8 the di�erential graded Liealgebra (A�( ~M)
g)� controls the germ of the character variety (X(�; G); [�]) (see Theorem13.6).We will need similar results for the representation variety Hom(�; G) itself. Pick a pointm 2 ~M . We de�ne an augmentation � : A�(M;adP ) ! g by evaluating degree zero formsat a base-point m 2 M and sending the rest of forms to zero. Let A�(M;adP )0 be thekernel of �. Recall that by Theorem 14.1 A�(M;adP )0 controls the germ (Hom(�; G); �).We lift the augmentation � to A�( ~M;ad ~PC ) as follows. Let ~m be a point in ~M whichprojects to m. Then for each ! 2 A0( ~M;ad ~PC ) let~�(!) := j�j�1X2�  � !( ~m)where j�j is the order of the group �. We extend ~� to the rest of A�(M;ad ~P ) by zero. Itis clear that the restriction of ~� toA�( ~M;ad ~P )� �= A�(M;adP )is the same as �. We let A�(M;adP )0 := ker(~�). It is immediate thatA�(M;adP )0 �= A�( ~M;ad ~P )�062



We let � : A�(M) ! R be the evaluation at m and ~� be the lift of � to A�( ~M) as above.We set A�( ~M )0 := ker ~�. It is immediate that the isomorphism above carries ~� to ~� 
 idand we obtain induced isomorphismsA�(M;adP )0 �= A�( ~M;ad ~P )�0 �= (A�( ~M )0 
 g)�By [GM, Theorem 6.8] we conclude that (A�( ~M )0 
 g)� controls the germ (Hom(�; G); �).By modifying the above argument in an obvious way we �nd that (A�( ~M )0 
 g 
 C )�controls the germ (Hom(�; GC ); �).Finally we note that ~� induces an augmentation of A� = E�( ~M ) = E�( ~M). We let A�0denote ker ~�jA�. Repeating the above arguments we �nd that (A�0 
 g)� controls the germ(Hom(�; G); �), (A�0
g
C )� controls the germ (Hom(�; GC ); �) and (under the conditionsof Theorem 15.8) (A� 
 g)� and (A� 
 g
 C )� control the germs(X(�; G); [�]) and (X(�; GC ); [�])respectively.The action of the �nite group � lifts from A� 
 g to the tensor product N 
 g (recallthat the action on the Lie algebra g is induced by the adjoint representation ad� of thegroup �1(M)). LetM� NC 
 g denote the subalgebra de�ned as:M = (NC )� is the space of �� invariants.Let � denote the restriction of � to M, the image of � lies in the algebra of �-invariants(A� 
 g)�. Similarly we let L �M denote the kernel of ~� � �.Lemma 15.9 The homomorphisms � :M! (A�
 g
 C )� ; � : L ! (A�
 g
 C )�0 induceisomorphisms of H0;H1 and monomorphisms of H2.Proof: Standard. �Remark 15.10 Note that H0(A�(M;adPC )0) �= H0((A�
g
C )�0 ) �= H0(L) �= 0 and, underthe assumption of Theorem 15.8, H0(A�(M;adPC )) �= H0((A� 
 g
 C )�) �= H0(M) �= 0.Corollary 15.11 The di�erential graded Lie algebra L controls the germ (Hom(�; GC ); �)and (under the conditions of Theorem 15.8) the di�erential graded Lie algebra M controlsthe germ (X(�; GC ); [�]).The split weight �ltration on NC de�nes a split weight �ltration on N 
 g 
 C (bytaking tensor products of the components Ni with g). Using Proposition 15.7 restrict thesplit weight �ltration from NC to M and L. Clearly these split �ltrations of M and Lsatisfy the properties (a)-(c) (of N ), where in (a) instead of ^ we take the Lie bracket. Theproperty (d) fails, however we will need only its weak version:(d') The restriction of the di�erential toM11 and L11 is identically zero.Our further arguments are the same in the cases ofM and L so we will discuss onlyM.Note that J5 := �1i=5Mi is an ideal inM. We let J be the ideal generated by J5 andM14: J = J5 �M14 � d(M14)The quotientM=J is again a di�erential graded Lie algebra. The property (b) ofM (weightrestrictions on the cohomology groups) implies that the projection morphismM ! Q :=M=J induces isomorphisms of the 1-st and 2-nd cohomology groups. Hence by Theorem13.6 the di�erential graded Lie algebras Q and M control germs which are analyticallyisomorphic. So it is enough to prove that Q controls a quasi-homogeneous germ with thecorrect weights and we shall consider the di�erential graded Lie algebra Q from now on.63



Remark 15.12 We shall use the notation Qp to denote the projection of Mp (p � 4),elements of Qp will be denoted �p. Lemma 13.4 implies that Q = �pQp so that:� d : Qp ! Qp for each p;� [�; �] : Qp 
Qq ! Qp+q ;� The induced weights on H1(Q�) are 1; 2 and the induced weights on H2(Q�) are 2; 3; 4;� d(Q11) = 0.� Q0 = Q0 = 0 (see Remark 15.10).We split each vector space Qkp into the direct sum Hkp �Bkp � Ckp , where� The space of coboundaries Bkp is the image of dp : Qk�1p ! Qkp;� The space Hkp of \harmonic forms" is a complement to Bkp inZkp := ker(dp : Qkp ! Qk+1p );� Ckp is a complement to Zkp in Qkp.We let �p : Qkp ! Bkp denote the projection with the kernel Hkp � Ckp (\coclosed k-forms"). We let Ip : Bkp ! Ck�1p denote the inverse to the di�erential dp. This allows us tode�ne the \co-di�erential"�p : Qkp ! Ck�1p � Qk�1p ; �p = Ip � �p(whose kernel isHkp�Ckp ). Let �p : Qp !Hp denote the projection with the kernel Bp�Cp.Clearly the projection Hkp ! Hk(Q�p)is an isomorphism of vector spaces. Notice that Q1 = Q11 �Q12 �Q13. Consider the varietyV � Q1 given by the equation d� + [�; �]=2 = 0; � 2 Q1 (4)The algebra Q controls the germ (V; 0) (see x13) and our goal is to show that this germis quasi-homogeneous with correct weights. Since � = �1 + �2 + �3 the equation (4) isequivalent to the system:d�1 = 0; d�2 + [�1; �1]=2 = 0; d�3 + [�1; �2] = 0; [�1; �3] + [�2; �2]=2 = 0Recall that the di�erential d is identically zero on Q11 and the restrictiond : Q13 ! Q23has zero kernel (since H1(Q�) has no weight 3 elements). Therefore the equation d�3 +[�1; �2] = 0 is equivalent to the system of three equations:d[�1; �2] = 0; �3[�1; �2] = 0(i.e. [�1; �2] is exact;�3 + �3[�1; �2] = 0 ;equivalently (since d�1 = 0 for all �1)[�1; d�2] = 0; �3[�1; �2] = 0; �3 + �3[�1; �2] = 064



Note however that the equation d�2 + [�1; �1] = 0 together with the graded Lie identityimply that [�1; d�2] = 0. Thus we eliminate the variable �3 and the system of equations (4)is equivalent to:d�2 + [�1; �1]=2 = 0; �3[�1; �2] = 0; �[�1; �3[�1; �2]] + [�2; �2]=2 = 0 (5)The mappings d; �3;�3 are linear and the bracket [�; �] is quadratic. We conclude that thesystem of equations (5) is quasi-homogeneous where the weights of the generators (i.e. thecomponents of) �j are j = 1; 2 and the weights of the relations are 2; 3 and 4. The onlyproblem is that the �rst polynomial equation has nonzero linear term. To resolve thisproblem we let �2 = �02 + �002 , where �02 2 Z12 ; �002 2 C12 . Thus (similarly to the case of �3) weget:the equation d�2 + [�1; �1]=2 = 0 is equivalent to the system:�2[�1; �1] = 0; �002 + �2[�1; �1]=2 = 0Thus we have �2 = �02 � �2[�1; �1]=2 and instead of the system of equations (5) we get thesystem �2[�1; �1] = 0; �3[�1; �02 � �2[�1; �1]] = 0;�[�1; �3[�1; �02 � �2[�1; �1]=2]] + [�02 � �2[�1; �1]=2; �02 � �2[�1; �1]=2]=2 = 0which is quasi-homogeneous with the required weights. Theorem 15.1 follows. �16 Malcev Lie algebras of Artin groupsOut discussion of the material below follows [ABC]. Let k be a �eld of zero characteristicand � be a group. We de�ne the k-unipotent completion (or Malcev completion) �
k of �by the following universal property:� There is a homomorphism �
 k : �! �
k.� For every k-unipotent Lie group U and any homomorphism � : � ! U there is a lift~� : �
k! U so that ~� � (�
k) = �.� �
k and �
k are unique up to an isomorphism.� �
 k is k-pro-unipotent.Remark 16.1 Recall that any group U above is torsion-free and nilpotent.De�nition 16.2 The group �
 k has a k-pro-nilpotent Lie algebra L(�;k). This algebrais called the k-Malcev Lie algebra of �.We will take k = R in what follows. Thus we shall denote L(�) := L(�;R), � := �
 R,etc.Example 16.3 Suppose that the group � has a generating set consisting of elements of�nite order. Then L(�) = 0 because �
 R = f1g. In particular, if � is a Shephard groupwhere all vertices have nonzero labels then L(�) = 0.
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Let H be a �nite-dimensional real vector space, L(H) is the free Lie algebra spannedby H. It can be described as follows. Consider the tensor algebra T (H) of tensors of allpossible degrees on H, de�ne the Lie bracket of T (H) by [u; v] = u
 v� v
u. Then L(H)is the Lie subalgebra in T (H) generated by elements of H.Let Fr be a free group of rank r and H be the r-dimensional real vector space, thenL(H) �= L(Fr) :An element u 2 L(H) is said to have the degree � d if u 2 �i�nH
i. The degree of uequals d if deg(u) � d but deg(u) is not � d� 1. I.e. the degree of u is the highest degreeof monomial in the expansion of u as a linear combination of tensor products of elementsof H. For instance, quadratic elements of L(H) are elements of the degree 2, i.e. they havethe form of nonzero linear combinationsXj [uj ; vj ]; uj ; vj 2 HA quadratically presented Lie algebra is the quotient L(H)=J where J is an ideal gen-erated by a (possibly empty) set of quadratic elements.Theorem 16.4 (P. Deligne, P. Gri�th, J. Morgan, D. Sullivan, [DGMS].) Suppose thatM is a compact connected K�ahler manifold, then the Malcev Lie algebra L(�1(M)) isquadratically presented.Theorem 16.5 (J. Morgan, [Mo1], [Mo2]. ) \Morgan's test." Suppose that M is asmooth connected complex algebraic variety. Then the Malcev Lie algebra L(�1(M)) is thequotient L(H)=J , where L(H) is a free Lie algebra and the ideal J is generated by elementsof degrees 2 � d � 4.Remark 16.6 Until now Morgan's theorem was the only known restriction on the funda-mental groups of smooth complex algebraic varieties, besides �nite presentability. Muchmore restrictions are known in the case of smooth complete varieties and compact K�ahlermanifolds, see [ABC].Below we compute Malcev algebras of Artin groups. Suppose that Ga is an Artin group.Let n be the number of generators of Ga. De�ne a Lie algebra over RL := hX1; :::;Xnj[Xi;Xj ] = 0 if �(i; j) 6=1 is even ;Xi = Xj if �(i; j) 6=1 is odd iwhere [X;Y ] denotes the Lie algebra commutator. Clearly this Lie algebra is quadraticallypresentable. Let xi denote the generator of Ga corresponding to the vertex vi.To compute Malcev completions we will need the following two lemmasLemma 16.7 Suppose that � : Ga ! N is a homomorphism to a torsion-free nilpotentgroup. Then for all xi; xj such that 2qij = �(i; j) 6= 1 we have [�(xi); �(xj)] = 1. For allxi; xj such that 2qij + 1 = �(i; j) 6=1 we have �(xi) = �(xj).Proof: The assertion is obvious if N is Abelian. So we assume that the assertion is validfor all (s � 1)-step nilpotent torsion-free groups �N . Let N be s-step nilpotent. Let Z(N)denote the center of N , let �N := N=Z(N) and p : N ! �N be the projection. Then by theinduction hypothesis:� [p(�(xi)); p(�(xj))] = 1, provided that 2qij = �(i; j) 6=1.66



� p(�(xi)) = p(�(xj)), provided that 2qij + 1 = �(i; j) 6=1.(1) Consider the case 2qij = �(i; j). Then �(xi)�(xj) = �(xj)�(xi)z, for some z 2 Z(N).Thus the relation (xixj)qij = (xjxi)qijimplies that zqij�[(xjxi)qij ] = �[(xjxi)qij ]Since N is torsion-free we conclude that z = 1 and hence �([xi; xj ]) = 1.(2) Another case is when 2qij + 1 = �(i; j). Then �(xi) = z�(xj) , for some z 2 Z(N).The relation (xixj)qijxi = (xjxi)qijxjimplies that z = 1. �Remark 16.8 In our paper we use only Artin groups with even labels.Lemma 16.9 Suppose that U is an R-unipotent group, a; b 2 U are commuting elements.Then [log(a); log(b)] = 0 in the Lie algebra of U .Proof: Since U is unipotent we can think of U as the subgroup of the group of upper-triangular matrices with 1-s on the diagonal. Then for any g 2 U we have: log(g) =log(1 � (1 � g)), h = 1 � g is a nilpotent matrix, thus log(1 � h) is a polynomial of h.Since matrices a; b commute, any polynomial functions of them commute as well. Thus[log(a); log(b)] = 0. �Theorem 16.10 Under the above conditions L �= L(Ga) is the Malcev Lie algebra of Ga.Proof: Let F denote the free group on x1; :::; xn and � : F ! Ga be the quotient map.Let F 
 R be the R-unipotent completion of F and � : F ! F 
 R be the canonicalhomomorphism. Let L(F;R) be the Lie algebra of F 
 R. Put gi = �(xi), 1 � i � n andXi := log(gi). Let I be the ideal in L(F;R) generated by the commutators [Xi;Xj ], for evenlabels �(i; j) 6= 1 and the elements Xi �Xj if �(i; j) 6= 1 is odd. Let Q := L(F;R)=I bethe quotient Lie algebra and Q be the corresponding pro-unipotent Lie group over R. Letb� : F 
R ! Q be the quotient map. Put �gi := b�(gi) and �Xi := db�(Xi). Then �gi = exp( �Xi),1 � i � n. Consequently [�gi; �gj ] = 1 for all vertices i; j connected by an edge with evenlabel and �gi = �gj for all vertices i; j connected by an edge with odd label. Hence we have acommutative diagram F ��! F 
 R �! L(F;R)�??y b�??y ??yGa ��! Q �! Qwhere �(�(xi)) = �gi, 1 � i � n. We claim that Q is the Malcev completion of Ga. It isclear that any homomorphism � : Q! U from Q to a unipotent group U is determined byits pull-back to Ga (because its pull-back to F 
 R is determined by its further pull-backto F ). So let � : Ga ! U be a homomorphism with U a unipotent group over R. Thehomomorphism ��� extends to a morphism b� : F 
 R ! U . Note that U is necessarilynilpotent and torsion-free. 67



According to Lemma 16.7 for each pair of (i; j) such that �(i; j) is even we have:b�([gi; gj ]) = ���([xi; xj ]) = �([xi; xj ]) = 1Hence log(b�(gi)) and log(b�(gj)) commute in the Lie algebra u of U (see Lemma 16.9).Therefore db�(Xi) and db�(Xj) commute in u. The case of odd labels �(i; j) is similar. Thisimplies that db� descends to Q and consequently b� descends to Q. �Corollary 16.11 If Ga is any Artin group then L(Ga) is quadratically presented.Thus the Artin groups constructed in Theorem 14.7 satisfy Morgan's test of being fun-damental groups of smooth complex algebraic varieties.17 Representation varieties near the trivial representationThe second author would like to thank Carlos Simpson for explaining Theorem 17.1 in thissection.Let � be a �nitely-generated group, �
R is its Malcev completion, �
R : �! �
R isthe canonical homomorphism. Let L(�) denote the Malcev Lie algebra of �. Let G be theset of real points of an algebraic group G de�ned over R, g be the Lie algebra of G. Thehomomorphism � 
 R induces the pull-back morphism �� : Hom(�
 R;G)! Hom(�;G).Let �0 : �
 R ! G be the trivial representation .Theorem 17.1 1. If the Lie algebra L(�) is quadratically presentable then the varietyHom(L(�); g) is given by homogeneous quadratic equations.2. The varieties Hom(�
 R;G) and Hom(L(�); g) are naturally isomorphic.3. The morphism �� induces an isomorphism of germs(Hom(�
 R;G); �0) �! (Hom(�;G); ��(�0))Proof: The property (1) is obvious. To prove (2) note that the group � 
 R is R-pro-unipotent, thus we have a natural isomorphism between the representation variety of �
Rand of its Lie algebra.Now consider (3). Let A be an Artin local R-algebra. We recall that G(A) is the set ofA-points of G, algebraically the group G(A) is the semidirect product NA oG, where NAis a certain R-unipotent group (kernel of the natural projection p0 : G(A)! G). Considerthe space Hom0(�; G(A)) := f� : �! G(A)jp0(�) = �0g �= Hom(�; NA)Thus, by the de�nition of �
R, for each Artin local R-algebra A the morphism �� inducesa natural bijection between the R-points of the varieties Hom(�; NA) and Hom(�
R; NA).Then we have an induced isomorphism between functorsHom(�; G) : A 7! set ; Hom(�
 R; G) : A 7! setof A-points. Therefore (by [GM]) �� induces an isomorphism of the germs(Hom(�
 R;G); �0 ) �! (Hom(�;G); ��(�0))� 68



Proposition 17.2 Let � be a Coxeter group or a Shephard group (where all vertices havenonzero labels). Then the trivial representation �0 : � ! G is in�nitesimally rigid (andhence is an isolated reduced point) in Hom(�;G).Proof: The group � is generated by elements of �nite order. Let � be a cocycle in Z1(�; g).Then �jhgji is a coboundary for each generator gj of � (since gj has �nite order). However�0(gj) = 1, hence �(gj) = 0 for all j. We conclude that � = 0. �Theorem 17.3 Let � be any Artin group. Then the representation variety Hom(�;G) hasat worst quadratic singularity at the trivial representation.Proof: Combine Corollary 16.11 and Theorem 17.1. �References[AK] S. Akbulut, H. King, \Topology of Real Algebraic Sets", MSRI Publications, Vol.25 (1992), Springer-Verlag.[ABC] J. Amoros, M. Burger, K. Corlette, D. Kotschick, D. Toledo, \Fundamental groupsof K�ahler manifolds", AMS Mathematical Surveys and Monographs, Vol. 44, 1996.[AN] D. Arapura, M. Nori, Solvable fundamental groups of algebraic varieties and K�ahlermanifolds, Preprint, June 1997.[A1] V. I. Arnold, Normal forms of functions in neighborhoods of degenerate criticalpoints, In: Lecture Notes of London Math. Soc., Vol. 53, \Singularity Theory",91{131.[A2] V. I. Arnold, Critical points of smooth functions and their normal forms, In: Lec-ture Notes of London Math. Soc., Vol. 53, \Singularity Theory", 132{206.[AM] M. Atiyah, I. MacDonald, \Introduction to Commutative Algebra", Addison-Wesley, 1969.[BiM] E. Bierstone, P. Millman, Canonical desingularization in characteristic zero byblowing up maximal strata of a local invariant, Inventiones Math., Vol. 128, F.2 (1997) 207{320.[BuM] R. O. Buchweitz, J. J. Millson, CR-geometry and deformations of isolated singu-larities, Memoirs of AMS, Vol. 125, N 597 (1997).[B] E. Brieskorn, Die fundamentalgruppe des raumes der regularen orbits einerendlichen komplexen spiegelungsgruppe, Inventiones Math., Vol. 12 (1971) 57{61.[BS] E. Brieskorn, K. Saito, Artin-Gruppen und Coxeter-Gruppen, Inventiones Math.,Vol. 17 (1972) 245{271.[C] H. S. M. Coxeter, Finite unitary groups generated by reections, Abhandlundenaus dem Mathematischen Seminar der Universitat Hamburg, Bd. 31 (1967) 125{135.[D1] P. Deligne, Theorie de Hodge II, Math. Publications of IHES, Vol. 40 (1971) 5{ 58.69
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Figure 16: Labelled graph of an Artin group.
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