
Universality theorems for con�guration spaces of planarlinkagesMichael Kapovich and John J. MillsonApril 28, 2000AbstractWe prove realizability theorems for vector-valued polynomial mappings, real-algebraicsets and compact smooth manifolds by moduli spaces of planar linkages. We also estab-lish a relation between universality theorems for moduli spaces of mechanical linkagesand projective arrangements.1. IntroductionThis paper deals with moduli spaces of planar linkages. An abstract linkage (L; `) is a graphL with a positive real number `(e) assigned to each edge e. We assume that we have chosena distinguished oriented edge e� = [v1v2] in L. Themoduli spaceM(L) of planar realizationsof L := (L; `; e�) is the set1 of maps � from the vertex set of L into the Euclidean plane R2(which will be identi�ed with the complex plane C ) such that� j�(v) � �(w)j2 = (`[vw])2 for each edge [vw] of L.� �(v1) = (0; 0).� �(v2) = (`(e�); 0).Clearly these conditions give M(L) a natural structure of a real-algebraic set in R2rwhere r is the number of vertices in L.It is important to note that the ideal I in the polynomial ring R[X1 ; Y1; :::;Xr ; Yr](here Xi; Yi are the coordinates of �(vi)) generated by the above equations can be strictlycontained in the ideal of all polynomials vanishing on the set M(L) � R2r . We let M(L)denote the a�ne subscheme of R2r corresponding to the ideal I. We will in fact add morefunctions to the ideal I corresponding to certain degenerate triangles { see Convention 3.8.In De�nition 3.15 we de�ne functional linkages. The abstract linkage corresponding toa functional linkage comes with two sets of vertices: the inputs (P1; :::; Pm) and the outputs(Q1; :::; Qn). We let p : M(L) ! A m (the input map) and q : M(L) ! A n (the outputmap) be the forgetful maps that record only the positions of the images of Pi's and Qj'sunder realizations �. Here the a�ne line A is either C �= R2 (in which case we refer to Las a complex functional linkage) or R = R � f0g � R2 (in which case we refer to L as realfunctional linkage).We say that L as above is a functional linkage 2 for a mapping f : A m ! A n if there isa commutative diagram1Apriori this set could be empty.2See De�nition 3.15 for more precise de�nition. 1



M(L). p q &A m f�! A nand p is a regular topological branched cover of a bounded domain in A m . We proveTheorem A. Let f : A m ! A n be a polynomial map with real coe�cients (where A is eitherC or R). Let O be a point in A m and r > 0. Then there is a functional linkage L for fsuch that the r-ball Br(O) is in the interior of the image of p and p is an analytically trivialcovering over Br(O). The same conclusion holds for polynomial maps whose coe�cients arenot required to be real if we use more general de�nition of functional linkage: instead of themoduli space M(L) we consider the space of relative realizations C(L; Z), see De�nition3.15 for details.Let S � Rm be a compact real-algebraic set, i.e. it is the zero set of a polynomialfunction f : Rm ! Rn . The set S is contained in an r-ball Br(O) centered at O. We thenapply Theorem A (the real case) and construct a functional linkage L for the pair (f;Br(O)).We let L0 be the abstract linkage obtained from L by gluing the output vertices to the base-vertex v1. Let p0 denote the restriction of the input mapping p of L to M(L0), this mapis the \input map" of L0. We show in x10 that p0 is an analytically trivial polynomialcovering over S. We obtainTheorem B. Let X be any compact real-algebraic subset of Rm . Then there is a linkageL0 so that M(L0) is Nash isomorphic to a disjoint union of a �nite number of copies of X.Remark 1.1. Nash isomorphism is de�ned in x2. Nash isomorphism implies real analyticisomorphism.Similarly we haveTheorem B'. Let X be any complex-algebraic subset of Cm and U be an open (in theclassical topology) bounded subset of X. Then there is a linkage L0 so that the input mapp0 is an analytically trivial polynomial covering over U .Remark 1.2. Here we treat X as a real algebraic set.Now letM be a compact smooth manifold. By work of Seifert, Nash, Palais and Tognoli(see [AK] and [T]), M is di�eomorphic to a real algebraic set S, hence as a corollary ofTheorem B we getCorollary C. Let M be a smooth compact manifold. Then there is a linkage L0 whosemoduli space is di�eomorphic to a disjoint union of a number of copies of M .Remark 1.3. It is not true that for any compact smooth manifold M there exists L0 suchthat M(L0) is di�eomorphic to M . This is because M(L0) admits a Z=2-action (comingfrom O(2)=SO(2)) which is nontrivial provided that L0 is connected and M(L0) is nota point. Hence, if M is compact, distinct from a point and does not admit a nontrivialZ=2-action then M cannot be di�eomorphic to the moduli space of a planar linkage.Question 1.4. Given a compact real-algebraic set S is it possible to construct a markedabstract linkage L so that the output map C(L; Z) ! M is a 2-fold analytically trivialcovering? H. King [K], generalizing the methods of this paper, proved that the answer ispositive if one generalizes the notion of abstract linkage to cabled linkage, i.e. certainpoints are connected by cables: they are not allowed to move more than certain distanceapart. Moreover, King's theorem applies to real quasi-algebraic sets, i.e. sets determinedby algebraic equations and non-strict algebraic inequalities.2



Universality theorems similar to Theorems A, B and Corollary C hold for moduli spacesof realizations of abstract arrangements in P2, see [Mn] 3, [KM2] and x12 of this paper formore details (the main framework of the present paper is analogous to [KM2]). Howeverstronger realizability theorems hold in this case. In particular we get functional arrange-ments such that the input map is injective (see [KM2]). In x13 we establish a relationbetween the two kinds of universality theorems using moduli spaces of spatial Euclideanlinkages, namely we show that the universality theorem for arrangements (Theorem 12.7)implies the followingTheorem D. Let S be a compact real algebraic set de�ned over Z. Then there areabstract linkages L;L0 so that:(1) M0(L;RP2) is entire birationally isomorphic to S.(2) M0(L0;R3 ) is an analytically trivial entire rational covering of S.Both M0(L;RP2), M0(L0;R3) are Zariski open and closed subsets in the moduli spacesM(L;RP2), M(L0;R3) of realizations of L;L0 in RP2 and R3 .Remark 1.5. It seems surprising that one can prove a somewhat stronger realization the-orem for arrangements than for linkages. One explanation for this is that the image of theinput map of any connected functional linkage is bounded. By a theorem of Sullivan [Sul]a manifold with nonempty boundary cannot be an algebraic set 4. Thus (unlike the case offunctional arrangements) there are no functional linkages if we require the inputmap to be injective.There is a long history of previous work on mechanical linkages (see x14 for a more de-tailed discussion). In particular, versions of Theorem A (for polynomial functions R ! R2 )and of Theorem E below were �rst formulated by A. B. Kempe in 1875 [Ke1], however, hisstatement of the theorem was vague and as far as we can tell, his proof requires corrections(due to possible degenerate con�gurations).Theorem E. (See x11.) Let f = f(z; �z); f : C ! R be a polynomial function of the variablesz; �z and � := f�1(0) � C be a real-algebraic curve. Pick an open (in the classical topology)bounded subset U � �. Then there is a closed C -functional linkage L0 so that the inputmap p0 : C(L0; Z)! C is an analytically trivial polynomial covering over U . Thus we can\draw" arbitrary algebraic curves in R2 using planar linkages.The main problem with Kempe's proof is that it works well only for a certain subset ofthe moduli space, however near certain \degenerate" con�gurations the moduli space splitsinto several components and the linkage fails to describe the desired polynomial function(see for instance x3.1). We use the \rigidi�ed parallelograms" to resolve this problem andget rid of the undesirable components.Kempe's methods were also insu�cient to prove Theorem B and Corollary C even if theproblem of \degenerate con�gurations" is somehow resolved. The second obstacle in provingTheorem B is that the restriction p0 of the regular rami�ed covering p :M(L)! Dom(L)to M(L0) apriori does not have to be an analytically trivial covering:(a) It is possible that M(L0) intersects the rami�cation locus of p,(b) if p0 is a covering it might be nontrivial,(c) even if p0 is a topologically trivial covering it can fail to be analytically trivial coveringbecause of \quasiwalls" (see x6 for various examples): think of the function x3 : R ! R.3Note that Mnev in [Mn] poves other interesting universality theorems for con�guration spaces of pointsin Pn and convex polytopes in Rk of �xed combinatorial type. His results were generalized later by J. Richter-Gebert in [R], who proved a universality theorem for 4-dimensional convex polytopes.4The Euler characteristic of the link of a boundary point is 1. But, by [Sul], if X is a real algebraic setthen the Euler characteristic of the link of any x 2 X is even.3



Both problems of degenerate con�gurations and reection symmetries of linkages wereneglected (or incorrectly resolved) in the previous work we have seen (e.g. [B], [HJW]and [JS]). The �rst precise formulation of a theorem of the above type was given byW. Thurston{ who stated a version of Corollary C about 20 years ago and has given lectureson it since. He realized that such a theorem would follow by combining the 19-th centurywork on linkages (i.e. Kempe's theorem) with the work of Seifert, Nash, Palais and Tognoli.However, Thurston did not write up a proof so we have no way of knowing whether heovercame the problems discussed above in the 19-th century work on linkages. There isalso ambiguity concerning which theorem Thurston formulated in his lectures, we heardthree di�erent versions from three sources. According to the most recent (April 1997) oralcommunication from Thurston, he can also prove Corollary C.We would like to thank a number of people who helped us with this work. The authorsthank H. King, S. Lillywhite and R. Schwartz for helpful conversations about real algebraicgeometry and linkages. We are also grateful to M. Karel, R. Connelly, W. Whiteley andG. Ziegler for supplying us with some of the references. The �rst author was supported byNSF grants DMS-96-26633 and DMS-99-71404 at University of Utah, the second author byNSF grant DMS-98-03520 at University of Maryland.Contents1 Introduction 12 Some real algebraic geometry 53 Linkages 133.1 Abstract linkages and their realizations . . . . . . . . . . . . . . . . . . . . . 133.2 Fiber sums of linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.3 Functional linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Functionality theorems 215 Fixing �xed vertices 296 Elementary linkages 306.1 The translators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306.2 The pantograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326.3 The adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346.4 The modi�ed inversor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356.5 The multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376.6 The straight-line motion linkage . . . . . . . . . . . . . . . . . . . . . . . . . 387 Expansion of domains of functional linkages 398 Realization of complex polynomial maps by functional linkages 409 Transition from complex to real functional linkages 4110 Realization of algebraic sets and smooth manifolds as moduli spaces ofplanar linkages 4211 How to draw algebraic curves 424



12 Universality theorem for arrangements in P2 4313 The relation between the two universality theorems 4614 A brief history of \Kempe's theorem" 48Bibliography 492. Some real algebraic geometryIn this section we review those notions from the theory of real a�ne schemes and realanalytic spaces that we will need in the rest of the paper. The discussion is complicatedbecause (as noted in the introduction) the natural system of equations de�ning M(L)de�nes an ideal in R[X1 ; Y1; : : : ;Xr; Yr] that is not reduced. Also it is remarkable that theabstract notion of �ber product of schemes corresponds (under the realization functor) tothe operation of gluing of linkages, see Theorem 4.1. The reader who interested in provingonly the topological version of Corollary C can skip this section.We begin by de�ning the categories of a�ne schemes and algebraic sets and the forgetfulfunctor � from a�ne schemes to a�ne algebraic sets.An a�ne subscheme X of Rn is a locally-ringed space (i.e. a topological space equippedwith a sheaf of local rings) of the form SpecR[X1 ; :::;Xn]=I where I is an ideal (see [H, page72] for the de�nition of Spec). An a�ne scheme de�ned over R is a locally-ringed space ofthe above form for some n. If X is as above we shall use the notation R[X] to denote thering R[X1 ; :::;Xn]=I which we will call the coordinate ring of X.If k = R or C we will abuse notation and use kn to denote the corresponding schemeover R. (In particular C n is identi�ed with R2n .)If X is an a�ne scheme and x 2 X is a point then TxX will denote the Zariski tangentspace of X at x.Let X = SpecR[X1 ; :::;Xn]=I and Y = SpecR[Y1 ; :::; Ym]=J . Then according to [H] amorphism f : X ! Y consists of a pair (f; ~f) where f : X ! Y is a map of sets and~f : OY ! f�OX is a map of sheaves. However for the case in hand, ~f is determined by theassociated map of global sections~f : R[Y1 ; :::; Ym]=J ! R[X1 ; :::;Xn]=I:Thus we may identify ~f with a morphism ~f : R[Y1 ; :::; Ym] ! R[X1 ; :::;Xn] with ~f(J) � I.If x is a point in X then we will use the notation Dxf to denote the map of Zariski tangentspaces Dxf : TxX! Tf(x)Y induced by f .An a�ne scheme as above is said to be reduced if I is equal to its radical pI . Recallthat pI = fg 2 R[X1 ; :::;Xn] : gk 2 I for some kg:An a�ne scheme X over R is said to be real reduced if it is reduced and moreover I as abovehas the property:Suppose g1; :::; g` 2 R[X1 ; :::;Xn] satisfy g21 + :::+ g2̀ 2 I. Then g1; :::; g` 2 I.Let I � R[X1 ; :::;Xn] be an ideal. We de�ne the real radical rpI byg; g1; :::; g` 2 rpI () g2k + g21 + :::+ g2̀ 2 I for some k:Note that I � pI � rpI. Thus X = SpecR[X1 ; :::;Xn]=I is real reduced if and only ifI = rpI. An ideal I is real radically closed if I = rpI.5



We now de�ne the category of real algebraic sets. Let I be an ideal in R[X1 ; :::;Xn].We de�ne a subset Z(I) � Rn byZ(I) = fx 2 Rn : g(x) = 0; g 2 Ig:We note that Z(I) = Z( rpI). A subset X � Rn is said to be an algebraic subset if thereexists I � R[X1 ; :::;Xn] with X = Z(I). A set X is said to be a real algebraic set if it is analgebraic subset of Rn for some n. Let X and Y be algebraic sets. Then a map f : X ! Yis a morphism if there exist embeddings as above X � Rn ; Y � Rm such that f is therestriction of a polynomial mapping ~f : Rn ! Rm .Similarly we de�ne semi-algebraic subsets of Rn . The collection of semi-algebraic sub-sets in Rn is the boolean algebra containing all sets of the form fx 2 Rn jf(x) > 0g forarbitrary polynomial functions f . For instance, any algebraic set fxjf(x) = 0g (where f isa polynomial) is semi-algebraic since it is the complement of fxjf(x) > 0g [ fxjf(x) < 0g.A morphism between the semi-algebraic subsets X � Rn ; Y � Rm is a map f : X ! Ywhich is the restriction of a polynomial mapping ~f : Rn ! Rm .Let X � Rn be any subset. We de�ne an ideal I = I(X) � R[X1 ; :::;Xn] byI(X) := fg 2 R[X1 ; :::;Xn] : g(x) = 0 for all x 2 Xg:If X = Z(J) for some ideal J � R[X1 ; :::;Xn], then I = rpJ . This is the real Nullstellensatzfor polynomials [BE]. EquivalentlyTheorem 2.1. I(Z(I)) = rpI.Corollary 2.2. Z and I give an order reversing bijection between real radically closed idealsin R[X1 ; :::;Xn] and algebraic subsets in Rn .We de�ne a functor � from the category of real a�ne subschemes of Rn to algebraicsubsets of Rn by �(X) = X with X = Z(I), where X = SpecR[X1 ; :::;Xn]=I. If f : X! Y isa morphism then f = �(f) : X ! Y is the associated map of sets. We have a right inverse	 to �. Let X be an algebraic subset of Rn . De�ne a real reduced scheme Xcan = 	(X) byXcan = SpecR[X1 ; :::;Xn]=I(X):If f : X ! Y is a morphism we de�ne f : Xcan ! Ycan by f = (f; f�) where f� is thepull-back map on functions.Remark 2.3. As noted in the introduction if L is an abstract linkage then there is acanonical a�ne subscheme M(L) of R2r�4 such that�(M(L)) =M(L):However M(L) is not necessarily reduced or real reduced. So a general polynomial mapf :M(L1)!M(L2) will not necessarily be of the form �(f) for a morphism f :M(L1)!M(L2).Suppose that X and Y are algebraic sets and that f : X ! Y is a morphism. Supposefurther that we have chosen a�ne schemes X;Y with �(X) = X and �(Y) = Y . We willsay f is a scheme-theoretic morphism if there is a morphism f : X! Y such that �(f) = f .The next de�nitions follow [AK]. Let X � Rn be an algebraic set. We de�ne anentire rational function f : X ! R to be a function which is locally (in a Zariski openneighborhood of each point of X) the quotient of polynomials. Now let X � Rn ; Y � Rmbe algebraic subsets. An entire rational map X ! Y is a mapping of sets where components6



are entire rational functions. A entire birational isomorphism f : X ! Y is an entire rationalmap which has entire rational inverse (in particular f is a homeomorphism). Note that thenotion of entire birational isomorphism is more restrictive than birational isomorphism (abirational map does not have to be de�ned everywhere).In what follows we will need the notion of the �ber product of a�ne schemes de�nedover R. Suppose that we have a diagram of real a�ne schemesYg #X f�! ZThe categorical �ber product X�ZY is an a�ne schemeW de�ned over R with morphisms�1 :W! X and �2 :W! Y such that we have a diagram (called a �ber square)W �2�! Y�1 # g #X f�! Zsatisfying the universal property that:For any a�ne scheme V de�ned over R the natural map of setsMor(V;W)!Mor(V;X)�Mor(V;Y)is an injection with image the subset of pairs (�; �) satisfying f � � = g � �.Remark 2.4. We will also use the notation X�f=g Y for the �ber product X�Z Y.We now haveLemma 2.5. The categorical �ber product X�ZY exists (as an a�ne scheme de�ned overR) and is unique up to canonical isomorphism.Proof: Choose representationsX = SpecR[X1 ; :::;Xn]=I;Y = SpecR[Y1 ; :::; Ym]=J;Z = SpecR[Z1 ; :::; Z`]=K:Then de�ne X�Z Y := Spec(R[X1 ; :::;Xn]=I 
R[Z1;:::;Z`]=K R[Y1 ; :::; Ym]=J):This proves existence. Uniqueness is obvious.Remark 2.6. In down-to-earth terms X �Z Y is represented by the subscheme of Rn+m(with coordinates (X1; :::;Xn; Y1; :::; Ym)) de�ned by the union of equations de�ning X andY together with the equations f�Zi = g�Zi; i = 1; :::; `:The �ber product operation is a functor on the category of \a�ne schemes over Z" inthe following sense:Given two commutative diagramsX f�! X0& .Z and Y g�! Y0& .Z7



we obtain a morphism X�Z Y f�Zg�! X0 �Z Y0& .ZThis is easily seen when reformulated in terms of tensor products of R[Z]-algebras. Thenthe �ber product f�Z g is just the tensor product of R[Z]-algebra homomorphisms.We next de�ne a functor � from the category of a�ne schemes over R to real analyticspaces. The de�nition is complicated because we do not want to assume that our realanalytic spaces are reduced- we do not want to loose track of nilpotents.Let X = Spec(R[X1 ; :::;Xn]=I) be a subscheme of Rn . Our goal is to de�ne the sheafOan (in the classical topology) of real analytic \functions" (they may be nilpotent) over thealgebraic set X that underlies X. We �rst de�ne OanRn for the a�ne space Rn . Let U � Rnbe an open subset. Then OanRn(U) is de�ned to be the ring of all analytic functions from Uto R. Let � : X ! Rn be the inclusion. We de�ne a sheaf ��1OanRn over X as follows. LetU � X be open (in the classical topology). Then��1OanRn(U) = ��!limV�UOanRn(V )where the direct limit is taken over all open subsets V � Rn that contain U with V1 < V2if V1 � V2 (see [H, page 65]). Thus an element of OanRn(U) is a germ along U of a real-analytic function de�ned on a neighborhood of U in Rn . Note that if I = (f1; :::; fN ) thenthe restrictions of f1; :::; fN give rise to elements (again denoted f1; :::; fN ) of ��1OanRn(U).We de�ne J an(U) � ��1OanRn(U) to be the ideal generated by f1; :::; fN . We then de�ne apresheaf ~Oan on X by ~Oan(U) = ��1OanRn(U)=J an(U):We let Oan be the sheaf on X associated to the presheaf ~Oan. The set X equipped withthe sheaf of local rings Oan will be called the analytic space associated to the a�ne schemeX and denoted Xan.Remark 2.7. This de�nition states that an analytic function f 2 OanRn \vanishes" on X\Uif it may be written as f = PNi=1 gifi where I = (f1; :::; fN ) and g1; :::; gN are analyticfunctions on U . This is a stronger requirement than requiring that the induced function fon X \U is identically zero. An element of Oan(U) corresponds to a cover U = [i2IUi anda collection of elements gi 2 ��1OanRn(Ui), i 2 I, such that the restrictions of gi and gj in��1OanRn(Ui \ Uj) agree in the sense that their di�erence lies in J an(Ui \ Uj). The point isthat an analytic function on U might not be the restriction of an analytic function de�nedin a neighborhood of U in Rn (see Lemma 2.8 below).We amplify the previous remark by a sobering example. Let X be the \Whitney'sumbrella" X = f(x; y; z) 2 R3 : x2 � zy2 = 0g:We give X the a�ne scheme structure Xcan and de�ne I, Oan;J an as above. Consider apoint p = (0; 0; z) 2 X with z < 0. If U is a su�ciently small neighborhood of this pointthen X\U is contained in the z-axis and the coordinate functions x and y vanish on U \X.Nevertheless, they are not in J anp as de�ned above. Hence I is real-reduced but J an is notreal-reduced (i.e. J an 6= Jcan, see the next paragraph). However x; y 2 rpJ anp .If X is an algebraic set we de�ne the sheaf of analytic functions Ocan on X to bethe sheaf associated to the presheaf ~Ocan de�ned as follows. Let U � X be open. Thenf 2 ~Ocan(U) if there is a neighborhood V of U in Rn and an analytic function ~f 2 OanRn(V )that restricts to f . We de�ne Jcan � ��1(OanRn) to be the sheaf of analytic functions on Rn8



that vanish on X in the usual sense. Unless otherwise indicated we will assume that analgebraic set is given the above analytic structure.We can also use Whitney's umbrella X to give an example of a real analytic function onan algebraic set Y � Rn that is not the restriction of an analytic function on a neighborhoodU of Y in Rn . Here Y is given the canonical analytic structure. The following example wasprovided by Henry King.Let U+ and U� be the open subsets of R3 de�ned byU+ := f(x; y; z) 2 R3 : z > �3=4g; U� := f(x; y; z) 2 R3 : z < �1=2g:De�ne f� : U� ! R by f+ = (x; y; z) = y log(1 + z) and f�(x; y; z) = 0. Then the pairs(f+jX;U+ \X) and (f�jX;U� \X) de�ne an analytic function f on X (with its canonicalanalytic structure). We haveLemma 2.8. (H. King) The function f does not extend to an analytic function in a neigh-borhood U of X in R3 .Proof: Suppose an extension ~f exists. We claim there is an analytic function g de�ned ona neighborhood V of (0; 0; 1) in R3 such that~f(x; y; z) = y log(1 + z) + (x2 � zy2)g(x; y; z) (1)in V . Indeed, near (0; 0; 1), X is the union of two smooth analytic hypersurfacesX+ = f(x; y; z) : x = pzyg and X� = f(x; y; z) : x = �pzyg:Now by assumption ~f(x; y; z) � y log(1 + z) vanishes on X+. Hence there exists g1(x; y; z)(de�ned near (0; 0; 1)) such that~f(x; y; z)� y log(1 + z) = (x�pzy)g1(x; y; z):Then we restrict to X� and �nd that g1(x; y; z) is divisible by x +pzy near (0; 0; 1) andthe claim follows.We now take the partial derivative of the both sides of the equation (1) with respect toy and restrict to X \ V to obtain@f@y jX\V = log(1 + z)� 2yzg(x; y; z)jX\V :Next restrict this identity to the intersection X \fy = 0g. This intersection near (0; 0; 1) isan interval in the z-axis. After this restriction we get:@f@y jX\V \fy=0g = log(1 + z):By the unique analytic continuation, this identity must hold on X \ U \ f(x; y; z) : z >�1g \ fy = 0g and on X \ U \ f(x; y; z) : 0 > z > �1g. However @f@y extends to all of Xand log(1 + z) blows up as z ! �1. Contradiction.We obtain the corresponding notions of analytic morphism. Let X � Rn and Y � Rmbe algebraic subsets. Then an analytic morphism f : X ! Y is a map such that for eachx 2 X there is an open neighborhood (in the classical topology) U of x in Rn such thatf jU \X is the restriction of a real analytic map ~f : U ! Rm . An analytic isomorphism isa morphism which has an analytic inverse. 9



More generally, assume we are given a�ne subschemes X � Rn , Y � Rm with �(X) =X;�(Y) = Y . We de�ne a morphism f : Xan ! Yanto be a morphism of locally-ringed spaces [H, page 72]. In what follows it is important tonoteLemma 2.9. A morphism f : Xan ! Yaninduces an analytic morphism f : X ! Y .Proof: Indeed, f induces a map of point sets f : X ! Y . Also, given an open subset U � Y ,f comes with a local homomorphism~fU : �(U;OanRm jU)! �(f�1(U);OanRn jf�1(U))which commutes with point evaluation since ~fU is local. Hence ~fU carries �(U;Jcan;Y ) into�(f�1(U);Jcan;X) and we obtain an induced map of quotients.Remark 2.10. The previous lemma also follows from the local Nullstellensatz [ABR, Propo-sition 2.8 (h), page 216] which implies Jcan = rpJ :The above equation means that the maximal ideals Jcan;x and Jx in OanRn;x are related byJcan;x = rpJx:Suppose X;Y;Xan;Yan are as above and suppose that f : X ! Y is an analyticmorphism. We say that f is a scheme-theoretic analytic morphism if it is induced bya morphism f : Xan ! Yan. We de�ne scheme-theoretic analytic isomorphism to be ascheme-theoretic analytic morphism which has a scheme-theoretic analytic inverse.We will need the �ber product of analytic germs. Suppose that we are given the followingdiagram of analytic germs: (Y; y)g #(X; x) f�! (Z; z)De�ne the �ber product of germs (W; w) = (X; x) �(Z;z) (Y; y) (where w = (x; y)) bythe universal property (in the category of analytic germs) analogous to the previous onefor a�ne schemes. The uniqueness of the �ber product is obvious. We prove existenceby constructing a presentation of Oan(W;w) from presentations of Oan(X;x), Oan(Y;y) and Oan(Z;z).Choose presentations Oan(X;x) = RhX1 ; :::;Xni(f1; :::; fr)Oan(Y;y) = RhY1 ; :::; Ymi(g1; :::; gs)Oan(Z;z) = RhZ1 ; :::; Z`i(h1; :::; ht)Then de�ne Oan(W;w) by Oan(W;w) = RhX1 ; :::;Xn; Y1; :::; YmiI10



where I = (f1; :::; fr; g1; :::; gs; f�Z1 � g�Z1; :::; f�Z` � g�Z`):In the above Rh: : :i denotes the R-algebra of convergent power series. The R-algebra Oan(W;w)is called the analytic tensor product of Oan(X;x) and Oan(Y;y) over Oan(Z;z) and denotedOan(X;x)b
Oan(Z;z)Oan(Y;y):Our de�nition is an extension of [GR, page 181].The �ber product operation is again a functor{ we leave this to the reader.We will later need to know that the operations of taking �ber products and passingto germs commute. Let X;Y;Z and f; g be as in the de�nition of �ber products of a�neschemes and let x 2 X; y 2 Y; z 2 Z with f(x) = z and g(y) = z. Let p1 : X�Z Y! X andp2 : X�Z Y! Y be the projections. We haveLemma 2.11. The induced map of analytic germsp1 �Z p2 : (X�Z Y; (x; y))! (X; x) �(Z;z) (Y; y)is an isomorphism.Proof: Choose as the local models for the germs (X; x), (Y; y) and (Z; z) the ones deter-mined by the coordinates (X1; :::;Xn); (Y1; :::; Ym); (Z1; :::; Z`) for the ambient a�ne spacescontaining X;Y and Z. The reader will then check, using the above de�nition of analytictensor product, that the induced map (p1 �Z p2)� of analytic algebras is the identity map.Remark 2.12. The strange feature that a map between two di�erent objects is representedby the identity comes about becauseRhX1 ; :::;Xnib
RhY1 ; :::; Ymiis identi�ed to RhX1 ; :::;Xn; Y1; :::; Ymi by a canonical isomorphism, see [GR, page 181].De�nition 2.13. Let f : X ! Y be a scheme-theoretic analytic morphism where X = �(X),Y = �(Y). An irregular point of f is a point where f is not a local analytic isomorphism(in the scheme-theoretic sense).De�nition 2.14. Suppose that X;Y are real algebraic sets. Then a �nite analyticallytrivial covering f : X ! Y is an analytic map such that the restriction of f to eachconnected component of X is an analytic isomorphism.We say that f : X ! Y is an analytically trivial polynomial covering if it is anpolynomial morphism which is an analytically trivial regular covering whose group G of decktransformations consists of polynomial automorphisms. We retain the name analyticallytrivial polynomial covering for restriction of such f to a G-invariant open subset5 ofX. Note, that we do not claim here that X splits into disjoint union of Zariski componentseach of which is polynomially isomorphic to Y . It might happen that the real-algebraic setX is irreducible, but f is not 1-1.We will now give a version of De�nition 2.14 in terms of Nash functions (see Lemma2.18). Let X be a real semi-algebraic set and U � X be an open subset (in the classicaltopology).5With respect to the classical topology. 11



De�nition 2.15. A function f : U ! R is Nash if it is real-analytic and there existpolynomial functions p0; p1; :::; pd not all equal to zero such that the equationp0 + p1f + :::+ pdfd = 0holds identically on U .We note that an entire rational function f = p=q is Nash{ it satis�es the equationqf � p = 0.We de�ne the sheaf NX on X by de�ning NX(U) to be the R-algebra of Nash functionson U . Now let X and Y be real algebraic sets and f : X ! Y be a continuous map.De�ne f to be a Nash morphism if f�NY � f�NX . An equivalent de�nition is the following.Choose an embedding Y � Rn . Then f is Nash if and only if the components of f are Nashfunctions on X. We have the following useful criterion for an analytic function to be Nash:Lemma 2.16. (See [BCR, Proposition 8.1.7].) Suppose X is a real semi-algebraic set andf : X ! R is an analytic function on X. Then f is Nash if and only if the graph Gr(f) off is a semi-algebraic subset of X � R.We will also needLemma 2.17. (See [BCR, Theorem 2.4.5].) Suppose X is a real semi-algebraic set. Thenthe topological components of X are semi-algebraic sets.Now we can prove the result we need:Lemma 2.18. Suppose X and Y are real algebraic sets and X = [ki=1Xi is the decompo-sition of X into connected components. Suppose f : X ! Y is a polynomial map such thateach fi := f jXi is an analytic isomorphism. Then each fi is a Nash isomorphism.Proof: Choose embeddings X � Rm ; Y � Rn . Then we have:Gr(f) = [ki=1Gr(fi)where Gr(fi) is a semi-algebraic subset of X � Y . Let gi := f�1i . Then Gr(gi) � Y � Xis the image of Gr(fi) under the map which exchanges X and Y . Hence Gr(gi) is semi-algebraic. Let �j : Rm ! R be the j-th coordinate projection and �j : Rn � Rm ! Rn � Rbe the projection de�ned by �j(y; x) = (y; �j(x)). Then Gr(�j � gi) = �j(Gr(gi)) is theimage of a semi-algebraic set under a projection. Hence Gr(�j � gi) is semi-algebraic by[BCR, Theorem 2.2.1]. Therefore �j � gi is Nash by Lemma 2.16 which implies that gi is aNash morphism and hence isomorphism.Thus, if f : X ! Y is an analytically trivial polynomial covering then X is Nashisomorphic to a disjoint union of a �nite number of copies of Y .We will identify Rn with the a�ne part of RPn . Suppose that X � Rn is an a�ne realalgebraic set. Then X is said to be projectively closed it its Zariski closure in RPn equalsX. Clearly each projectively closed subset must be compact (in the classical topology). Itturns out that the converse is \almost true" as well:Theorem 2.19. (Corollary 2.5.14 of [AK]) Suppose that X � Rn is a compact a�nealgebraic set. Then X admits an entire birational isomorphism to a projectively closeda�ne algebraic subset X 0 of Rn . Moreover, if X is de�ned over Z then X 0 is de�ned overZ as well.We will need the following theorem which is a modi�cation of [AK, Corollary 2.8.6] or [T]:12



Theorem 2.20. (Seifert-Nash-Palais-Tognoli) Suppose that M is a smooth compact man-ifold 6. Then M is di�eomorphic to a projectively closed real a�ne algebraic set S.Remark 2.21. This theorem is a combination of [AK, Corollary 2.8.6] and Theorem 2.19(for the assertion that S is projectively closed).Notation 2.22. If f : X ! X then Fix(f) will denote the �xed point set of f .Throughout the paper k will denote either R or C ; kn is given the Euclidean metric.Notation 2.23. Let z 2 kn, r > 0. Then Br(z) will denote the disk in kn of the radius rand center at z.A domain in kN (k = R or k = C ) is a subset V with nonempty interior, where we usethe classical topology.3. Linkages3.1. Abstract linkages and their realizations
B

A

C

DFigure 1: The abstract square (�a la Malevich).Throughout this paper we shall use the notation V(L) for the set of vertices of a graphL and E(L) for the set of edges of L.De�nition 3.1. An abstract marked linkage L is a triple (L; `;W ) consisting of a graphL, an ordered subset W � V(L) and a positive function ` : E(L)! R+ (a metric on L). Theelements of W are called the �xed vertices of L and the choice of W is called marking. IfW is empty then we call L an abstract linkage. A special case of abstract marked linkageis an abstract based linkage where W consists of two vertices v1; v2 connected by an edgee�. We do not require ` to de�ne a metric on L: for instance the triangle with the edge-lengths 1; 1; 3 satis�es our axioms. We shall also allow a vertex of L to be connected byan edge to itself or two distinct vertices to be connected by more than one edge. Howeverin what follows we will refer to the pair (L; `) as a metric graph. In the paper we willsometimes omit the words \abstract" and \marked" when it is clear what kind of linkagewe consider.6Not necessarily connected. 13



De�nition 3.2. A morphism between two abstract marked linkages � : L ! N is a mapbetween corresponding metric graphs which maps vertices to vertices, edges to edges, �xedvertices to �xed vertices and `(�(e)) = `(e) for each edge e of L.De�nition 3.3. Let L = (L; `;W ) be an abstract linkage. A planar realization of L is amap � : V(L)! R2 such that: if v and w are joined by an edge [vw] thenj�(v) � �(w)j2 = (`[vw])2:We let C(L) = C(L; ;) be the set of all planar realizations of L, it is called the con�gura-tion space of L.Note that if L contains an edge connecting a vertex to itself of two edges of di�erentlengths connecting two vertices then C(L) = ;.De�nition 3.4. Let L = (L; `;W ) be an abstract linkage, W = (v1; :::; vn) be the marking.Let Z = (z1; :::; zn) 2 C n , called the image of marking. A relative planar realizationof L is a realization � 2 C(L) such that �(vj) = zj for all j. We let C(L; Z) be the set ofall relative planar realizations of L, it is called the relative con�guration space of L.We note that C(L) and C(L; Z) are algebraic sets associated to real a�ne schemesC(L);C(L; Z) de�ned by the above quadratic equations. The assignments L 7! C(L);L 7!C(L) are functors to be called the realization functors, the assignments (L; Z) 7!C(L; Z);L 7! C(L; Z) are also functors to be called relative realization functors.A special case of the relative con�guration space is when L is a based linkage:De�nition 3.5. Let L = (L; `; e) be a based linkage. We de�ne the moduli space M(L)by M(L) = f� 2 C(L) : �(v1) = (0; 0); �(v2) = (`(e); 0)g:ThenM(L) is the algebraic set underlyingM(L), the real a�ne scheme de�ned by theabove equations.

Figure 2: The moduli space of the square.If L is connected then M(L) is a compact real-algebraic subset of R2r�4 , where r isthe number of vertices in L. The algebraic set C(L) canonically splits as the productM(L) � E(2) (the group E(2) of orientation-preserving isometries of R2 has obvious real-algebraic structure), thus we shall identify the quotient C(L)=E(2) and M(L). Note thatM(L) admits an algebraic automorphism induced by the complex conjugation in C = R2 .14



As we shall see in Section 5 for each (L; Z) there is a based abstract linkage A so thatM(A) is a 2-fold or 1-fold analytically trivial covering of C(L; Z).Suppose that L0 � L is a sublinkage, i.e. (L0; `0) � (L; `) is a subgraph such that `0is the restriction of ` and the marking W 0 of L0 is the intersection W \ L0. If Z is theimage of W , then we have naturally de�ned Z 0, the image of W 0. Thus we have naturalscheme-theoretic restriction morphismRes : C(L; Z)! C(L0; Z 0); � 7! �jL0:In particular, if L0 consists of a single vertex v 2 L then we let evalv : C(L; Z)! R2 be theevaluation map � 7! �(v). We will identify evalv with the restriction mapRes : � 7! �jfvg 2 C(fvg):
Figure 3: Degenerate realizations of the abstract square. Black disks denote images of thevertices.Many of the problems with the 19-th century work on linkages can be traced to neglect-ing degenerate realizations of a square.De�nition 3.6. A square is the abstract polygonal linkage with four edges all of whichhave equal length (see Figure 1). We let e� := [AB]. More generally, an abstract paral-lelogram S is the polygonal linkage with four edges where the alternating edges have equallengths.We haveLemma 3.7. The moduli space of the square is isomorphic to a union of three smoothcurves of degree 2 (each one necessarily rational) in RP6 such that each pair intersects ina point and at each point of intersection the tangent spaces have 2-dimensional span (seeFigure 2).Proof: See [GN, Case III, page 120].Two of the components of the moduli space of the square consist of \degenerate" real-izations of the square (Figure 3). We can eliminate the components consisting of degeneratesquares by \rigidifying" the square as on Figure 4, see Lemma 3.9 for the proof. We rigidifyparallelogram linkages in an analogous way. Henceforth all parallelogram sublinkages thatappear in elementary linkages (Section 6) will be rigidi�ed{ but we will not draw the extraedges. Notice that each rigidi�ed parallelogram L contains two \degenerate" triangularlinkages: one with the vertices v1; v2; v3 and second with the vertices v4; v5; v6. Thus thering of the con�guration scheme of the rigidi�ed parallelogram has nilpotent elements. Sincewe are interested mostly in the reduced schemes we make the following15
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Figure 4: The rigidi�ed parallelogram �. We choose: `[v1v2] = `[v2v3] = `[v1v3]=2 =`[v6v5] = `[v5v4] = `[v6v4]=2.Convention 3.8. Suppose that L is one of the elementary linkages (translator, panto-graph and inversor) in x6 and � � L is a degenerate triangle, i.e. a triangle with thevertices A;B;C so that `[AC] = `[AB] + `[BC]:Let r := `[AB]=`[AC]; s := `[BC]=`[AC]. We will add to the de�ning equations for C(L; Z)the linear equation �(B) = r�(A) + s�(C)for each degenerate triangle. This choice of the scheme is determined by the \mechanical"reasons: to make an actual mechanical model of the abstract linkage L drill the hole B inthe bar [AC] within the distances `[AB] and `[BC] from the holes A and C respectively. SeeFigure 5 for mechanical model of the rigidi�ed parallelogram. The linkages L which will beused in this paper will be built by gluing together the elementary linkages of x6.The corresponding realization schemes C(L; Z) will be �ber products of the realizationschemes of the elementary linkages (see Theorem 4.1). We will extend the above conventionas follows. Add one (vector valued) linear equation as above for each degenerate trianglecontained in one of the elementary linkages from which L is built. Thus the scheme structureof C(L; Z) will depend on a choice fLigi2I of distinguished elementary sublinbkages of L.However the underlying algebraic set C(L; Z) does not depend on this choice.We retain the names realization functor and relative realization functor for thefunctors L 7! C(L); (L; Z) 7! C(L; Z).We will use the notationM0(�) for the moduli scheme of the rigidi�ed parallelogram �with the partially reduced structure as above.Recall that S is the (unrigidi�ed) parallelogram linkage with e� = [AB]. Then we havean embedding of a�ne schemes i :M0(�)!M(S).We let �1 and �2 be the degenerate realizations of the rigidi�ed parallelogram � (whichcould be the rigidi�ed square). The following lemma will be very important in what follows.Lemma 3.9. The real reduced structure on M0(�) is a projective line where real pointscorrespond to (convex) parallelograms. M0(�) has exactly two singular real points, thedegenerate parallelograms �1; �2.Proof: Recall that the distance function between two oriented straight lines in the Euclideanplane is convex and it is strictly convex unless these lines are parallel. Thus, if A 6= B and16
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Figure 5: A mechanical model for the rigidi�ed parallelogram �.C 6= D are points in C such thatkA�Dk = kB � Ck = k(A +B)=2� (D + C)=2kthen the lines through A;B and D;C are parallel andA�B = D � C:Therefore real points � of M0(�) correspond to parallelograms:�(v1)� �(v3) = �(v6)� �(v4):We will prove the lemma by �rst determining the algebraic set M0(�) underlying M0(�).Then we will prove that all points of M0(�) with the exception of the degenerate paral-lelograms �1 and �2 are smooth points. Lastly we will prove that �1 and �2 are singularpoints.We �rst consider the case of a parallelogram S which is not a square. The moduli spaceM(S) for such S is described in [GN, Case II, page 120]. The authors of [GN] describe the(projectivized) moduli space as a real projective subvariety of P6. They �nd that the modulispace is the union of a smooth curve of degree two (necessarily isomorphic to P1) and asmooth curve of degree four which is also isomorphic to P1 (see [GN, page 119] where it isproved that if the degree is four then the genus is zero). Moreover they prove that the realpoints of the quartic correspond to the set of \antiparallelogram" (see Figure 6) realizationsof the linkage. The authors also prove that the components ofM(S) intersect in two points,the two degenerate parallelograms. It now follows from the paragraph above that i(M0(S))is the quadratic curve C. We note that the linear equations added by Convention 3.8 merelyexpress the coordinates of E as linear functions of those of D and F and the coordinates ofB as linear functions of those of A and C, thereby eliminating the new variables providedby the contribution of the new vertices B and E (see Figure 5). Now let � be a point ofM0(�) which is di�erent from �1 and �2. Then M(�) is smooth at � so the ideal Ian� inthe analytic local ring Oan� is real reduced. But the functions we have added to pass fromM(�) to M0(�) all vanish identically on M0(S). Hence they already belong to Ian� and themap of analytic germs (M0(�); �)! (M(S); �) is an isomorphism.17



It remains to prove that �1 and �2 are in fact singular points ofM0(�). We will assumethat the images of � under �1 and �2 are horizontal segments. It su�ces to prove thatdimT�1(M0(�)) = dimT�2(M0(�)) = 2:We claim that di�1 and di�2 are isomorphisms of Zariski tangent spaces. Then in anin�nitesimal deformation of either �1 or �2 in M(S) the vertices A and C stay �xed andF and D move vertically (if F and D move in the same direction we are tangent to thespace of parallelograms and if they move in opposite directions we are tangent to the spaceof antiparallelograms). The equations of Convention 3.8 then tell us how to move the newvertices B and E. But in any case they will move vertically so the distance between B andD is preserved to �rst order.The lemma follows in the parallelogram case.We leave the proof of the lemma in the case of a square to the reader, it is a consequenceof [GN, case III, page 120]. In this case M(S) is the union of three quadratic curves, twoof the components correspond to degenerate realizations, see Figures 2, 3. The image of iis the component consisting of rhombi.
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Figure 6: An antiparallelogram.We will not need the next result in what follows but we add it for completeness.Remark 3.10. It can be shown that the analytic local rings Oan�1 and Oan�2 are isomorphicto Rhx; yi(xy; x2) �= Rhx; yi(x) \ (x2; y) :Thus the germs (Oan�i ; �i) are analytically isomorphic to the union of the y-axis and theembedded nonreduced point given by the equations x2 = 0, y = 0. In particular the schemeM0(�) is nonreduced.Let L be a based triangular linkage with the vertices v1; v2; v3, e� := [v1v2] so that`[v1v2] < `[v2v3] + `[v1v3], `[v1v3] < `[v2v3] + `[v1v2] and `[v2v3] < `[v1v2] + `[v1v3] (i.e Lis nondegenerate and the function ` de�nes a metric on L). Let A be the (not based)linkage obtained from L by removing the edge [v1v3] and B be the linkage obtained fromA by removing the vertex v2 and the edges [v1v2]; [v2v3]. A realization � 2 C(A) is callednondegenerate if its image is not contained in a single geodesic in R2 .18



Lemma 3.11. Under the above conditions the moduli space M(L) consists of two points.If � 2 C(A) is a nondegenerate realization then the restriction map of germsRes : (C(A); �)! (C(A); �jB)(given by restriction of realizations from A to B) is an analytic isomorphism.Proof: The �rst assertion is obvious. We will only sketch the proof of the second asser-tion, the details are left to the reader. Both spaces C(A), C(B) are smooth 4-dimensionalmanifolds. Thus it is enough to verify that the derivativeD�Res : T�C(A)! Tres(�)C(B)is injective, which follows from the fact that the circles centered at �(v1); �(v2) with radii`[v1v2]; `[v2v3] intersect transversally.Notation 3.12. Throughout the paper we shall use the following notations:� If A;B are distinct points in the plane then (AB) will denote the straight line throughA;B.� If A;B;C are points on the plane then �(A;B;C) will denote the triangle with thevertices A;B;C.� If (A;B;C;D) is a quadruple of points on the plane then �(ABCD) (sometimes wewill also put commas between the letters) will denote the quadrilateral with the givenvertices (they are connected by edges according to the cyclic order).3.2. Fiber sums of linkagesThe operation of �ber sum of linkages is analogous to generalized free products of groups(i.e. amalgamated free product or HNN-extension). Let L0 = (L0; `0;W 0), L00 = (L00; `00;W 00)be abstract marked linkages. Suppose that we have a map � between (nonempty) subsetsof vertices � : S0 � V(L0)! S00 � V(L00):If the images Z 0; Z 00 of W 0;W 00 are given we require�0(wj) = �00(�(wj))for each wj 2W 0 and �0 2 C(L0; Z 0); �00 2 C(L00; Z 00).Then the �ber sum L of linkages L0;L00 associated with � (the �ber sum is denotedL0 �� L00) is constructed as follows:Step 1. Take the disjoint union of metric graphs (L0; `0) t (L00; `00) and identify v and�(v) for all v 2 S0. The result is the metric graph (L; `).Step 2. Let W be the image in L of W 0tW 00, we let W be the marking of the resulting�ber sum L := (L; `;W ). If the images Z 0; Z 00 of W 0;W 00 are given, we de�ne the vectorZ (the image of W ) as the vector with the coordinates �(wj), where wj 2 W and � is inC(L0; Z 0) or in C(L00; Z 00).In the case L0 = L00 the above construction has an analogue which we call the self-�bersum. The only di�erence is that on the �rst step instead of L0 tL00 we take the same graphL0 as before. The self-�ber sum will be denoted L0��. Note that the operations of �ber sumand self-�ber sum can create edges which are loops.Remark 3.13. Notice that if L0 �= L00 then L0�� is di�erent from L0 �� L00.If S0; S00 are singletons fug; fvg then we will denote L0�� by L0�u=v. In what follows wewill consider L0;L00 being canonically mapped to L.19



3.3. Functional linkagesDe�nition 3.14. Let X;Y be topological spaces, f : X ! Y be a continuous map andG a group of homeomorphisms acting properly discontinuously and e�ectively on X. Wesay that f is a regular topological branched covering with the group of deck-transformations G, if f is surjective andf(x) = f(x0) () there exists g 2 G such that g(x) = x0:We de�ne the singular set �(f) of f as the collection of points x 2 X �xed by a nontrivialelement of G.Let k denote either C or R. We will identify C with R2 and R with the real axis in C .Recall that C(L; Z) is the real algebraic set underlying the real a�ne scheme C(L; Z). Wenow give the main de�nition.De�nition 3.15. Let O 2 km and F : km ! kn be a map. We de�ne a k-functionallinkage L for the germ (F;O) as follows:It is an abstract marked linkage L = (L; `;W ) with m distinguished vertices P1; ::; Pm(called the input vertices) and n additional distinguished vertices Q1; :::; Qn (called theoutput vertices) and a particular choice of a vector Z 2 C s , the image of marking. Werequire this data to satisfy the axioms:(1) The forgetful map p : C(L; Z)! (R2)m given byp(�) = (�(P1); :::; �(Pm)); � 2 C(L; Z)is a regular topological branched covering of a domain Dom(L; Z) in km, so that the groupSym(L; Z) of deck-transformations of p consists of scheme-theoretic automorphisms. We letCrit(L; Z) denote the union of the set of irregular points of the scheme-theoretic morphismp : C(L; Z)! km with �(p) (the set of singular points of the topological branched coveringp). Let C�(L; Z) := C(L; Z) � Crit(L; Z). It is clear that C�(L; Z) is invariant underSym(L; Z). We let Dom�(L; Z) := p(C�(L; Z)). Thusp : C�(L; Z)! Dom�(L; Z)is a locally analytically trivial7 covering. We require O 2 Dom�(L).(2) The forgetful map q : C(L; Z)! R2n given byq(�) = (�(Q1); :::; �(Qn)); � 2 C(L; Z)factors through p and induces the map F jDom(L; Z) : Dom(L; Z)! kn. We will say thatthe germ (F;O) is de�ned by the linkage L and the vector Z.Notice that in the de�nition of functional linkage for a germ (F;O) the metric ballaround O which is contained in Dom�(L; Z) is not speci�ed. We will also need the followingmodi�cation of the above de�nition:De�nition 3.16. Suppose that the pair (L; Z) as above de�nes the germ (F;O) and, more-over, U is a neighborhood of O such that U � Dom�(L; Z). Then we say that the pair(L; Z) de�nes (F;U).7It � 2 C�(L; Z) then � is a smooth point of C(L; Z) (since Dom�(L; Z) is smooth.) Hence C�(L; Z)is real-reduced and p is a regular analytic covering in the scheme-theoretic sense (i.e. OanDom�(L;Z) is thesubsheaf of Sym(L; Z)-invariants in OanC�(L;Z). 20



The group Sym(L; Z) will be called the symmetry group of L and Dom(L; Z) will becalled the domain of L (of course they both depend on Z). The set of input vertices isdenoted by In(L) and the set of output vertices by Out(L). We will refer to R-functionallinkages as real functional linkages and C -functional linkages as complex functional linkages.If the choice of k; Z; In(L); Out(L), O; U and/or F is suppressed then L is also referred asa functional linkage.Lemma 3.17. Suppose that L is a functional linkage. A point � 2 C(L; Z) belongs toCrit(L; Z) i� either Dp� : T�C(L)! Tp(�)Dom(L; Z) has nonzero kernel or � 2 �(p) or �is not a smooth point of C(L; Z).Proof: If Dp� has nonzero kernel then clearly � 2 Crit(L; Z). If � =2 Crit(L; Z) and� =2 �(p) then p(�) is in the interior of Dom(L; Z). If p : (C(L; Z); �)! (Dom(L; Z); p(�))is an isomorphism of analytical germs then (C(L; Z); �) is necessarily smooth.Now suppose that � 2 C(L; Z), � =2 �(p) and Dp� has zero kernel. If � is a smoothpoint then the dimension of C(L; Z) near � is the same as the dimension of the interior ofDom(L; Z), thus we can apply the inverse function theorem to conclude that � 2 C�(L; Z).Corollary 3.18. Dom�(L; Z) and C�(L; Z) are open subsets in km and C(L; Z) respec-tively.Proof: The set of singular points of C(L; Z) is closed as well as �(p) and the set of pointswhere Dp� has nonzero kernel. The restriction of p to C�(L; Z) is open.Besides functional linkages we will also need closed functional linkages de�ned as follows.Let L0 be a functional linkage and � be a map from a subset of Out(L0) to W (the markingof L0). Then the linkage L := L0�� is called a closed functional linkage. Such linkage stillhas the input map p (the restriction of the input map p0 of L0) and the domain Dom(L; Z)which is the image of p. The group of symmetries Sym(L0; Z) acts naturally on C(L; Z)and we let Sym(L; Z) denote the image of Sym(L0; Z) in the group of automorphisms ofC(L; Z).Let L be a (possibly closed) k-functional linkage. We have the scheme-theoretic inputmorphism p. As above we let Crit(L; Z) � C(L; Z) denote the union of the set of irregularpoints for p with �(p), it is invariant under the action of the symmetry group and we letC�(L; Z) := C(L; Z)� Crit(L; Z), Dom�(L; Z) := p(C�(L; Z)).If L is a (possibly closed) functional linkage we let Wall(L; Z) � C(L; Z) denote thecollection of �xed points of nontrivial elements of Sym(L; Z), i.e. Wall(L; Z) = �(p).Components of Wall(L; Z) will be called walls and components of Crit(L; Z)�Wall(L; Z)will be called quasiwalls. We retain the names walls and quasiwalls for projections of wallsand quasiwall to Dom(L; Z) via the input map p.If L is a (possibly closed) functional linkage and v is an input or output vertex of L thenwe let �v : Dom(L; Z)! k to denote the composition evalv � p�1. Clearly this compositionis a well-de�ned k-linear mapping.4. Functionality theoremsIn this section we prove three theorems establishing that functionality of linkages is pre-served (under appropriate circumstances) by the (self-) �ber sum. To simplify the notationsin this section we will suppress the choices of �xed vertices W and their images Z underrelative realizations (until we get to the self-�ber sums).21



We �rst establish how con�guration spaces of linkages behave under �ber sums of link-ages. Let A;B be linkages, with N and M vertices respectively and � be a bijection froma subset T of V(B) to a subset S of V(A) each consisting of t vertices. Let G be the graphconsisting of t vertices (G1; :::; Gt) and no edges. Then we have a commutative diagramwith all arrows injections A�% & G �! A �� B� & % �Bwhere � = � � ��1.Theorem 4.1. The con�guration space of the �ber sum C(A �� B) is naturally isomorphicto the �ber product of the con�guration spaces C(A)�C(G) C(B).Proof: We will prove this theorem assuming that there are no �xed vertices in A and B,the general case is similar and is left to the reader. We will also temporarily ignore theissue of degenerate triangles in elementary linkages (see Remark 4.2) since the case of linearequations given by the Convention 3.8 is completely analogous to the quadratic equationsconsidered below.Since the realization functor is contravariant we obtain a diagramC(A �� B). &C(A) C(B)evalT & . evalSktWe hence get a map of a�ne schemesC(A �� B)! C(A)�C(G) C(B)and a map of coordinate rings' : R[C(A)] 
R[C(G)] R[C(B)] ! R[C(A �� B)]:First assume that A and B have no edges. Hence A �� B has no edges and all of theabove rings are polynomial rings with generators Xv; Yv corresponding to the vertices v inV(A);V(�). (X� correspond to the �rst coordinate in R2 and Y� to the second coordinate.)The map ' carriesXv;Xw; Yv ; Yw; v 2 V(A); w 2 V(B) to X(v);X�(w); Y(v); Y�(w). To checkthat ' is an isomorphism we divide the vertices of A �� B into three classes:� those in �(G),� those in (A)� �(G),� those in �(B)� ��().We let U 0i ; V 0i ; 1 � i � t, U 00j ; V 00j ; t + 1 � j � N and U 000k ; V 000k ; t + 1 � k � M bethe corresponding indeterminates (here U� correspond to the �rst coordinate in R2 and V�correspond to the second coordinate). ThusR[C(A �� B)] = R[U 0i ; V 0i ; U 00j ; V 00j ; U 000k ; V 000k : 1 � i � t; t+ 1 � j � N; t+ 1 � k �M ]:22



Similarly we divide the vertices of A into those in �(G) and those in A � �(G). We letX 0i; Y 0i ; 1 � i � t, andX 00j ; Y 00j ; t+1 � j � N be the corresponding indeterminates. Finally wedivide up the vertices in B into those in �(G) and those in B��(G) and let W 0i ; Z 0i; 1 � i � tand W 00j ; Z 00j , t+ 1 � j � M , be the corresponding indeterminates (here W� correspond tothe �rst coordinate in R2 and Z� correspond to the second coordinate). We �nd (accordingto the de�nition in Section 2) thatR[C(A)] 
R[C(G)] R[C(B)] = R[X 0i ; Y 0i ;X 00j ; Y 00j ;W 0i ; Z 0i;W 00k ; Z 00k ](X 0i =W 0i ; Y 0i = Z 0i) :In the above formula and in what follows we use the convention: the i's run from 1 to t,the j's run from t+ 1 to N and the k's run from t+ 1 to M .The map ' is determined by'(X 0i) = U 0i ; '(Y 0i ) = V 0i ; '(X 00j ) = U 00j ; '(Y 00j ) = V 00j'(W 0i ) = U 0i ; '(Z 0i) = V 0i ; '(W 00k ) = U 000k ; '(Z 00k ) = V 000k :We obtain an inverse  to ' by inverting the above map on the indeterminates (note thatX 0i = W 0i and Y 0i = Z 0i). We now add edges to A and B consequently we add relationsto the above R-algebras. It su�ces to prove that if e is an edge of A �� B and Re is thecorresponding relator then  (Re) is a relator in the tensor product. If e is an edge of A�� Bthen e = (e0) for e0 2 E(A) or e = �(e00); e00 2 E(B). We will treat the �rst case, the secondcase is analogous. There are now three cases corresponding to how many of the vertices ofe00 are in �(G). Suppose �rst that e0 = [vj1 ; vj2 ]; vj1 ; vj2 2 A� �(G). ThenRe = (U 00j1 � U 00j2)2 + (V 00j1 � V 00j2)2 � `(e)2and hence  (Re) = (X 00j1 �X 00j2)2 + (Y 00j1 � Y 00j2)2 � `(e0)2is a relator in R[C(A)], thus in the tensor product. The other two cases are analogous. Thisconcludes the proof of Theorem 4.1.Remark 4.2. In the proof of Theorem 4.1 we did not take into acount the linear equationsthat we added in Convention 3.8. The linear equations added to the de�ning equationsfor C(A) are determined by the set fAigi2I of distinguished elementary sublinkages of Aand similarly for C(B). The reader will verify that in all applications of Theorem 4.1 thatfollow the degenerate triangles of distinguished elementary sublinkages of A and B embedin A �� B, we de�ne the distinguished elementary sublinkages of A �� B to be the imagesof Ai;Bj. Thus, if R� is a linear relator for C(A �� B) then  (R�) is a linear relator foreither C(A) or C(B).We now restrict to functional linkages. Let k be either R of C and k be its algebraicclosure. Consider A;B which are k- and k-functional linkages respectively for the functionsf : kn ! ks, g : km ! kt. Let T = fP1; :::; Ptg � In(A) be a collection of the input verticesand Out(B) = fQ1; :::; Qtg. We will assume that t = n in the case k 6= k. Suppose that weare given a bijection � : T ! Out(B); �(Pi) = Qi. Let x = (x1; :::; xn) and y = (y1; :::; ym)denote the coordinates in kn;km respectively.The goal of the \1-st functionality theorem" below is to prove that the �ber sum L =A �� B is a functional linkage for the composition of the functions f; g and to describe thecon�guration space, domain, etc., of the linkage L. We will refer to L = A �� B as thecomposition of the linkages A;B. 23



We let evalT ; �T be the vector-functionsevalT := (evalP1 ; :::; evalPt ) : C(A)! �kt; �T := (�P1 ; :::; �Pt):Here n � t and we assume that kt is canonically embedded in kn = kt�kn�t. We let p0; p00be the input maps of A;B and q0; q00 be the output maps of A;B.Theorem 4.3. (The 1-st functionality theorem.) Suppose thatintDom(B) \ g�1intDom(A) 6= ;:Then:1. The scheme C(L) is isomorphic to the �ber product C(A)�evalT=q00 C(B).2. L is a k-functional linkage for the composition h of the functions f; g:f(g1(y); :::; gt�1(y); gt(y); xt+1; :::; xn)and In(L) := In(A) [ In(B) � T , Out(L) := Out(A). Dom(L) is isomorphic toDom(A)��T=g Dom(B) (as semi-algebraic sets).3. Sym(L) �= Sym(A)� Sym(B).4. Wall(L) =Wall(A)�evalT=q00 C(B) [ C(A)�evalT=q00 Wall(B).5. Crit(L) � Crit(A)�evalT=q00 C(B) [C(A)�evalT=q00 Crit(B).6. If O0 2 Dom�(A); O00 2 Dom�(B) then (O0; O00) 2 Dom�(L). If t = n then Dom�(B)\g�1(Dom�(A)) � Dom�(L).Proof: (1) The �rst assertion is a special case of Theorem 4.1.Now we start proving (2). We let p; q be the input and output maps of L whereIn(L) := In(A) [ In(B)� T , Out(L) := Out(A).We de�ne the isomorphism� : Dom(A)��T=g Dom(B)! Dom(L) = p(C(L))of semi-algebraic sets by the formula:� : (x1; :::; xn)� (y1; :::; ym) 7! (y1; :::; ym; xt+1; :::; xn):The inverse ��1 is given by the formula:(y1; :::; ym; xt+1; :::; xn) 7! (g(y); xt+1; :::; xn)� (y1; :::; ym):The image of p has nonempty interior by the assumption of theorem, i.e. it is a domain.We leave the proof of the equality h = q � p�1to the reader.To conclude the proof of (2) it remains to show that p is a regular rami�ed covering andits group of automorphisms consists of polynomial automorphisms of C(L), this will followfrom the proof of (3) and (4) below. 24



(3) Notice that the group Sym(A) � Sym(B) acts naturally on C(L). Indeed, if � =(�0; �00) 2 C(L) � C(A)� C(B) and � = (�0; �00) 2 Sym(A)� Sym(B) then�(�) := (�0(�0); �00(�00)) 2 C(A)� C(B):However �0(�0)jT = �0jT , �00(�00)jIn(B) = �00jIn(B) since �0; �00 2 Sym(A); Sym(B). Hence(�0(�0); �00(�00)) 2 C(L) = C(A)�evalT=q0 C(B) � C(A)� C(B):This implies that � acts on C(L). We leave it to the reader to verify that the action isfaithful. It is clear that for each � 2 Sym(A)� Sym(B) we have:p � � = p; q � � = q:Suppose that �;  2 C(L) are such that �jIn(L) =  jIn(L). Then�jIn(B) =  jIn(B)which implies that �jT =  jT since B is functional. Therefore�jIn(A) =  jIn(A):It follows that there are symmetries �0 2 Sym(A); �00 2 Sym(B) such that�0(�jA) =  jA; �00(�jB) =  jB:We conclude that  = (�0 � �00)(�), in particular jOut(L) = �jOut(L):This also shows that Sym(L) � Sym(A)� Sym(B). This �nishes the proof of (3).(4) Suppose that � = �0 � �00 2 Sym(L). Then Fix(�) is contained in the unionFix(�0 � 1) [ Fix(1� �00)Note that Fix(�0 � 1) = Fix(�0)�evalT=q0 C(B)Fix(1� �00) = C(A)�evalT=q0 Fix(�00):This proves (4). We leave it to the reader to verify that pjC(L) � Wall(L) is a localhomeomorphism into Dom(L). Since p(�) =  i� there is � 2 Sym(L) such that  = �(�)we conclude that pjC(L)�Wall(L) is a covering onto its image. This concludes the proofof (2).(5) Suppose �0 2 C�(A), �00 2 C�(B). Hence the maps of germsp0 : (C(A); �0)! (Dom(A); p0(�0))p00 : (C(B); �00)! (Dom(B); p00(�00))are analytic isomorphisms. We wish to prove that the induced map(C(B)�g�p00=�T �p0 C(A); (�00; �0))! (Dom(B)�g=�T Dom(A); (p00(�00); p0(�0))is an isomorphism. But under the canonical isomorphism of Lemma 2.11 this map corre-sponds to the �ber product of the isomorphisms p00 and p0 above. Since the �ber productof isomorphisms is an isomorphism the assertion (5) follows.25



This proves thatCrit(L) � Crit(A)�evalT=q0 C(B) [ C(A)�evalT=q0 Crit(B):(6) Follows directly from (5).Now we consider the self-�ber sums: L = A��, where the linkage A is k-functional fora vector-function f(x1; :::; xn) with the components (f1; :::; fm).There will be two cases to consider. In both cases we will apply the following lemma on�ber products.Suppose that we have diagrams of maps of analytic germs (where the second diagramis the �ber square completion of the �rst diagram)(X; x)� #(Y; y)� #(W; w) �! (Z; z) and (W�Z X; (w; x)) �! (X; x)id�Z � # � #(W�Z Y; (w; y)) �! (Y; y)id�Z � # � #(W; w) �! (Z; z)Lemma 4.4. Suppose that � an isomorphism. Then the pull-back morphism id �Z � :(W; w) �(Z;z) (X; x)! (W; w) �(Z;z) (Y; y) is an isomorphism.Proof: If ��1 is the inverse to � then id�Z ��1 is the inverse to id�Z �.Case I: � : S0 = fvg � In(A) ! In(A), �(v) = w. Let u denote the image of v (andw) in A��. Then C(L) is the pull-back corresponding to the diagramC(L) �! C(A)# � #k ��! k2where the vertical map � is the forgetful morphism p0v�p0w that records only the position ofthe vertices v and w and the horizontal map � is the diagonal map. Thus we are identifyingthe two input vertices v and w.Theorem 4.5. (The 2-nd functionality theorem.) Suppose that the set fx 2 Dom�(A) :�v(x) = �w(x)g is nonempty. Then: the mapping p : C(L)! Dom(L) is a regular rami�edcovering with the group Sym(L) of covering transformations equal to the image of Sym(A)in the group of automorphisms of C(L) under the restriction map. This covering is a(scheme-theoretic) locally analytically trivial covering overDom�(L) � Dom(L) \Dom�(A):The real semi-algebraic set Dom(L) is isomorphic to fx 2 Dom(A) : �v(x) = �w(x)g. Thelinkage L is functional for the restriction of the function f to the hyperplane f�v(x) =�w(x)g.Proof: Let p0 denote the input map of A. Consider the input mappingp : C(L)! Dom(L) := p(C(L))which is the restriction of p0. Then Dom(L) equalsfx 2 Dom(A) : �v(x) = �w(x)g26



i.e. the intersection of Dom(A) with a hyperplane. We will assume that the intersectionof Dom�(A) with this hyperplane is nonempty. Since Dom�(A) is open we conclude thatDom(L) has nonempty interior.The group of symmetries Sym(A) acts naturally on C(L). Let �;  2 C(L) be realiza-tions such that �jIn(L) =  jIn(L). Then �;  lift to realizations �0;  0 2 C(A) such that�0jIn(A) =  0jIn(A). It follows that there is a symmetry �0 2 Sym(A) such that �0 0 = �0,hence � = �, where � is the restriction of �0 to C(L). We conclude that Sym(L) is theimage of Sym(A) in the group of automorphisms of C(L). In particular,Wall(L) �Wall(A):Recall that �v; �w : Dom(A)! k and �u : Dom(L)! k are projections correspondingto the positions of the vertices v; w and u. Put p0v = �v � p0, p0w = �w � p0, pu := �u � p. Wehave diagrams of a�ne schemes C(L) �! C(A)p # p0 #kn�1 �! kn�u # �v � �w #k ��! k� kand C(L) �! C(A)pu # �v � �w #k ��! k� kwhere � is the diagonal embedding. The reader will verify that the square immediatelyabove is a �ber square. This amounts to saying that the coordinate ring of C(L) is obtainedfrom that of C(A) by imposing the equations p0v = p0w.Now suppose � =2 Crit(A). We claim � =2 Crit(L). It is enough to show that � is notan irregular point of the input map of L. Since � =2 Crit(A), the projectionp0 : (C(A); �)! (Dom(A); p0(�))is an isomorphism. By Lemma 4.4 the induced mapp : (C(L); �)! (Dom(L); �)is an isomorphism. We conclude thatCrit(L) � Crit(A) \ C(L):Case II: Let � : S0 � Out(A) ! W , where W is the collection of �xed vertices ofA; let W 0 := �(S0). Hence the linkage L = A�� is a \closed functional linkage". LetS0 = fQ1; :::; Qtg, thus �(Qj) is a �xed vertex for each j = 1; :::; t. Let zj := �(�(Pj)) forall relative realizations, Z 0 = (z1; :::; zt) is the ordered set which is the image of W 0 in Z.We have the pull-back diagram C(L) �! C(A)# q0S0 #fS0g ��! kt
27



where the image of the one element set fS0g is the vector (z1; :::; zt) 2 kt. Here q0 is theoutput map for C(A) and q0S0 means the restriction of q0 to S0 � Out(A). The reader willverify that the diagram is canonically isomorphic to the �ber square:fS0g �kt C(A) �! C(A)# q0S0 #fS0g ��! ktThis amounts to saying that the coordinate ring of C(L) is obtained from that of C(A) byimposing the equations fj(x) = zj , 1 � j � t. We now proveTheorem 4.6. (The 3-rd functionality theorem.) Suppose that Dom(L) \ Dom�(A) isnonempty. Then the input mapping p : C(L) ! Dom(L) is a regular rami�ed coveringwith the group Sym(L) of deck-transformations where Sym(L) is the quotient of Sym(A)by the subgroup acting trivially on C(L). This covering is locally analytically trivial overDom�(L) := Dom(L)\Dom�(A) (in the scheme-theoretic sense). The set Dom�(L) (whichis an open8 subset in Dom(L)) is analytically isomorphic tofx 2 Dom�(A) : fj(x) = zj ; j = 1; :::; tg :Proof: Consider the input map for L:p : C(L)! Dom(A)which is the restriction of the input map p0 of A. The image of this restriction isDom(L) = fx 2 Dom(A) : fj(x) = zj ; j = 1; :::; tg:Let Dom(L) denote the corresponding a�ne scheme. Next consider the group of symmetriesof L. Suppose that �;  2 C(L) are such that �jIn(L) =  jIn(L). It follows that they arerestrictions of realizations �0;  0 2 C(A) and there is a symmetry � 2 Sym(A) such that�0 = � 0. Hence Sym(L) is the image of Sym(A) under the restriction map from C(A) toC(L). In particular, Wall(L) �Wall(A) \ C(L).We now have the diagram C(L) �! C(A)p # p0 #Dom(L) �! kn# f #fS0g ��! ktThe reader will verify that the diagram is canonically isomorphic to the �ber square:fZ 0g �kt C(A) �! C(A)# p0 #fZ 0g �kt kn �! kn# f #fZ 0g ��! ktNow suppose � =2 Crit(A) and � 2 C(L). We claim that � 2 C�(L). Indeed, sinceWall(L) �Wall(A) \ C(L), � =2Wall(L). Then, since � =2 Crit(A) it follows thatp0 : (C(A); �)! (Dom(A); p0(�))8In the classical topology. 28



is an isomorphism. By Lemma 4.4 the induced mapp : (C(L); �)! (Dom(L); p(�))is also an isomorphism. We conclude that Crit(L) � Crit(A) \C(L).Therefore the mapping p is an analytically trivial covering over Dom�(L) with the groupSym(L) �= (Sym(A)jC(L)) of covering transformations.5. Fixing �xed verticesThe goal of this section is to relate relative con�guration spaces C(L; Z) of marked linkagesand the moduli spaces M(L) of based linkages. Let L = (L; `;W ) be a marked linkage,Z = (z1; :::; zs) 2 C s and W = (w1; :::; ws). Pick any relative realization � 2 C(L; Z).We �rst let L0 be the disjoint union of L and the metric graph I which consists of a singleedge e� of the unit length connecting the vertices v1; v2. Choose the isometric embedding� = �I : I ! C which maps v1 to 0 and v2 to 1 2 R. We get a map � : W [ V(I) ! C .Then for each pair of vertices a; b 2W [ V(I) we do the following:(a) If �(a) = �(b) for � 2 C(L; Z), we identify the vertices a; b.(b) Otherwise add to L0 the edge [ab] of the length j�(a) � �(b)j.Let ~L be the resulting based linkage (with the distinguished edge e� = [v1v2] � I).There are now two di�erent cases: (i) the vector Z is not real (we shall assume z1 =2 R),(ii) Z is real. In the second case for each realization � 2M( ~L) we have:(�(w1); �(w2); :::; �(ws)) = (z1; :::; zs) 2 RsThus the natural (scheme-theoretic) morphism � : C(L; Z)!M( ~L) is a bijection. However(unless the image of W [ V(I) in ~L consists of two vertices) we had created new nilpotentelements in the ring ofM( ~L), thus � is not a scheme-theoretic analytic isomorphism. On theother hand, since we are interested in the real reduced schemes, we can use the same trickas in the case of rigidi�ed parallelograms: we give M( ~L) the scheme-theoretic structure ofC(L; Z).In the case (i) for each realization � 2M( ~L) we have:(�(w1); �(w2); :::; �(ws)) = (z1; :::; zs)or (�(w1); �(w2); :::; �(ws)) = (�z1; :::; �zs) 6= (z1; :::; zs):On the other hand, we did not create new nilpotent element in the ring of M( ~L) (sincefor each wi (if i � 2; zi 6= 0) either the triangle �(v1v2wi) or the triangle �(v1w1wi) isnondegenerate. Thus in the case (i) we get an analytically trivial covering � : M( ~L) !C(L; Z) given by:For � 2M( ~L) we let �(�) := �jL if �(w1) = z1 and �(�) := �jL if �(w1) = z1.This covering has a section � :  2 C(L; Z) 7! M( ~L) such that:�( )jL :=  ; �( )jI := �I :It is clear that the group of automorphisms of the covering � is Z2 and is generated by thecomplex conjugation. We summarize this in the followingLemma 5.1. (i) In the case Z =2 Rs there is an 2-fold analytically trivial covering � :M( ~L)! C(L; Z).(ii) In the case Z 2 Rs there is an isomorphism � :M( ~L)! C(L; Z).29



6. Elementary linkagesIn this section we construct several elementary functional linkages: translators (for thetranslation z 7! z+ b), the adder (for the summation (z; w) 7! z+w), pantographs (for thefunctions z 7! �z and z 7! �z), inversors (for the functions z 7! t2=�z), the multiplier9 (forthe function (z; w) 7! zw) and the linkage for straight line motion. These linkages serve asbuilding blocks for the proof of Theorem A. We make the following convention concerningusage of elementary linkages:All elementary linkages come with parameters which do not a�ect functions that theyde�ne but a�ect domains of the linkages. Thus if we use several elementary linkages withthe same name N in constructing another linkage L via �ber sum, we allow di�erent choicesof the parameters for di�erent appearances of N in this �ber sum.We also omit the image of marking Z in the notation for Dom;Dom� of the elementarylinkages.All elementary linkages in the section (with the exception of the multiplier) are mod-i�cations of classical constructions, where appropriate modi�cation was made to ensurefunctionality. We decided to avoid Kempe's construction of the multiplier [Ke1] since com-putation of Dom and Dom� for Kempe's linkage presents some di�culties, we use an alge-braic trick instead.6.1. The translators

v1 = A v2 = B

C

E F

D

Figure 7: A translator. The parallelograms �(ACDB) and �(CEFD) are rigidi�ed. Theset of intput/output vertices is fE;Fg and s = `[AC] > t = `[CE].Let b be a �xed nonzero complex number. The translation operations �b : z 7! z + b,� 0b : w 7! w � b are de�ned using the translator which is described on Figure 7. Dependingon the operation either F or E is the input (resp. output). The point is that if E isthe input then by adjusting side-lengths of the corresponding translator Tb we can get anyz 2 C � f0g into Dom�(Tb). To get 0 2 C into Dom� we use the point F as the input (andE as the output) of a functional linkage T 0b for � 0b. Below we present the details. First ofall let W := (v1; v2) be the marking of L (which is either Tb or T 0b ) and Z := (0; b) 2 C 2 .Below we shall use the relative con�guration spaces of L associated to this data.9Strictly speaking, our multiplier is not so elementary, for instance it would be di�cult to draw a pictureof the corresponding graph. 30



The next lemma follows from the triangle inequalities and its proof is left to the reader.Lemma 6.1. Dom(Tb) and Dom(T 0b ) are the annuli given by the inequalities:Dom(Tb) = f� := s� t � j�(E)j � R := s+ tg;Dom(T 0b ) = f� � j�(F )� bj � Rg:Notice that the centers of these annuli are at the points 0; b respectively.Lemma 6.2. Both linkages Tb, T 0b are functional for the functions �b; � 0b. The walls in thedomains of these linkages are boundary circles of the corresponding annuli.Proof: We consider the �rst linkage L = Tb, the proof for the second linkage is analogous.Notice that for each realization � we have:�(F ) = �(E) + �(B); �(D) = �(C) + �(B)and �(A) 6= �(E) (see Lemma 3.9). Suppose that � 6=  are relative realizations and�(E) =  (E). Then �(F ) =  (F ). Thus  (C) is the reection of �(C) in the line through�(A); �(E). Therefore L is functional and the group of symmetries of L is Z2. The �xedpoints of the generator of Sym(L) correspond to realizations for which the triangle�(�(A); �(C); �(E))is degenerate, i.e. one of the inequalities de�ning Dom(L) is the equality.Suppose that � 2 C(L; Z)�Wall(L; Z) is a realization of L = Tb or L = T 0b such thatnone of the parallelograms �(�(A)�(B)�(D)�(C)), �(�(C)�(D)�(F )�(E)) is degenerate.We leave it to the reader to verify (using Lemma 3.11) that in this case the morphism ofanalytic germs p : (C(L; Z); �)! (Dom(L; Z); p(�)) is invertible and hence such � belongsto C�(L; Z). For instance, if F is the input then one can recover �(D) as analytic functionof �(F ) and �(B) = b (since the triangle �(�(B)�(D)�(F )) is nondegenerate). Then onerecovers �(C) as analytic function of �(A) = 0 and �(D) (since the �rst of the parallelogramsis nondegenerate), etc.On the other hand, if one of the above parallelograms is degenerate then the derivativeDp� : T�C(L; Z)! Tp(�)Dom(L; Z)has non-zero kernel.We summarize this in the following lemmaLemma 6.3. If � 2 C(L; Z) belongs to a quasiwall then one of the parallelogram�(�(A)�(B)�(D)�(C)); �(�(E)�(F )�(D)�(C))is degenerate. Let � := b=jbj. The closure of the union of quasiwalls for both Tb, T 0b is theunion of four circles:f�(C) = �s�; j�(E)� s�j = tg [ fj�(E) � t�j = sg:Unions of quasiwalls for both L are disjoint from the collection of � for which �(E) belongsto the line through 0; b.In particular, if s+ t > jbj > s� t > 0; b 2 Rthen the origin belongs to Dom�(T 0b ). 31
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Figure 8: Quasiwalls in the domain of the translator Tb.Remark 6.4. In the following sections (except in x11) each time when we have to use atranslator we shall pick real numbers b.The quasiwalls for Tb are described on Figure 8, the picture for quasiwalls of T 0b isobtained via translating by b. Notice thatint(Bt(�s)) � Dom�(Tb); int(Bt(�s+ b)) � Dom�(T 0b )(provided that b 2 R).Corollary 6.5. Let 0 < r < jbj; b 2 R. Then the parameters t; s can be chosen so thatBr(b) � Dom�(Tb); Br(0) � Dom�(T 0b ):Proof: Choose t; s so that jt� sj ! 0, jt+ sj ! 1. Then Dom�(Tb) converges to the unionof half-planes fRe(z) 6= 0g and Dom�(T 0b ) converges to fRe(z) 6= bg.6.2. The pantographThe (rigidi�ed) pantograph P is described on Figure 9, recall that we use the Convention3.8 for the two degenerate triangles in P as well as for the rigidi�ed parallelogram. Thepantograph is a versatile linkage, its role in engineering10 was as a functional linkage for thefunctions z 7! �z; z 7! ��1z, � > 1.Remark 6.6. In the next section we shall also use the pantograph to construct the adder.In the case of the function z 7! �z we let W := fAg be the �xed vertex, Z := 0, take Das input and G as output, let P� be the resulting linkage (it will be functional for z 7! �z).By switching input and output we obtain a functional linkage P1=� for z 7! z=�.By letting fDg = W instead of A, the same Z as before, � = 2 and taking A as inputand G as output we obtain a functional linkage for the function z 7! �z in the complexplane. Notice that the condition s 6= t implies that for each realization � the points �(A),�(D), �(G) are pairwise distinct.Below we describe Dom and Dom� of the pantograph, the proofs are similar to theprevious section and are left to the reader.10That goes back to at least 17-th century, see [Sch].32
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GFigure 9: The rigidi�ed pantograph P: the parallelogram BCDE is rigidi�ed, � > 1. Thislinkage is not marked, we shall use di�erent choices of input/output vertices later on. Wetake: s = `[AB] = �`[AC] 6= t = `[BG] = �`[BE].Lemma 6.7. For each choice of the �xed vertex and input/output vertices described above,the pantograph is a functional linkage. The group of symmetries is isomorphic to Z=2 andis generated by the reection of �(B) in the line � through the points �(A), �(D), �(G).The walls are described by the condition: �(B) 2 �. There are no quasiwalls. Dom�(P) isthe interior of Dom(P). If D or A is the input and G is the output then the domain of thepantograph is the annulus given by the inequalitiesjs� tj=� � j�(D)� �(A)j � (s+ t)=�:If G is the input and D is the output then the domain of the pantograph is the annulus givenby the inequalities js� tj � j�(G)� �(A)j � s+ t:For given � as js � tj ! 0 and js + tj ! 1 the domains Dom�(P) are convergent topunctured complex planes.Note that zero does not belong toDom� of the pantograph for any choice of input/outputpoints. To resolve this problem we compose P with the appropriate translators:�z = �(z + b) + b = �b(�� 0�b(z))�z = �(z + b)� �b = ���b(�� 0�b(z))z=� = (z + b)=�� b=� = ��b=�(� 0�b(z)=�)where b 2 R � f0g. We call the linkages computing the above functions the modi�ed pan-tographs and denote them P 0�;P 0�;P 01=� respectively. We would like Dom�(P 0�);Dom�(P 01=�)to contain arbitrarily large compacts. This is done as follows:Lemma 6.8. Fix � > 1 and let r > 0. Then we can choose b 2 R and edge-lengths for thetranslators and for the pantographs P�;P1=� so thatBr(0) � Dom�(P 0�); Br(0) � Dom�(P 01=�):33



Proof: We consider the case of the modi�ed pantograph L := P 0�, the second case is similar.By Theorem 4.3 we have:Dom�(L) � Dom�(T 0�b) \ [Dom�(P�)� b] \ [��1Dom�(T��b)� b]:Below we analyse the triple intersection:(1) By choosing appropriately the parameters t; b in T 0�b we can guarantee that Dom�(T 0�b)contains arbitrarily large discs around the origin (see Corollary 6.5). In particular, Br(0) �Dom�(T 0�b).(2) The domain [Dom�(P�) � b] is obtained by translating Dom�(P�) by �b. Recallthat Dom�(P�) is an open annulus centered at zero. By adjusting parameters in P� (andkeeping � �xed) we can guarantee that Dom�(P�) contains the disk B�(b) for each � < jbj,see Lemma 6.7. We conclude that if jbj > r (and under appropriate choice of edge-lengthsin P�, T 0�b) the domain Dom�(T 0�b) \ [Dom�(P�)� b]contains the disk Br(0).(3) Lastly we consider the domain ��1Dom�(T��b) � b, it contains the disk Br(0); r =R=�; provided that Dom�(T��b) contains the disk of radius R centered at the point �b. Thedomain Dom�(T��b) is again an annulus centered at zero. By adjusting parameters of thelinkage T��b (and keeping �; b �xed) we can guarantee that Dom�(T��b) contains arbitraryannuli centered at zero. Hence for each R < j�bj (i.e. r < jbj) and under appropriate choiceof edge-lengths in T��b, the domain Dom�(T��b) contains the disk BR(�b). We concludethat for each � > 0 and r > 0 if we choose b such that r < jbj, then the edge-lengths of thelinkage L can be chosen so thatBr(0) � Dom�(L):6.3. The adderWe again consider the rigidi�ed pantograph, only now � = 2, the vertices A;G are theinputs, D is the output and there is no �xed vertices at all. We will use the notation Q forthe resulting linkage. Similarly to the previous section Q is C -functional for the function(z; w) 7! (z + w)=2(the input A corresponds to z and the input G corresponds to w). As before the domain ofQ is given by f(z; w) 2 C 2 : t � jz � wj � 3tgand Dom�(Q) is the interior of Dom(Q). Note that the point (b;�b) belongs to Dom�(Q)provided that t < 2jbj < 3t. The point (0; 0) does not belong to Dom�(Q), similarly to theprevious section we use appropriate translators to resolve this problem:(z +w)=2 = [(z + b) + (z � b)]=2where t < 2jbj < 3t. Thus we get a modi�ed linkage Q0 for (z; w) 7! (z + w)=2 such that(0; 0) 2 Dom�(Q0). To get the linkage LA for the addition we combine Q0 and the modi�edpantograph P 02 for the multiplication by 2:(z; w) 7! (z + w)=2 7! z +w:Then (0; 0) 2 Dom�(LA). 34
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Figure 10: The Peaucellier inversor.6.4. The modi�ed inversorThe most famous functional linkage is the Peaucellier inversor (see [HCV, page 273] and[CR, page 156]) depicted on Figure 10 (with a2 � r2 = t2).The vertex F = v1 is the only �xed vertex of the inversor, Z := (0). According to the19-th century work on linkages, the Peaucellier inversor is supposed to be the functional forthe inversion Jt(z) = t2=�z with the center at zero and radius t.Unfortunately this is not true for our de�nition of functional linkage because of thedegenerate realizations �,  with �(B) = �(D) and  (A) =  (C). Note that there is a3-torus of degenerate realizations  with  (A) =  (C), so even the dimension of C(L; Z)is not correct for a functional linkage with n = m = 1.Many of the degenerate realizations can be eliminated by rigidifying the square ABCD,but there remains an S1� S1 of degenerate realizations with  (A) =  (C) for which  (B)and  (D) are not in general related by inversion. We eliminate these by attaching a \hook"11to fA;Cg as on the Figure 11.Lemma 6.9. The modi�ed Peaucellier inversor Jt (with B as input and D as output) is afunctional linkage for Jt(z) = t2=�z. The domain of Jt is the annulusfz 2 C : � � jzj � ��1gwhere � = pa2 � �2�pr2 � �2. The only quasiwall of the inversor is the circle of inversionfz : jzj = tg. Wall(Jt) is the boundary of the annulus Dom(Jt).Proof: If the image of the square [ABCD] under a realization � is nondegenerate then�(D) = Jt(�(B)), see [CR], [HCV]. Notice that �(A) 6= �(C) for any realization � (thehook!). If �(B) = �(D) then we still have �(D) = Jt(�(B)) since for such a realization thepoint �(B) bisects the segment [�(A); �(C)]. It is clear from the triangle inequalities thatthe above annulus equals Dom(Jt). Suppose that we are given �(B) = z 2 C � f0g. Thenthe location of �(A); �(C) is uniquely determined up to reection �1 in the line � through0; z which interchanges these points. This determines the point �(D) 2 � as well. The11Notice that by attaching this hook we had created an extra symmetry on the moduli space: the transfor-mation which �xes images of all vertices except �(E) and reects �(E) with respect to the line (�(A)�(C)).35
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Figure 11: The modi�ed Peaucellier inversor Jt: the square ABCD is rigidi�ed and `[AE]�`[EC] = 2� > 0, `[EC] > r.reection �1 determines an element of order 2 in Sym(Jt) which we denote by �1 as well.However the action of �1 on C(Jt; Z) is free since �(A) 6= �(C) for all realizations �. Oncethe images of A;B;C;D are determined there remains a single indeterminacy for �: we canreect �(E) via the reection �2 in the line through �(A); �(C). This reection determinesan element �2 2 Sym(Jt), the �xed-point set of which consists of realizations for whichj�(A)� �(C)j is minimal, i.e. equal to 2�. The projection of the set of these realizations toDom(Jt) forms the boundary of the annulus Dom(Jt). This identi�es the union of wallsin C(Jt; Z). We also conclude that the group of symmetries Sym(Jt) is Z2 � Z2 and isgenerated by the above involutions �1; �2.It remains to identify the quasiwalls. Suppose that � 2 T�C(Jt; Z) is an in�nitesimaldeformation which vanishes on B, recall that �jv1 = 0 as well and � does not belong to awall. The above description of the domain of Jt implies that the triangles�(0; �(B); �(A)); �(0; �(B); �(C))are nondegenerate for each realization � as above. Hence �jA = 0; �jC = 0. If the rhombus�(�(B); �(A); �(D); �(C))is nondegenerate then Lemma 3.11 implies that �jD = 0. Since � is not on a wall, thetriangle �(�(E); �(C); �(A))is nondegenerate and �jE = 0. This proves that the projection of the quasiwall to Dom(Jt)is the circle f�(D) = �(B)g = f�(B) : j�(B)j = tgi.e. the circle of the inversion Jt.Remark 6.10. Notice that unlike the cases of other linkages, the quasiwall fjzj = tg doesnot move if we alter edge-lengths of the functional linkage Jt for the given function Jt. Onthe other hand, by adjusting the parameters �; a; r; `[AE] and keeping t �xed we can get anypoint z 2 C � to the interior of Dom(Jt).Notation 6.11. We shall use the notation J for J1.36



6.5. The multiplierOur construction of the multiplier is quite di�erent from the one that was used by Kempe[Ke1] and other people (see for instance [B]). The idea is to use algebra instead of geometry:if one has addition, subtraction and inversion then one also gets the function z 7! z2 viacomposition as follows. Consider the identity1�z � 0:5 + [� 1�z + 0:5 ] = 1�z2 � 0:25Hence we can combine the following linkages:� Three translators for the functions � 0�0:5 : z 7! z � 0:5, �0:25 : z 7! z + 0:25.� One pantograph for the germ of the function w 7! �w at the point �2.� Three inversors J for the function J1 : z 7! 1=�z.� The modi�ed adder LA for the germ of addition at (�2;�2).to get a functional linkage Q for the function z 7! z2.Lemma 6.12. Under the following restrictions:� < r=2; a+ r > p3=2on the parameters a; r; � for the inversor J , the origin belongs to Dom�(Q).Proof: First of all we need: �0:5 2 Dom�(J )None of the points �0:5 belong to the circle of inversion, hence if we use a; r; � as abovethen 1 > 0:5 > �and �0:5 2 Dom�(L).The point (�2;�2) belongs to Dom�(LA) provided that the parameter t is chosen sothat t < 2 < 3t. Finally, we apply the inversor J again to compute1�z2 � 0:25 7! z2 � 0:25For this operation we need: �4 2 Dom�(J ). Direct computation again shows that 4 < ��1under the above restrictions on a; r; �, which implies that �4 2 Dom�(J ).Thus, we have a functional linkage Q for the computation of the function z 7! z2 sothat 0 2 Dom�(L). Then we use the identityzw = [(z + w)2 + (�(z2 +w2))]=2to construct a functional linkage for the complex multiplication. The linkages which areused for this computation are: the three copies of modi�ed adder, two modi�ed pantographs(for the functions x 7! �x and y 7! y=2) and three copies of the linkage Q for squaring. Oneach step of the composition of linkages all we need are functional linkages with the originin Dom�, which is true for all the above linkages.37



6.6. The straight-line motion linkageIn this section we modify the usual Peaucellier straight-line motion linkage (see [CR], [HCV])to obtain a real functional linkage S for the inclusion R ! C = R2 .Start with the rigidi�ed inversor Jt and add the edge [GD] of the length t. The verticesF;G are the �xed vertices of the new linkage S. Their images are: �(F ) = ��(G) =�p�1t=2. Take the vertex B as both the input vertex and the output vertex. See Figure12.Remark 6.13. This choice is somewhat strange from the classical point of view since thelinkage S was invented to transform periodic linear motion of the vertex B to the circularmotion of the vertex D (from this point of view B is the input and D is the output). Howeverwe do not use the linkage S to transform linear to circular motion but to restrict motion ofthe input-vertex B to the real axis.
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GFigure 12: The Peaucellier straight-line motion linkage S. The vertices F;G are �xed. Thevertex B is the input and output.The point �(D) is now restricted to the circle with the center at �(G) and radius t.The input �(B) is obtained from �(D) by inversion with the center at �(F ) and radiust. Whence the input �(B) moves along a segment in the real axis. Notice that S has asymmetry that interchanges �(F ) and �(G), and maps �(D) to �(D); this symmetry isinduced by the complex conjugation C ! C .We use the following restrictions on the side-lengths of the linkage:0 < 2� = `[AE]� `[CE] ;`[CE] > 2r; a > r > �; 17r > 15aUnder these conditions the linkage S is a real functional linkage for the inclusion mapid : R ! C = R2 and the input map p : C(S; Z)! R � R2 has the following property:Dom�(S; Z) contains the open interval (�p32 t; p32 t).Notice that �(F ); �(G) =2 R. We will need a modi�cation ~S of S where images of all�xed vertices are real numbers. The based linkage ~S is produced from S via the constructionin Section 5, see Figure 13.We will also need another modi�cation Sm of the linkage ~S. Namely, take m isomorphiccopies ~Sj of the linkage ~S. Then take their �ber sum by identifying the vertices with thelabels v1; v2; F;G for each pair ~Sj, ~Si. We leave it to the reader to verify that Sm is a realfunctional linkage for the inclusion map id : Rm ! Cm andDom�(Sm) � (�p32 t; p32 t)m:38
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Figure 13: The based Peaucellier straight-line motion linkage ~S: `[v1v2]2 + (t=2)2 =`[Fv2]2 = `[Gv2]2. The image of B under all realizations lies on a segment of the realaxis which contains the open interval (�p32 t; p32 t) � Dom�( ~S).The linkage Sm is used for constructing real functional linkages from the complex ones.7. Expansion of domains of functional linkagesConvention 7.1. In this section we will suppress choices of �xed vertices and their imagesfor functional linkages.We apply the results of Section 6.2 to expand domains of functional linkages:Lemma 7.2. Suppose that g(x) is a homogeneous polynomial of degree d, L is a functionallinkage which de�nes the germ (g; 0). Then for any r > 0 we can modify L so that the newlinkage ~L is functional for the function g and Dom�( ~L) contains the disk Br(0).Proof: We consider the case d > 0, the case of constant functions (d = 0) is left to thereader. By the assumption Dom�(L) contains a disk B�(0) centered at the origin, we canassume � < r. Choose positive � < �=r < 1. Let � := ��d > 1. We use the formulag(y) = ��dg(�y) = �g(�y)to construct a functional linkage ~L for the function g as a composition of the followinglinkages:� P 0� (the modi�ed pantograph for the multiplication by �),� the linkage L,� P 0� (the modi�ed pantograph for the multiplication by �).The linkages P 0�, P 0� are chosen so thatBr(0) � Dom�(P 0�); BR(0) � Dom�(P 0�)where R := maxfg(y) : y 2 B�(0)g. Let's check that this choice guarantees that Br(0) iscontained in Dom�( ~L). By Theorem 4.3 we have:Dom�( ~L) � [Dom�(P 0�)] \ [��1(Dom�(L))] \ [��1g�1(Dom�(P 0�))]:39



Then, since ��1� > r, it is enough to verify thatBr(0) � ��1g�1(Dom�(P 0�)):However BR(0) � Dom�(P 0�), hence (by the choice of R)B�=�(0) � ��1g�1(Dom�(P 0�))which together with the inequality r � ��1� implies the assertion.As a corollary we get the following Theorem:Theorem 7.3. (Theorem on expansion of domain.) Suppose that f : km ! kn be apolynomial morphism, L is a functional linkage which de�nes the germ (f; 0). Then for anyr > 0 we can modify L so that the new linkage ~L is functional for the morphism f andDom�( ~L) contains the disk Br(0).Proof: We will consider the case when n = 1, the general case follows from Theorem 4.5.Write f(x) as f(x) =Xj�d fj(x)where each fj is a homogeneous polynomial of degree j. Let g(y) := y1+ :::+ yd. Hence wecan represent f as a composition of homogeneous polynomials fj; j � d; and g. Now theassertion follows from the previous lemma and Theorems 4.3, 4.5.8. Realization of complex polynomial maps by functionallinkagesIn this section we prove Theorem A (the complex case). We �rst consider the case f : Cm !C , i.e. n = 1. Let f(x) = a0 +Xj ajgj(x)where gj = x�11 :::x�mm are monomials of positive degrees and aj 2 C are constants (j =0; 1; :::; N). Let y = (y0; :::; yN ). Consider the functionf̂(x; y) = y0 +Xj yjgj(x):This function is obtained via composition of the multiplication and addition operations.Hence we use the elementary linkages for the addition and multiplication we get a complexfunctional linkage L̂ for the germ (f̂ ; 0). Then we use Theorem 7.3 (on expansion of domain):for each given � > 0 we can modify L̂ to ~L so that ~L is functional for the pair (f̂ ; B�(0)),0 2 Cm+N . We use � so large that B�(0) contains the diskf(x; y) : x 2 Br(O); yj = aj ; j = 0; :::; Ng:We represent f as a composition of the function f̂ and the constant functiona : (y0; :::; yN ) 7! (a0; :::; aN ):The constant function is de�ned by a functional linkage as follows:Let A be the graph which consists of the set of vertices [In(A) = (P1; :::; Pm)] [[Out(A) = (Q1; :::; QN )], no edges, W = Out(A) and Z = (a0; :::; aN ).40



Clearly Dom�(A) = Cm . Thus the 1-st and 2-nd functionality theorems 4.3, 4.5 implythat composition of the linkages ~L andA gives us a functional linkage for the pair (f;Br(O)).This proves Theorem A in the complex case when n = 1.To get functional linkages for polynomial vector-functions we use repeatedly the 2-ndfunctionality theorem 4.5:If we have a functional linkage L1 for the germ (f1(x1; :::; xn); A1) and a functionallinkage L2 for (f2(x1; :::; xn); A2) we glue inputs of L1 and L2 to construct a functionallinkage L for the germ ((f1; f2); (A1; A2)).Thus we provedTheorem 8.1. Let f : C n ! Cm be a polynomial map, O 2 Cm and r > 0. Then there isa marked functional linkage L = (L; `;W ) together with a vector Z 2 C s so that:The ball Br(O) is contained in Dom�(L; Z), q � p�1 : Dom(L; Z) ! Cm equals therestriction of the vector-function f , i.e. (L; Z) de�nes (f;Br(O)).There is a special case when f has real coe�cients and Z 2 Rs . Recall that we useonly real numbers b for the translators in L. We apply the construction described in theSection 5 and modify L to a based linkage ~L. According to Lemma 5.1 we get an algebraicisomorphism � :M( ~L)! C(L; Z):Hence the based linkage ~L also de�nes the pair (f;Br(O)). This proves Theorem A of theIntroduction (in the complex case).9. Transition from complex to real functional linkagesLet f : Rm ! Rn be a polynomial function, O 2 Rm be a point and r > 0. Our goal is toproduce a real functional linkage for the pair (f;Br(O)).We extend f by complexi�cation to a morphism f c : Cm ! C n and construct a complexfunctional linkage L0 for (f c; Bcr(O)), where Bcr(O) is the ball of radius r in Cm centered atO. Take the real functional linkage Sm for the identity map id : Rm ! Rm , see x6.6. Wechoose the parameter t in Sm so large thatBr(O) � (�p32 t; p32 t)m � Dom�(Sm):Next we alter L0 via �ber product with the linkage Sm. Namely, take the bijection � :In(L0) ! In(Sm) = Out(Sm) which maps each input vertex P 0j of L0 to the input vertexP 00j of Sm. Let L := L0 �� Sm. Then the 1-st functionality theorem 4.3 implies that L is areal-functional linkage for the polynomial f and Dom�(L) contains the disk Br(O) � Rm .Notice that for each �xed vertex v 2 W of Sm we have: z = �(v) 2 R, � 2 C(Sm; Z).The same is true for L0 since the polynomial f has only real coe�cients and we use onlyreal numbers b for the translators. Then (as in as in the Section 8) Lemma 5.1 implies thatwe can modify L to a based linkage ~L so that� :M( ~L)! C(L; Z)is an algebraic isomorphism. This concludes the proof of Theorem A in the real case.
41



10. Realization of algebraic sets and smooth manifolds asmoduli spaces of planar linkagesIn this section we derive Theorem B from Theorem A. Let X be a compact a�ne algebraicsubset of Rm , choose a polynomial f : Rm ! R such that X = f�1(0). We may assumeM � Br(0). By Theorem A (the real case) we have a based functional linkage L for thepair (f;Br(0)). The output mapping p of L is an analytically trivial12 polynomial coveringover Br(0). Now glue the output vertices of L to the basic vertex v1 to obtain a linkageL0. Let p0 be the output mapping of L0. The images of the input vertices of L0 under� 2M(L0) are now constrained to f�1(0). Thus the mapping p0 :M(L0)! Xcan is a localanalytic isomorphism (by the 3-rd functionality theorem, Theorem 4.6). Hence by Lemma2.9 the mapping p0 :M(L0)! X is also a local analytic isomorphism (nowM(L0) has thereduced analytic structure). Hence p0 is an analytically trivial polynomial covering over X.Theorem B follows.Proof of Theorem B' is similar and is left to the reader.To prove Corollary C we use Theorem 2.20 and Theorem B to get a linkage L0 andan analytically trivial covering p :M(L0)!M where we identify M with a real algebraicsubset of Rm .11. How to draw algebraic curvesIn this section we prove Theorem 11.2 according which one can \draw" arbitrary algebraiccurves in R2 using planar mechanical linkages. For instance, if � is a compact connectedalgebraic curve in R2 then there is a closed complex functional linkage L0 with a singleinput vertex P so that as realizations  of L0 vary along an arbitrary connected componentC of M(L0), the vertex P traces the curve � and the projection C ! � is an analyticisomorphism.We �rst need a functional linkage for the complex conjugation. There are several waysto do it.The 1-st construction. Using Theorem B' construct a closed functional linkage L0for the germ of the complex algebraic set zw = 1 at the point (2; 1=2) 2 C 2 . Let P1; P2 bethe input vertices of L0. Then let L0 be the linkage L0 where we declare P1 the sole inputvertex and Q1 := P2 the output vertex. Then L0 is a complex functional linkage for thegerm of the function z 7! z�1 at the point 2. Recall that we have the complex functionallinkage J for the germ of the inversion w 7! 1= �wat the point 1=2. Hence we compose z 7! z�1 7! �z and compose the linkages J , L0 to geta C -functional linkage �L for the germ of the map z 7! �z at the point 2. Finally, we use theformula �z = z + 2� 2and composition of �L with two translators to get a C -functional linkage L0 for the germ(z 7! �z; 0).The 2-nd construction. We start with the linkage B described on Figure 14: anabstract (rigidi�ed) square with a \hook" attached. We let`[AP ] = p2; j`[AC]� `[BC]j > 212In the scheme-theoretic sense. 42



Let S2 be the linkage from the section 6.6 where t = 1, let P1; P2 be the input vertices ofS2 (they are the output vertices as well). Take � : A 7! P1; B 7! P2 and L := B �� S2. Wedeclare P 2 B the input and Q 2 B the output of the linkage L. We leave it to the readerto verify that the linkage L is a C -functional linkage for the germ of z 7! �z at the pointp�1.

P B

A Q

C

Figure 14: Construction of a functional linkage for the complex conjugation.Remark 11.1. Under all realizations � of L we have: �(A); �(B) 2 R, �(A) 6= �(B) and�(Q) = �(Q).Finally, we use the formula �z = z + i� iand composition of L with two translators to get a C -functional linkage L00 for the germ(z 7! �z; 0).Theorem 11.2. Let f = f(z; �z); f : C ! R be a polynomial function of the variables z; �zand � := f�1(0) � C be a real-algebraic curve. Pick an open (in the classical topology)bounded subset U � �. Then there is a closed C -functional linkage L0 so that the input mapp0 : C(L0; Z)! C is an analytically trivial polynomial covering over U .Proof: Let U � Br(O). Our argument is exactly the same as in the proof of Theorem B.Namely, as in Theorem A we �rst construct a functional linkage L for the pair (f;Br(O))(now we use the composition of addition, multiplication and the complex conjugation). Thenwe attach the output vertex Q of L to the distinguished vertex v1 (such that �(v1) = 0for all relative realizations). Let L0 be the resulting closed functional linkage and p0 beits input map. Then as in the proof of Theorem B we have: p0 is an analytically trivialpolynomial covering over U .12. Universality theorem for arrangements in P2In the section we review notions of con�guration spaces for arrangements and universalitytheorems proven in [KM2], which extend earlier results of Mnev [Mn].Let A be an abstract arrangement, i.e. a bipartite graph with the parts P and L. Wesay that a \point" P 2 P is incident to a \line" L 2 L if P and L are connected by an edge.A projective realization � of A is a map� : P [ L ! P2 [ (P2)_; �(P) � P2; �(L) � (P2)_43



such that if P and L are incident then �(P ) 2 �(L). This condition de�nes a projectivescheme R(A) over Z. We let R(A; C P2) and R(A;RP2) denote the sets of complex and realpoints of R(A).Here and below we use the symbol _ for polarity between points and lines in the pro-jective plane, this polarity is determined by the standard bilinear form on R3 given byk(x; y; z)k2 = x2 + y2 + z2.We now want to pass to the quotient of R(A) by PGL3. We do this by restricting torealizations in a \general position" and then taking a cross-section. To make it precise we�rst de�ne based arrangements.De�nition 12.1. The standard triangle is the abstract arrangement T consisting of 6point-vertices and 6 line-vertices that corresponds to a triangle with its medians, see Figure15.
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Figure 15: The standard triangle T and its standard realization.De�nition 12.2. The standard realization �T of the standard triangle T is determinedby: �T (v00) = (0; 0); �T (vx) = (1; 0); �T (vy) = (0;1); �T (v11) = (1; 1):Here (0; 0); (1; 0); (0;1); (1; 1) are points in the a�ne plane A 2 � P2 which have thehomogeneous coordinates: (0 : 0 : 1); (1 : 0 : 0); (0 : 1 : 0); (1 : 1 : 1) respectively.We say that an abstract arrangement A is based if it comes equipped with an embeddingi : T ! A. Let (A; i) be a based arrangement. We say that a projective realization � of Ais based if � � i = �T . Let BR(A;P2(k)) be the subset of R(A;P2(k)) consisting of basedrealizations, k = R; C .Lemma 12.3. (See [KM2, Theorem 8.20].) BR(A;P2(C )) is the set of complex points ofa projective scheme over Z which is a scheme-theoretic quotient of R(A) by the action ofPGL3.De�nition 12.4. A functional arrangement is a based arrangement (A; i) with twosubsets of marked point-vertices � = (P1; :::; Pm) (the input-vertices) and point-vertices� = (Q1; :::; Qn) (the output-vertices) such that all the marked vertices are incident tothe line-vertex lx 2 i(T ) (which corresponds to the x-axis) and such that the following twoaxioms are satis�ed: 44



Let BR0(A�) � BR(A) denote the open subset which consists of realizations � suchthat �(Pj) 2 A 2 for all j, we de�ne BR0(A�) similarly. Then we require:(1) BR0(A�) � BR0(A�).(2) The projection p : BR0(A�)! A m given by p(�) = (�(P1); :::; �(Pm)) is an isomor-phism of schemes over Z.Each functional arrangement determines a morphism f : A m ! A n (which is de�nedover Z) by the formula: f(x) = q � p�1(x)where q(�) = (�(Q1); :::; �(Qn)).Theorem 12.5. (See [KM2, Lemma 9.7].) Let f : A m ! A n be any polynomial mappingwith integer coe�cients. Then there is a functional arrangement A which determines f .Let S � A m be a closed subscheme de�ned over Z, S = f�1(0) for some morphismf : A m ! A n . Let A be a functional arrangement which determines f as in the abovetheorem. By gluing the output vertices of A to v00 we obtain an arrangement A0 containingdistinguished vertices P1; :::; Pm. Again de�ne BR0(A0) by requiring �(Pi) to be �nite. Weget an induced morphism (easily seen to be an embedding) p : BR0(A0) ! A m . We thenhaveTheorem 12.6. (Theorem 1.3 of [KM2]) Let S be a closed subscheme of A m (again overZ). Then there exists a based marked arrangement A such that the input mapping p :BR0(A)! A m induces an isomorphism of schemes BR0(A)! S.We will use the following version of the above theorem:Theorem 12.7. Let X be a compact real algebraic set de�ned over Z. Then there existsa based arrangement A such that X is entire birationally isomorphic to a Zariski open andclosed subset C in BR(A;P2(R)).Proof: Using Theorem 2.19 we may assume that X is projectively closed. We choose theprojective scheme X � Pm whose set of real points is X so that the corresponding a�nescheme Xa � A m+1 corresponds to a real reduced ideal. Thus X is Zariski dense in X(C ).De�ne the a�ne scheme XA = X \ A m . Now apply Theorem 12.6 to construct a basedmarked arrangement A so that BR0(A) is isomorphic to XA (as a scheme), hence the setsof real points of these schemes are isomorphic as well. Thus X is (polynomially) isomorphicto BR0(A; P 2(R)) which is Zariski open. It remains to show that BR0(A; P 2(R)) is alsoZariski closed.Recall that BR(A) embeds canonically in a product (P2)N � (P1)m where the last mfactors correspond to the input vertices. The morphism p : BR0(A)! A m is the restrictionof the projection on the last m factors:(P2)N � (P1)m ! (P1)mThe subset BR0(A;P2(C )) is constructible, hence its closure with respect to the classicaltopology is the same as its closure BR0(A;P2(C )) with respect to the Zariski topology in(P2(C ))N � (P1(C ))m .Suppose that there is a real point z 2 BR0(A;P2) that does not belong to BR0(A;P2(R)).Then z is the limit of a sequence zj 2 BR0(A;P2(C )). However p(zj) 2 Cm are obtained by\forgetting" all but the last m coordinates of zj , hence p(zj) will converge to a real pointx of X. It is clear that x =2 Rm and hence does not belong to X. This contradicts the factthat X is projectively closed. 45



Remark 12.8. In general BR(A;P2(C )) is di�erent from BR0(A;P2(C )). As an exampleconsider the linkage A corresponding (via the construction in [KM2]) to the system ofequations: x+ y = 0; x+ y = 1; x = yin A 2 . The set solutions of this system of equations is empty (even in the projective com-pacti�cation of A 2). Thus BR0(A;P2(C )) = ;, on the other hand: BR(A;P2(C )) is a singlepoint.Now we construct metric graphs corresponding to based abstract arrangements. Sup-pose that A is a based arrangement. We start by identifying the point-vertex v00 with theline-vertex l1, the point-vertex vx with the line-vertex ly and the point-vertex vy with theline-vertex lx in the standard triangle T . We also introduce the new edges[v10v00]; [v01v00]; [v10vx]; [v01vy](Here v10; v00; v11; v01; ::: are the point-vertices in the standard triangle T .) We will use thenotation L for the resulting graph. We construct a length-function ` on the set of edgese � L as follows:1) We assign the length �=4 to the new edges.2) We assign the length �=2 to the rest of the edges.13. The relation between the two universality theoremsThe goal of this section is to establish a relation between the two universality theoremsfor realizability of real algebraic sets (Theorems B and 12.7). Consider an abstract basedarrangement A. We choose v00; vx; vy; v01; v10 as distinguished vertices of the correspondingmetric graph L. Let L denote the metric graph L with the distinguished set of vertices asabove. LetX be either S2 or RP2 with the standard metric d (so that the standard projectionS2 ! RP2 is a local isometry). De�ne the con�guration space C(L;X) of realizations of Lin X to be the collection of mappings  from the vertex-set V(L) of L to X such thatd( (v);  (w))2 = (`[vw])2for all vertices v; w of L connected by an edge.Remark 13.1. Notice that if a; b 2 RP2 are within the distance �=2 then there are twominimal geodesics connecting a to b. This is the reason to de�ne C(L;X) as the set ofmaps from V(L) rather than from L itself.One can easily see that C(L;X) has natural structure of a real algebraic set. Thesubsets M(L;RP2 ) := f 2 C(L;RP2) :  (v00) = (0; 0);  (vx) = (1; 0); (v10) = (1; 0);  (v01) = (0; 1)gM(L;S2) := f 2 C(L;S2) :  (v00) = (0; 0; 1);  (vy) = (0; 1; 0); (vx) = (1; 0; 0);  (v10) = (1; 0; 1);  (v01) = (0; 1; 1)gform cross-sections to the actions of the groups of isometries PO(3;R); O(3;R) of X onC(L;X). We callM(L;X), themoduli spaces of realizations of L inX (whereX = S2;RP2).Remark 13.2. Now it is convenient to use the full group of isometries of S2 instead of thegroup of orientation-preserving isometries that we used for planar linkages.46



Lemma 13.3. The moduli space M(L;RP2) is (polynomially) isomorphic to the real alge-braic set BR(A;RP2).Proof: The key to the proof is the fact that a point P 2 RP2 is incident to a line L 2 (RP2)_i� d(P;L_) = �=2:Thus we construct a morphism� : BR(A0;RP2)!M(L;RP2); � : � 7!  so that for each point-vertex P 2 A we have  (P ) = �(P ) and for each line-vertex L 2 Awe have  (L) = �(L)_. This morphism has algebraic inverse given by the same formula(since (L_)_ = L).LetM0(L;RP2) be the image of BR0(A0;RP2) under the isomorphism �. Consider thestandard 2-fold covering S2! RP2 . It induces a (locally trivial) analytical covering� :M(L;S2)!M(L;RP2):The group of automorphisms of � is (Z2)r, where r is the number of (point) vertices in[L � P(T )] [ fv11g. The generators of this group are indexed by the vertices v 2 [L �P(T )] [ fv11g: gv :  (v) 7! � (v); gv :  (w) 7!  (w); w 6= v:Proposition 13.4. For each arrangement A as in Theorem 12.7, the covering � is analyt-ically trivial over M0(L;RP2).Proof: The proposition will follow from the following:For each point-vertex v in L there is a line � in RP2 and for each line-vertex v 2 L thereis a line �0 in (RP2 )_ so that:�(v) =2 � for all � 2 BR0(A;RP2) (if v is a point-vertex) and �(v) =2 �0 for all � 2BR0(A;RP2) (if v is a line-vertex).To prove this property recall (see [KM2]) that A is obtained from \elementary" arrange-ments for the addition and multiplication via �ber sums. Thus it is enough to verify theabove property for the arrangements CA; CM for the addition and multiplication that aredescribed in [KM2]. The veri�cation is straightforward and is left to the reader.Now we identify the moduli space of spherical linkages M(L;S2) with a moduli spaceof Euclidean linkages in R3 as follows:Add an extra vertex v0 to the graph L and connect it to each vertex of L by edge ofthe unit length. Modify the other side-lengths as follows:`0(e) :=p2� 2 cos(`(e)); e 2 E(L):Let L0 be the resulting metric graph with the distinguished set of vertices [P(T )� fv11g][fv0g. De�ne the con�guration spaceC(L0;R3) := f : V(L0)! R3 : j (v) �  (w)j2 = `0[vw]2g:Again is is clear that M(L0;R3) := f 2 C(L0;R3 ) :  (v0) = (0; 0; 0);and the same normalization on P(T )� fv11g as we used for M(L;S2)g47



is a real-algebraic set which is a cross-section for the action of Isom(R3) on C(L0;R3).Obviously we have an isomorphismM(L;S2) �=M(L0;R3)of real-algebraic sets. We let M0(L0;R3) be the subset of M(L0;R3) corresponding toM0(L;RP2 ) under the isomorphismM(L;RP2) �=M(L;S2) �=M(L0;R3):Thus, as a corollary of Theorem 12.7 we obtain the following:Theorem 13.5. Let S be a compact real algebraic set de�ned over Z. Then there areabstract linkages L;L0 so that:(1) M0(L;RP2) is entire rationally isomorphic to S.(2) M0(L0;R3 ) is an (analytically) trivial entire rational covering of S.Both M0(L;RP2), M0(L0;R3) are Zariski open and closed subsets in the moduli spacesM(L;RP2), M(L0;R3) respectively.14. A brief history of \Kempe's theorem"This story began with the invention of the steam engine by Newcomen in 1722. One problemthat appeared naturally was to transform a periodic linear motion (of the \input" vertex) toa circular motion (of the \output" vertex). The \parallelogram" invented byWatt in the late18-th century gave an approximate solution to this problem. The \input" motion was notexactly linear, however the input vertex traces a curve with a point of zero curvature, hencethe output approximates a straight line up to the 2-nd order. After discovery in the �rst halfof the 19-th century of several \unsolvable" geometric problems (like squaring a circle, etc.),for a while it was a common opinion that the problem of transforming linear to circularmotion also has no exact solution. This opinion was shared for instance by Chebyshev whoafter thinking about this problem introduced Chebyshev polynomials, partial motivation forwhich was the optimal approximate solution of the problem.This was the situation until 1864 when French navy o�cer Peaucellier published a letter[Pe1] where he claimed a positive solution, without giving any details13.There are several opinions on what happened next (this caused a serious controversybetween Russian and French-British mathematical schools in the late 19-th century). In1871 Lippman Lipkin14 published the �rst detailed solution [L]. Two years later (in 1873)Peaucellier published a paper [Pe2] which also contained a detailed solution (the Peaucellierinversor) identical to Lipkin's. Immediately after that several other ways to \draw a straightline" were discovered [Ha], [Ke2]. As far as applications are concerned it turned out thatall the mechanisms that transform linear motion to circular are too complicated to be usedinstead of Watt's parallelogram, invention of e�cient lubricants had closed the problem.The only practical application of the inversor we are aware of was in air engines whichventilated the British parliament in 1870-1880-s (see [W, Page 182]).The rest of the story is mostly pure mathematics. In 1875 A. B. Kempe published [Ke1]where (in the present terminology) he outlined a proof of the following theorem analogousto Theorem 11.2:13It seems that in 1860-s Peaucellier explained his solution to some other people, cf. [Ma], so his letter[Pe1] was probably not a hoax. However [Ma] contains only the title so we cannot be sure if Mannheimreally knew the construction of the inversor.14That time Lipkin was a graduate student of Chebyshev. Lipkin had died in 1875 at the age of 25 fromthe smallpox. 48



Theorem 14.1. Suppose that S � R2 is an algebraic curve, O 2 S. Then there exists anabstract closed C -functional linkage L, a Zariski closed algebraic subset C � M(L) (whichis a union of irreducible components) and a closed 15 neighborhood U of O in S so that therestriction of the input map p to C is onto U .Remark 14.2. However, if one follows Kempe's arguments, C is not open inM(L), U 6= S(even if S is compact) and the mapping p : C ! U is not a trivial covering.Versions of Kempe's proof were reproduced in a number of places (see for instance [B]),however (as far as we know) even the assertion was not made precise and details of theproof were not given. Recently several (written) attempts were made to improve Theorem14.1, i.e. to make the subset C open and U = S (see [HJW]) and the projection pjCinjective, however, as far as we can tell, they were unsuccessful. Finally there was a workof W. Thurston on this subject that we have discussed in the Introduction.References[ABR] C. Andradas, L. Br�ocker, J. Ruiz, \Constructible sets in real geometry", Ergebnisseder Mathematik und ihrer Grenzgebiete, Vol. 33, Springer Verlag, 1996.[AK] S. Akbulut, H. King, \Topology of real algebraic sets", MSRI Publications, Vol. 25(1992), Springer-Verlag.[BCR] J. Bochnak, M. Coste, M.-F. Roy, \G�eom�etrie alg�ebrique r�eelle", Ergebnisse derMathematik und ihrer Grenzgebiete, Vol. 12, Springer Verlag, 1987.[BE] J. Bochnak, G. Efroymson, Real algebraic geometry and the Hilbert 17-th problem,Math. Ann., Vol. 251, (1980) 213{241.[B] W. Blaschke, \Ebene Kinematik", Hamburg Math. Einzelschriften, Leipzig, Berlin:B. G. Teubner 56 S., 1938.[Ch] P. Chebyshev, Th�eorie des m�ecanismes connus sous le nom de parallelogrammes,M�emoires des Savants �etrangers pr�esentes �a l'Acad. de Saint-P�etersbourg, T. VII,1854, p. 539{568.[CR] R. Courant, H. Robbins, \What is Mathematics", Oxford University Press, 1941.[GN] C. G. Gibson, P. E. Newstead, On the geometry of the planar 4-bar mechanism,Acta Applicandae Mathematicae, Vol. 7 (1986) 113{135.[GR] H. Grauert, R. Remmert, \Analytische Stellenalgebren", Springer Verlag, 1971.[H] R. Hartshorne, \Algebraic geometry", Springer Verlag, 1977.[Ha] H. Hart, On certain conversions of motion, Messenger of Math., T. IV, (1874) p.82{88.[HCV] D. Hilbert, S. Cohn-Vossen, \Geometry and Imagination", Chelsea, 1952.[HJW] J. Hopcroft, D. Joseph, S. Whitesides, On the movement of robot arms in 2-dimensional bounded regions, 23rd annual symposium on foundations of computerscience (Chicago, 1982), p. 280{289, IEEE, New York, 1982.15In the classical topology. 49
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