EXPOSITORY NOTES ON DISTRIBUTION THEORY AND OTHER TOPICS, FALL 2018

While these notes are under construction, I expect there will be many typos.

The main reference for this is volume 1 of Hörmander, The analysis of liner partial differential equations. I have picked a few of the most useful and concrete highlights. The references are based on the 1989 hardcover second edition.

1. GENERALITIES (FROM CH. 2 AND 3)

Definition 1.1. Let U be an open set in \mathbb{R}^n . A distribution $u \in \mathcal{D}'(U)$ is a linear function $u : C_0^{\infty}(U) \to \mathbb{C}$. One can write $u(\phi) = \langle u, \phi \rangle$ and think of this, informally, as $u(\phi) = \int u\phi$. It is required that u is continuous in the following sense:

For every $K \subset U$ compact there exist C, k such that

$$|u(\phi)| = |\langle u, \phi \rangle| \le C \sum_{|\alpha| \le k} \sup_{x} |\partial^{\alpha} \phi|$$
(1)

for every $\phi \in C_0^{\infty}(U)$ supported in K.

If one k works for all K, u is of finite order. The smallest such k is the order of u.

We will need an equivalent formulation of the continuity condition.

Definition 1.2. Let $\phi_j, \phi \in C_0^{\infty}(U)$. The sequence $\phi_j \to \phi$ in $C_0^{\infty}(U)$ if there exists a compact subset of U which contains the support of all ϕ_j, ϕ and for every fixed α , $\sup_x |\partial^{\alpha} (\phi_j(x) - \phi(x))| \to 0$ as $j \to \infty$.

Theorem 1.3. A linear function $u : C_0^{\infty}(U) \to \mathbb{C}$ is a distribution if and only if $u(\phi_j) \to u(\phi)$ for every $\phi_j \to \phi$ in $C_0^{\infty}(U)$.

Proof. To show that if u is a distribution, then $u(\phi_j) \to u(\phi)$ for every $\phi_j \to \phi$ in $C_0^{\infty}(U)$ is clear from the definition. The other half is an easy exercise in negations.

Examples:

- (1) If \tilde{u} is a locally integrable function, $u(\phi) := \int \tilde{u}\phi$. This identifies the function \tilde{u} with a distribution u.
- (2) Dirac delta function. $\delta_a(\phi) = \phi(a)$

- (3) Weak derivatives: If u is a smooth function, and $\phi \in C_0^{\infty}$ is a test function, $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index and $\partial^{\alpha} u = \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n} u$, then $< \partial^{\alpha} u, \phi > := \int \partial^{\alpha} u \phi = (-1)^{|\alpha|} \int u \partial^{\alpha} \phi = (-1)^{|\alpha|} < u, \partial^{\alpha} \phi >$. (integration by parts). This motivates the **definition** of $\partial^{\alpha} u$ for any distribution $u: < \partial^{\alpha} u, \phi > = (-1)^{|\alpha|} < u, \partial^{\alpha} \phi >$.
- (4) It takes some work (thm. 4.4.7 in Hörmander) and we will not prove this, but the above essentially accounts for all possible distributions:

If $u \in \mathcal{D}'(U)$ then there exists a locally finite family of continuous functions f_{α} (each compact subset of U intersects only finitely many of the supports of the f_{α} s) such that

$$u = \sum_{\alpha} \partial^{\alpha} f_{\alpha}$$

Definition 1.4. A sequence of distributions u_i converges to u in $\mathcal{D}'(U)$ (or in the sense of distribution theory) if $u_i(\phi) \to u(\phi)$ for every $\phi \in C_0^{\infty}(U)$

Also, if $u_i \in \mathcal{D}'(U)$ and for each fixed $\phi \in C_0^{\infty}(U)$ the limit $u_i(\phi)$ exists and is denoted $u(\phi)$, then u is automatically a distribution. See Theorem 2.1.8. We will not prove this.

Definition 1.5. Let $u \in \mathcal{D}(U)$ and $f \in C^{\infty}(U)$. Then the distributions $\frac{\partial u}{\partial x_k}$ and fu are defined by

$$\left(\frac{\partial u}{\partial x_k}\right)(\phi) = -u\left(\frac{\partial}{\partial x_k}\right)$$
$$(fu)(\phi) = u(f\phi)$$

Unlike classical convergence, if $u_i \to u$ in $\mathcal{D}'(U)$, then $\partial^{\alpha} u_i \to \partial^{\alpha} u$ in $\mathcal{D}'(U)$ is trivial.

Example 1: Let H be the Heavyside function. Then $H' = \delta_0$.

The following will be worked out in class:

If E is the fundamental solution of the Laplace operator, ∇E in the sense of distributions agrees with the locally integrable function ∇E defined for $x \neq 0$, but ΔE in the sense of distributions does not agree with the locally integrable function $\Delta E = 0$ defined for $x \neq 0$. In fact $\Delta E = \delta_0$.

Definition 1.6. A distribution u is defined to be 0 in an open set $V \subset U$ if $u(\phi) = 0$ for every $\phi \in C_0^{\infty}(V)$. The union of all such subsets V is the largest open set where u is 0, and the complement of that is defined to be the support of u.

Thus the support of a distribution $u \in \mathcal{D}(U)$ is always (relatively) closed in U. If the support of u is compact, u is called compactly supported. The set of compactly supported distributions in U is denoted by $\mathcal{E}'(U)$

Recall the support of a function ϕ is the closure of the set $\{\phi(x) \neq 0\}$. If $u \in \mathcal{D}'(\mathbb{R}^n)$ and $\phi \in C_0^{\infty}(\mathbb{R}^n)$, and the support of ϕ and u are disjoint, then $u(\phi) = 0$. However, if ϕ is zero on the support of u, it does not follow that $u(\phi) = 0$. Example: $\delta'(x)$.

If $u \in \mathcal{E}'(U)$, $u(\phi)$ is well defined for $\phi \in C^{\infty}$: Let K be the support of $u, K \subset V \subset U$ with V open. There exists a smooth cut-off function $\zeta \in C_0^{\infty}(U)$, and $\zeta = 1$ in V. Then $u(\zeta \phi)$ is well-defined, and is independent of the choice of ζ . Define $u(\phi) = u(\zeta \phi)$ for ζ as above.

Definition 1.7. A distribution u is defined to be smooth in an open set $V \subset U$ if there exists $\tilde{u} \in C^{\infty}(V)$ such that $u(\phi) = \int \tilde{u}(x)\phi(x)dx$ for all $\phi \in C_0^{\infty}(V)$ The union of all such subsets V is the largest open set where u is smooth, and the complement of that is defined to be the singular support of u.

2. Distributions supported at one point

Theorem 2.1. If $u \in \mathcal{D}'(\mathbb{R}^n)$ is supported at a point, say 0, then u is a finite linear combination

$$u = \sum c_{\alpha} \partial^{\alpha} \delta$$

Proof. Assume u is of order k (and prove: any compactly supported distribution is of finite order). Pick a test function ϕ and write $\phi(x) = T(x) + R(x)$ the kth order Taylor polynomial plus remainder. u(T) is what we want (check!), and the point is to show that u(R) = 0 where R is the remainder. We know $|R(x)| \leq C|x|^{k+1}$ for $|x| \leq 1$ and in fact $|\partial^{\alpha}R(x)| \leq C|x|^{k+1-|\alpha|}$ for all $|\alpha| \leq k$. Let $\epsilon > 0$, and let χ be a cut-off function, identically 1 in a neighborhood of 0. Then $|u(R)| = |u(\chi(\frac{x}{2})R)| \leq C\sum_{k=1}^{k} \sup_{x \in X} |\partial^{\alpha}(\chi(\frac{x}{2})R)| \leq C\epsilon$. Now

Then $|u(R)| = |u(\chi(\frac{x}{\epsilon})R)| \leq C \sum_{|\alpha| \leq k} \sup_{x} |\partial^{\alpha}(\chi(\frac{x}{\epsilon})R)| \leq C\epsilon$. Now let $\epsilon \to 0$.

Application to PDE: Let $E = \frac{1}{|x|^{n-2}}$ $(n \ge 3)$. Then $\Delta E = 0$ for x away from 0 by calculation, thus ΔE is a distribution supported at 0. It is a finite linear combination of the delta function and its derivatives. An additional homogeneity argument shows $\Delta E = c\delta$.

If u is a locally integrable function in $\mathbb{R}^n - \{0\}$, u is homogeneous of degree α if $u(tx) = t^{\alpha}u(x)$ for all t > 0 and $x \neq 0$. Denoting $\phi_t(x) = t^n \phi(tx)$ this is equivalent to

$$\int u\phi = t^{\alpha} \int u\phi_{i}$$

and the definition of a homogeneous distribution in \mathbb{R}^n (or $\mathbb{R}^n - \{0\}$) is

$$u(\phi) = t^{\alpha} u(\phi_t)$$

for every $\phi \in C_0^{\infty}(\mathbb{R}^n)$ or $C_0^{\infty}(\mathbb{R}^n - \{0\})$.

3. CONVOLUTIONS (CHAPTER 4 IN HÖRMANDER'S BOOK)

The major goal of this section is to prove

1) If $f \in \mathcal{E}'(\mathbb{R}^n)$, then there exists $u \in \mathcal{D}'(\mathbb{R}^n)$ such that $\Delta u = f$.

2) If u, f are as above, and $f \in C^{\infty}(V)$ for some open set V, then $u \in C^{\infty}(V)$.

Both of these goals follow from the properties of the convolution of a distribution with a compactly supported distribution. Part 1 follows by writing u = E * f, $\Delta u = (\Delta E) * f = \delta * f = f$, but we have to assign rigorous meaning to this. Part 2 follows from the fact that the fundamental solution E is C^{∞} away from 0. The exact same results hold for $\frac{\partial}{\partial t} - \Delta$ but not $\frac{\partial^2}{\partial t^2} - \Delta$.

Definition 3.1. If $u \in \mathcal{D}'(\mathbb{R}^n)$ and $\phi \in C_0^{\infty}(\mathbb{R}^n)$,

 $u * \phi(x) = \langle u, \phi(x - \cdot) \rangle$ (where \cdot stands for y, and u acts in the y variable)

Check $u * \phi \in C^{\infty}$, $\partial^{\alpha}(u * \phi)(x) = (\partial^{\alpha}u) * \phi = u * (\partial^{\alpha}\phi)(x)$: We have

$$\phi(x - y + \epsilon e_i) - \phi(x - y) = \epsilon \frac{\partial}{\partial x_i} \phi(x - y) + R(x - y, \epsilon)$$

where

$$R(x - y, \epsilon) = \int_0^1 \frac{d^2}{dt^2} \left(\phi(x - y + t\epsilon e_i)\right) (1 - t) dt$$
$$= \epsilon^2 \int_0^1 \left(\frac{\partial^2 \phi}{\partial x_i^2}\right) (x - y + t\epsilon e_i) (1 - t) dt$$

Fix x. $R(x-y,\epsilon)$ is in C_0^{∞} , and $\sup_y |\partial_y^{\alpha} R(x-y,\epsilon)| \leq C_{\alpha} \epsilon^2$. Using the continuity condition (1) we see

$$\lim_{\epsilon \to 0} \left\langle u, \frac{R(x - \cdot, \epsilon)}{\epsilon} \right\rangle = 0$$

and

$$\lim_{\epsilon \to 0} \frac{u\left(\phi(x-\cdot+\epsilon e_i)\right) - u\left(\phi(x-\cdot)\right)}{\epsilon} = u\left(\frac{\partial}{\partial x_i}\phi(x-\cdot)\right) = \frac{\partial u}{\partial x_i}(\phi(x-\cdot))$$

Check $support(u * \phi) \subset support u + support \phi$: Fix x. If $\phi(x - \cdot)$ is supported in the complement of support u, then $u(\phi(x - \cdot) = 0$ by the definition of support u. If $u(\phi(x - \cdot) \neq 0$, then $\exists y \in support u$ and $y \in support \phi(x - \cdot)$. Thus $y = \lim y_i$ with $\phi(x - y_i) \neq 0$, and $x - y \in support \phi$.

Finally, if $x \in supportu * \phi$, there exist $x_i \to x$ with $u * \phi(x_i) \neq 0$ and

$$x_i \in support \phi + support u$$
$$x \in \overline{support \phi + support u} = support \phi + support u$$

because support u is compact.

We also have

Theorem 3.2. Let $u \in \mathcal{D}'(\mathbb{R}^n)$, and $\phi, \psi \in C_0^{\infty}(\mathbb{R}^n)$. Then $(u*\phi)*\psi = u*(\phi*\psi)$.

Proof. Before starting the proof, review Definition (1.2). $u * \phi \in C^{\infty}$. Fix x.

$$(u * \phi) * \psi(x) = \int (u * \phi)(x - y)\psi(y)dy$$
$$= \lim_{h \to 0+} \sum_{k \in \mathbb{Z}^n} (u * \phi)(x - kh)\psi(kh)h^n$$
$$= \lim_{h \to 0+} u\left(\sum_{k \in \mathbb{Z}^n} \phi(x - kh - \cdot)\psi(kh)h^n\right)$$
$$= u\left(\int \phi(x - y - \cdot)\psi(y)dy\right)$$

In the last line, we used the (obvious) fact that, for x fixed,

$$\sum_{k \in \mathbb{Z}^n} \phi(x - kh - z)\psi(kh)h^n \to \int \phi(x - y - z)\psi(y)dy$$

uniformly in z, and the same is true for after differentiating with respect to z an arbitrary number of times. Also, both LHS and RHS are supported in a fixed compact set. In other words, LHS \rightarrow RHS in C_0^{∞} .

This implies the important theorem on approximating distributions by C^{∞} functions.

Theorem 3.3. Let $u \in \mathcal{D}'(\mathbb{R}^n)$, and let η_{ϵ} be the standard mollifier. Then $u * \eta_{\epsilon} \in C^{\infty}(\mathbb{R}^n)$ and $u * \eta_{\epsilon} \to u$ in the sense of distribution theory (as $\epsilon \to 0$).

Proof. We have to check

$$(u * \eta_{\epsilon})(\phi) \to u(\phi)$$

for every $\phi \in C_0^{\infty}(\mathbb{R}^n)$. The proof is based on the observation that $u(\phi) = u * \phi_-(0)$ where $\phi_-(x) = \phi(-x)$. So it suffices to show $(u * \eta_{\epsilon}) * \phi(0) \to u * \phi(0)$. But

$$(u * \eta_{\epsilon}) * \phi(0) = u * (\eta_{\epsilon} * \phi)(0) \to u * \phi(0)$$

since $\eta_{\epsilon} * \phi \to \phi$ in C_0^{∞} .

Now we define the convolution of two distribution u_1, u_2 , one of which is compactly supported.

This is defined so that the formula

$$(u_1 * u_2) * \phi = u_1 * (u_2 * \phi)$$

holds for all $\phi \in C_0^{\infty}(\mathbb{R}^n)$. For simplicity, let's assume u_2 is compactly supported. Instead of defining $\langle u_1 * u_2, \phi \rangle$ it suffices to define $(u_1 * u_2) * \phi(0)$. This is done in the obvious way:

$$(u_1 * u_2) * \phi(0) = u_1 * (u_2 * \phi)(0)$$

We have to check that $u_1 * u_2$ satisfies the continuity condition. Let $\phi_j \to 0$ in $C_0^{\infty}(\mathbb{R}^n)$ (see Definition (1.2)). Then so does $u_2 * \phi_j$, and $u_1 * (u_2 * \phi_j)(0) \to 0$.

Also, it τ_h denotes a translation, $(\tau_h \phi)(x) = \phi(x+h)$, then $\tau_h(u*\phi) = u*(\tau_h \phi)$ and

$$(u_1 * u_2) * \phi(h) = \tau_h ((u_1 * u_2) * \phi) (0) = ((u_1 * u_2) * \tau_h \phi) (0)$$

= $u_1 * (u_2 * \tau_h \phi) (0) = u_1 * (\tau_h (u_2 * \phi)) (0)$
= $u_1 * (u_2 * \phi) (h)$

Proposition 3.4. Let $u_1, u_2 \in \mathcal{D}'(\mathbb{R}^n)$, one of which is compactly supported. Then

$$support (u_1 * u_2) \subset support u_1 + support u_2$$

Proof. Let η_{ϵ} be a standard mollifier supported in a ball or radius ϵ . It suffices to show

$$support (u_1 * u_2) \subset support u_1 + support u_2 + support \eta_{\epsilon_0}$$

for all $\epsilon_0 > 0$. We do know

support $(u_1 * u_2 * \eta_{\epsilon}) \subset$ support $u_1 +$ support $u_2 +$ support η_{ϵ} \subset support $u_1 +$ support $u_2 +$ support η_{ϵ_0}

for all $0 < \epsilon < \epsilon_0$. Also remark that if A is closed and u is a distribution such that support $u * \eta_{\epsilon} \subset A$ for all $\epsilon_0 > \epsilon > 0$, then support $u \subset A$. This amounts to showing that if $u * \eta_{\epsilon} = 0$ in A^c , then u = 0 in A^c , which follows from $u * \eta_{\epsilon} \to u$ in the sense of distributions. \Box

Theorem 3.5. Let u_1, u_2, u_3 distributions in \mathbb{R}^n , two of which are compactly supported. Then

$$(u_1 * u_2) * u_3 = u_1 * (u_2 * u_3)$$

Proof. The proof follows by noticing it suffices to check $((u_1 * u_2) * u_3) * \phi = (u_1 * (u_2 * u_3)) * \phi$ for every $\phi \in C_0^{\infty}(\mathbb{R}^n)$ which follows easily from the defining property of Theorem (3.2).

Theorem 3.6. Let $u_1, u_2 \in \mathcal{D}'(\mathbb{R}^n)$, one of which is compactly supported. Then

$$u_1 * u_2 = u_2 * u_1$$

Proof. The strategy is to show that $(u_1 * u_2) * (\phi * \psi) = (u_2 * u_1) * (\phi * \psi)$ for all test functions ϕ, ψ . This is done using the associativity property Theorem (3.2) together with the fact that convolutions of functions is commutative. We will not prove this

Theorem 3.7. Let $u_1, u_2 \in \mathcal{D}'(\mathbb{R}^n)$, one of which is compactly supported. Then

$$\partial^{\alpha}(u_1 * u_2) = (\partial^{\alpha} u_1) * u_2 = u_1 * \partial^{\alpha} u_2 \tag{2}$$

Proof. We already know $\partial^{\alpha}(u * \phi) = (\partial^{\alpha}u) * \phi = u * (\partial^{\alpha}\phi)$, so the theorem is proved by convolving (2) with ϕ .

Theorem 3.8. Let $u_1, u_2 \in \mathcal{D}'(\mathbb{R}^n)$, one of which is compactly supported. Then

$$sing support (u_1 * u_2) \subset sing support u_1 + sing support u_2$$

Proof. The proof is based on the fact that if one of u_1, u_2 is smooth, so is $u_1 * u_2$. Let χ_1, χ_2 be supported in small neighborhoods of sing support u_1 , sing support u_2 , so that $(1 - \chi_1)u_1$ and $(1 - \chi_2)u_2$ are smooth. Then

sing support $(u_1 * u_2) \subset sing support (\chi_1 u_1) * (\chi_2 u_2) \subset support \chi_1 u_1 + support \chi_2 u_2$

Now we come back to PDEs. Let P(D) be a constant coefficient differential operator. A distribution $E \in \mathcal{D}'(\mathbb{R}^n)$ is called a fundamental solution if $P(D)E = \delta$. We already know formulas for (the) fundamental solution of the Laplace and heat operators. We will write down later several fundamental solutions of the wave operator.

Theorem 3.9. If sing support $(E) = \{0\}$, U is open and $u \in \mathcal{D}'(U)$ is such that $P(D)u \in C^{\infty}(U)$, then $u \in C^{\infty}(U)$

Proof. Let $V \subset \subset U$ an arbitrary open subset. It suffices to show $u \in C^{\infty}(V)$. Let $\zeta \in C_0^{\infty}(U)$, $\zeta = 1$ on V. Then $P(D)(\zeta u) = P(D)u$ in V, and in particular is C^{∞} there. Finally,

$$\zeta u = \zeta u * \delta = \zeta u * P(D)(E) = (P(D)(\zeta u)) * E$$

and therefore

sing support $(\zeta u) \subset sing support (P(D)(\zeta u)) + \{0\} = sing support (P(D)(\zeta u))$

But we know that sing support $(P(D)(\zeta u))$ is disjoint from V, so sing support (ζu) is also disjoint from V, in other words ζu , which equals u in V, is smooth there.

4. The Fourier transform

Definition 4.1. The space of Schwartz functions \mathcal{S} is defined by the requirement that all semi-norms

$$\sup_{x} |x^{\alpha} \partial^{\beta} f|$$

be finite. Convergence in this space means

$$\sup_{x} |x^{\alpha} \partial^{\beta} (f_n - f)| \to 0$$

for all α, β .

The Fourier transform $\mathcal{F}(f) = \hat{f}$ is defined by

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi} f(x) dx$$

The following are elementary properties which will be checked in class:

Lemma 4.2. Let $f \in S$, denote $f_{\lambda}(x) = f(\lambda x)$ ($\lambda > 0$), $\tau_y f(x) = f(x + y)$ ($y \in \mathbb{R}^n$) and $D_j = \frac{1}{i} \frac{\partial}{\partial x_i}$. Then $\hat{f} \in S$ and $f \to \hat{f}$ is

continuous in the topology of S. Also,

$$\begin{split} \hat{f}_{\lambda}(\xi) &= \frac{1}{\lambda^{n}} \hat{f}(\frac{\xi}{\lambda}) \\ \mathcal{F}(\tau_{y}f)(\xi) &= e^{iy \cdot \xi} \hat{f}(\xi) \\ \mathcal{F}(D_{j}f)(\xi) &= \xi_{j} \hat{f}(\xi) \\ \mathcal{F}(x_{j}f)(\xi) &= -D_{j} \hat{f}(\xi) \\ \mathcal{F}\left(e^{-\frac{|x|^{2}}{2}}\right)(\xi) &= (2\pi)^{n/2} e^{-\frac{|\xi|^{2}}{2}} \\ \int f \hat{h} &= \int \hat{f}g \quad \text{for all } \hat{f}, \ \hat{h} \in \mathcal{S} \\ \mathcal{F}\left(f * g\right) &= \hat{f}\hat{g} \end{split}$$

These easily imply the inversion formula and Plancherel formulas , which will be proved in class.

Theorem 4.3. Let $f \in S$. Then

$$f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} \hat{f}(\xi) d\xi$$

Also,

$$\int_{\mathbb{R}^n} f(x)\overline{g}(x)dx = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \hat{f}(\xi)\overline{\hat{g}}(\xi)d\xi$$

Definition 4.4. The space of continuous linear functionals $u : S \to \mathbb{C}$ is the space of tempered distributions S'. $u \in S'$ if and only if there exists N and C such that

$$|\langle u, \phi \rangle| \leq C \sum_{|\alpha|, |\beta| \leq N} \sup_{x} |x^{\alpha} \partial^{\beta}(f)|$$

for all $\phi \in \mathcal{S}$. If $u \in \mathcal{S}'$, then $\hat{u} \in \mathcal{S}'$ is defined by

$$\langle \hat{u}, \phi \rangle = \langle u, \hat{\phi} \rangle$$

for all $\phi \in \mathcal{S}$.

Example: The constant function $1 \in \mathcal{S}$ and $\hat{1} = (2\pi)^n \delta$.

5. Integrating functions on a k-dimensional hypersurface in \mathbb{R}^n

This section uses geometric notation: coordinates are written x^i .

Let S be a compact C^1 k-dimensional hypersurface in \mathbb{R}^n .

We will integrate $f: S \to \mathbb{R}$, continuous.

Each point in S has a neighborhood (a ball B) such that $S \cap B$ can be parametrized:

There exists

$$P: C \to S \cap B \subset \mathbb{R}^n$$

where C is open in \mathbb{R}^k and P is one-to-one and onto. We assume P is C^1 and the *n* vectors ∇P_i are linearly independent. This insures S is a C^1 hypersurface. S can be covered by finitely many such balls $B_{r_i}(x_i)$.

Before anything else, we break up f as a finite sum of continuous functions f_i , each supported in one such B.

For convenience and without loss of generality, we assume f has been extended as a continuous function to \mathbb{R}^n , and is supported in the union of the $B_{r_i}(x_i)$.

Theorem 5.1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^l function supported in a finite union of k balls $\bigcup_{i=1}^k B_{r_i}(x_i)$. Then there exist C^l functions f_i supported in $B_{r_i}(x_i)$ such that $f = \sum f_i$.

Proof. First we argue that there are $s_i < r_i$ such that the support of f is covered by $\cup B_{s_i}(x_i)$. Indeed, the infinite union $\cup_{s_i < r_i} B_{s_i}(x_i)$ cover the compact support of f, so finitely many also do.

Let χ_i be C^l functions supported in $B_{r_i}(x_i)$, $\chi_i = 1$ on $B_{s_i}(x_i)$. (It is easy to construct such functions). Write

$$0 = f(x)(1 - \chi_1(x))(1 - \chi_2(x)) \cdots (1 - \chi_k(x))$$

 \mathbf{SO}

$$f(x) = f(x)\chi_1(x) + f(x)(1 - \chi_1(x))\chi_2(x) + f(x)(1 - \chi_1(x))(1 - \chi_2(x))\chi_3(x)$$

+ \dots f(x)(1 - \chi_1(x))(1 - \chi_2(x)) \dots \chi_k(x)
=: f_1(x) + f_2(x) + \dots f_k(x)

We proceed to integrate one of the f_i s, written as f from now on.

The Euclidean metric in \mathbb{R}^n induces a Riemannian metric on S. With respect to there coordinates, $g_{ij}(x)$ is defined as the Euclidean inner product of the push-forward of the usual basis vectors in \mathbb{R}^k :

$$g_{ij}(x) = \frac{\partial P(x)}{\partial x^i} \cdot \frac{\partial P(x)}{\partial x^j}$$

In matrix notation,

$$(g_{ij}(x)) = (DP(x))^T DP(x)$$

The standard Riemannian geometry definition of $\int_{S} f dV ol$ is

$$\int_{S} f dV o l = \int_{C} f(P(x)) \sqrt{|\det(g_{ij}(x))|} dx^{1} \cdots dx^{k}$$

An explicit calculation shows this is independent of the parametrization. It agrees with familiar formulas in low dimensions:

Example 1: k = 1 (curves in \mathbb{R}^n). Here $P : (a, b) \to \mathbb{R}^n$, $P'(x) \neq 0$ for all x, and $g_{11}(x) = |P'(x)|^2$, so

$$\int_{S} f ds = \int_{a}^{b} f(P(x)|F'(x)|dx$$

Example 2: k = 2, n = 3 (surfaces in \mathbb{R}^3). Here DP(x) has two columns, $\frac{\partial P}{\partial x^1}$ and $\frac{\partial P}{\partial x^2}$. Exercise (using a suitable rotation)

$$\left|\det(g_{ij})\right| = \left|\frac{\partial P}{\partial x^1} \times \frac{\partial P}{\partial x^2}\right|^2$$

so this is consistent with the Math 241 formula

$$\int_{S} f dS = \int_{C} f(P(x)) \left| \frac{\partial P}{\partial x^{1}} \times \frac{\partial P}{\partial x^{2}} \right| dx^{1} dx^{2}$$

Example 3: k = n.

Here $(g_{ij}) = (DP(x))^T DP(x)$, $\det(g_{ij}) = \det(DP)^2$ so we get the change-of-variables formula

$$\int_{S} f dx = \int_{C} f(P(x)) |\det DP(x)| dx$$

Example 4 (what we need to prove the divergence theorem) Let k = n - 1 and S given (locally) as the graph of a function r:

$$P(x^{1}, \cdots x^{n-1}) = (x^{1}, \cdots x^{n-1}, r(x^{1}, \cdots x^{n-1}))$$

Then

$$(g_{ij}(x)) = \begin{pmatrix} 1 & 0 & \cdots & \frac{\partial r}{\partial x^1} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 1 & \frac{\partial r}{\partial x^{n-1}} \end{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 1 \\ \frac{\partial r}{\partial x^1} & \frac{\partial r}{\partial x^2} & \cdots & \frac{\partial r}{\partial x^{n-1}} \end{pmatrix}$$
$$= I_{(n-1)\times(n-1)} + \begin{pmatrix} \frac{\partial r}{\partial x^1} \\ \frac{\partial r}{\partial x^2} \\ \cdots \\ \frac{\partial r}{\partial x^{n-1}} \end{pmatrix} \left(\frac{\partial r}{\partial x^1} \frac{\partial r}{\partial x^2} \cdots \frac{\partial r}{\partial x^{n-1}} \right)$$

Exercise: $\det(g_{ij}) = 1 + |\nabla r|^2$. So

$$\int_{S} f dS = \int_{C} f(x^{1}, \cdots, r(x^{1}, \cdots, x^{n-1})) \sqrt{1 + |\nabla r|^{2}} dx^{1} \cdots dx^{n-1}$$

5.2. The length of a curve and the equation for geodesics as an Euler-Lagrange equation. In the same set-up as before, let $x : [a,b] \to C \subset \mathbb{R}^k$ (*C* open) be a parametrized C^2 curve, $P : C \to S \subset \mathbb{R}^n$ the parametrization of (a subset of) the surface *S* (*P* is C^2 , DP(x) has maximal rank for all *x*). The length of the parametrized curve on *S* given by $\gamma(s) = P \circ x(s)$ is

$$\int_{a}^{b} |(P \circ x(s))'| ds = \int_{a}^{b} \sqrt{\langle (DP(x(s))x'(s), (DP(x(s))x'(s) \rangle ds)} ds$$
$$= \int_{a}^{b} \sqrt{\sum g_{ij}(x(s)\dot{x^{i}}(s)\dot{x^{j}}(s)} ds$$
(3)

We can forget P and S, and, given a Riemannian metric $g_{ij}(x)$ on C (that is, the matrix $g_{ij}(x)$ is positive definite for every x, and C^1 , we can define the length of a parametrized curve x(s) by (3).

We will prove the following:

Theorem 5.3. If x(s) is parametrized by arc-length (that is, $\sum g_{ij}(x(s)x^i(s)x^j(s) = 1)$), and if x(s) is the shortest path from A = x(a) to B = x(b), (A, B) fixed) then it satisfies the geodesic equation

$$\dot{x}^{i}(s) + \Gamma^{i}_{jk}(x(s))\dot{x}^{j}(s)\dot{x}^{k}(s) = 0$$
 (4)

where the Christoffel symbols Γ^i_{jk} are defined by

$$\Gamma_{jk}^{i}(x) = \sum g^{il}(x)\Gamma_{ljk}(x)$$
where
$$(g^{il}(x)) = (g_{il}(x))^{-1} \text{ matrix inverse}$$

$$\Gamma_{ljk} = \frac{1}{2} \left(\frac{\partial g_{lj}}{\partial x^{k}} + \frac{\partial g_{lk}}{\partial x^{j}} - \frac{\partial g_{jk}}{\partial x^{l}}\right)$$

Proof. The proof follows section 31.2 of volume 1 of the books by Dubrovin, Fomenko and Novikov. Let $L_1(\dot{x}, x)$ be the Lagrangian density $L_1(\dot{x}, x) = \sqrt{\sum g_{ij}(x(s)\dot{x}^i(s)\dot{x}^j(s))}$, and $L_2(\dot{x}, x) = (L_1(\dot{x}, x))^2 =$ $\sum g_{ij}(x(s)\dot{x}^i(s)\dot{x}^j(s))$. Easy calculus shows that if x is parametrized by arc-length, then the Euler-Lagrange equations for L_1 are equivalent with the Euler-Lagrange equations for $(L_1)^2$.

It is also easy to see that the Euler-Lagrange equations for

$$L_2(\dot{x}, x) = \sum g_{ij}(x(s)\dot{x^i}(s)\dot{x^j}(s)$$

are exactly (4). We will also show that they satisfy $\sum g_{ij}(x(s))\dot{x}^i(s)\dot{x}^j(s) = const.$ This is "conservation of energy", similar to the conservation formulas for the energy-momentum tensor for PDEs which are Euler-Lagrange equations.

6. The gradient of a characteristic function

This is background material (formula 3.1.5 in Hörmander's book).

Theorem 6.1. Let U be an open set with C^1 boundary. Then

$$\nabla \chi_U = -\nu dS$$

where dS is surface measure on ∂U and ν is the outward pointing unit normal.

Proof. Let $h : \mathbb{R} \to \mathbb{R}$ be a smoothed out Heaviside function: h(x) = 0if $x \leq 0$, h(x) = 1 if $x \geq 1$ and smooth in-between. Using a partition of unity, it suffices the prove the theorem for test functions ϕ supported in a small neighborhood of $x_0 \in \partial U$, where U agrees with $x_n > r(x_1, \cdots x_{n-1})$. Then

$$\langle \nabla \chi_{U}, \phi \rangle = -\langle \chi_{U}, \nabla \phi \rangle$$

$$= -\lim_{\epsilon \to 0} \int h(\frac{x_{n} - r(x_{1}, \cdots , x_{n-1})}{\epsilon}) \nabla \phi(x_{1}, \cdots , x_{n}) dx_{1} \cdots dx_{n}$$

$$= \lim_{\epsilon \to 0} \int \nabla \left(h(\frac{x_{n} - r(x_{1}, \cdots , x_{n-1})}{\epsilon}) \right) \phi(x_{1}, \cdots , x_{n})$$

$$= \lim_{\epsilon \to 0} \int_{\mathbb{R}^{n}} \frac{1}{\epsilon} h'(\frac{x_{n} - r(x_{1}, \cdots , x_{n-1})}{\epsilon}) \cdot (-\nabla r(x_{1}, \cdots , x_{n-1}), 1) \phi(x) dx$$

$$= \int_{\mathbb{R}^{n-1}} (-\nabla r(x_{1}, \cdots , x_{n-1}), 1) \left(\lim_{\epsilon \to 0} \int_{\mathbb{R}} \frac{1}{\epsilon} h'(\frac{x_{n} - r(x_{1}, \cdots , x_{n-1})}{\epsilon}) \phi(x) dx_{n} \right) dx_{1} \cdots dx_{n-1}$$

$$= \int_{\mathbb{R}^{n-1}} \phi(x_{1}, \cdots , x_{n-1}, r(x_{1}, \cdots , x_{n-1})) (-\nabla r(x_{1}, \cdots , x_{n-1}), 1) dx_{1} \cdots dx_{n-1}$$

$$= -\int_{\partial U} \phi \nu dS$$

(by the Calculus formulas for ν and dS). We used the fact that $\frac{1}{\epsilon}h'(\frac{x}{\epsilon})$ is an "approximation to the identity".

7. Solving the Cauchy problem for the wave equation in 1 and 3 dimensions

To solve (in n + 1 dimensions, i.e. $x \in \mathbb{R}^n, t \in \mathbb{R}$)

$$u_{tt} - \Delta u = 0 \quad \text{if } t > 0 \tag{5}$$
$$u(0, x) = f(x)$$
$$u_t(0, x) = g(x)$$

with $u \in C^2$, $u(t, \cdot) \in \mathcal{S}(\mathbb{R}^n)$ for each fixed t > 0, take Fourier transform in x:

$$\hat{u}_{tt}(t,\xi) + |\xi|^2 \hat{u}(t,\xi) = 0 \text{ if } t > 0$$

 $\hat{u}(0,\xi) = \hat{f}(\xi)$
 $\hat{u}_t(0,\xi) = \hat{g}(\xi)$

This ODE has solution

$$\hat{u}(t,\xi) = \cos(t|\xi|)\hat{f}(\xi) + \frac{\sin(t|\xi|)}{|\xi|}\hat{g}(\xi)$$

As it is clear from this formulation, it suffices to solve the problem with f = 0.

So we want u(t, x) such that

$$\hat{u}(t,\xi) = \frac{\sin(t|\xi|)}{|\xi|}\hat{g}(\xi)$$

We are looking for a compactly supported distribution $E(t) \in \mathcal{E}'(\mathbb{R}^n)$ such that

$$\hat{E}(t) = \frac{\sin(t|\xi|)}{|\xi|}$$

At least in 1 and 3 dimensions, such a distribution is well-known and "elementary" (see the next section for other dimensions).

Then the solution will be

$$u(t, x) = E(t) * g$$

or, equivalently
$$\hat{u}(t, \xi) = \hat{E}(t, \xi)\hat{g}(\xi)$$

(Background facts: if E is a compactly supported distribution and $g \in S$, E * g(x) is defined as $\langle E, g(x - \cdot) \rangle$. Its Fourier transform is $\hat{E}\hat{g}$. See Theorem 7.1.5 in Hörmander's book).

Also, for a compactly supported distribution E, $\hat{E}(\xi) = \langle E, e^{-ix\cdot\xi} \rangle$ (*E* acts in the *x* variable). See Theorem 7.1.14 in Hörmander's book.

In one dimension, the Fourier transform of the characteristic function of [-t, t] is

$$\int_{-t}^{t} e^{-ix\cdot\xi} dx = 2\frac{\sin(t\xi)}{\xi}$$

We found that in one space dimension

$$E(t,x) = \frac{1}{2}\chi_{[-t,t]}$$

and the solution to (5) with f = 0 is

$$u(t,x) = \int E(t,y)g(x-y)dy$$
$$= \frac{1}{2} \int_{-t}^{t} g(x-y)dy$$
$$= \frac{1}{2} \int_{x-t}^{x+t} g(y)dy$$

In 3 space dimensions, we compute the Fourier transform of surface measure on S^2 : $\int_{S^2} e^{-ix\cdot\xi} dS_x$. Without loss of generality, $\xi = (0, 0, |\xi|)$.

EXPOSITORY NOTES ON DISTRIBUTION THEORY AND OTHER TOPICS, FALL 2018

Integrating in spherical coordinates $(x_1, x_2, x_3) = (\sin(\phi) \cos(\theta), \sin(\phi) \sin(\theta), \cos(\phi)),$

$$\int_{S^2} e^{-ix_3|\xi|} dS_x = \int_0^\pi \int_0^{2\pi} e^{-i\cos(\phi)|\xi|} \sin(\phi) d\phi d\theta$$
$$= 2\pi \int_0^\pi e^{-i\cos(\phi)|\xi|} \sin(\phi) d\phi$$
$$= 2\pi \int_{-1}^1 e^{-i\lambda|\xi|} d\lambda$$
$$= 4\pi \frac{\sin(|\xi|)}{|\xi|}$$

By the exact same calculation, the Fourier transform of surface measure on the sphere of radius t > 0 is $4\pi t \frac{\sin(t|\xi|)}{|\xi|}$. Thus in 3 dimensions, if f = 0,

$$E(t, x) = \frac{1}{4\pi t}$$
 surface measure on the sphere of radius t

and

$$u(t,x) = \frac{1}{4\pi t} \int_{\partial B(0,t)} g(x-y) dS_y$$
$$= \frac{1}{4\pi t} \int_{\partial B(x,t)} g(y) dS_y$$

while, in general, the solution to (5) is

$$u(t,x) = \frac{\partial}{\partial t} \left(\frac{1}{4\pi t} \int_{\partial B(x,t)} f(y) dS_y \right) + \frac{1}{4\pi t} \int_{\partial B(x,t)} g(y) dS_y$$

8. The formula for the Cauchy problem for the wave Equation in n+1 dimensions

We need the (famous) family of distributions χ^{α}_{+} . For $\alpha > -1$, these are functions defined by

$$\chi^{\alpha}_{+} = \frac{x^{\alpha}_{+}}{\Gamma(\alpha+1)}$$

Using properties of the Γ function,

$$\left(\chi_{+}^{\alpha}\right)' = \chi_{+}^{\alpha - 1}$$

This allows one to define χ^{α}_{+} for $\alpha \leq -1$. Of special interest to us are

$$\chi^{0}_{+}(x) = H(x) \text{ (the Heaviside function)}$$
$$\chi^{-\frac{1}{2}}_{+}(x) = \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{x}} H(x)$$
$$\chi^{-1}_{+} = H' = \delta$$

The general statement (which we will not prove right now) is

$$\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x_1^2} - \dots - \frac{\partial^2}{\partial x_n^2}\right)\chi_+^{\frac{1-n}{2}}\left(t^2 - \dots - x_n^2\right) = 4\pi^{\frac{n-1}{2}}\delta$$

The definition of the composition of a distribution with a smooth function is explained in the next section.

The above formula provides a fundamental solution for the wave equation (there are others, see Hörmander's book). The solution to the Cauchy problem,

$$\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x_1^2} - \dots - \frac{\partial^2}{\partial x_n^2}\right) u = 0 \text{ if } t > 0$$
$$u(0, x) = 0, \quad u_t(0, x) = f$$

is

$$u(t, x) = (E_{+}(t, \cdot) * f)(x)$$

where E_+ is defined as follows in the open set t > 0:

$$E + = \frac{1}{2\pi^{\frac{n-1}{2}}} \chi_{+}^{\frac{1-n}{2}} \left(t^2 - \dots - x_n^2 \right)$$

This agrees with the results from the previous section. To see that in 3 dimensions, we need the important formula $\delta(f) = \frac{dS}{|\nabla f|}$ if f is C^1 , $\nabla f(x) \neq 0$ if f(x) = 0 and dS is surface measure on f = 0 (explained in the next section).

9. Compositions with smooth functions and the chain rule

Theorem 9.1. Let $u \in \mathcal{D}'(\mathbb{R})$, and $f : \mathbb{R}^n \to \mathbb{R} \ C^{\infty}$, such that $\nabla f(x) \neq 0$ for all $x \in supp \ u$. Then there exists a unique distribution $u \circ f$ (or f^*u) such that if u_i is a sequence of continuous functions, $u_i \to u$ in the sense of distribution theory, then $u_i \circ f \to u \circ f$. As a consequence, the chain rule is true.

Proof. Using a partition of unity, it suffices to prove this for test functions supported in a sufficiently small open set. Let U open such that $\frac{\partial f}{\partial x_n}$ is bounded away from 0 on U. Consider the map Φ defined by

 $(x_1, \dots, x_n) \to (x_1, \dots, x_{n-1}, f(x_1, \dots, x_n))$. By the inverse function theorem, after possibly shrinking U, we have $\Phi : U \to V$, one to one, onto, with a smooth inverse, and V open. Also,

$$f(\Phi^{-1}(x_1,\cdots,x_n)) = x_n$$
 for all $(x_1,\cdots,x_n) \in V$

Let ϕ be a test function supported in U, and let u_i be a sequence of continuous functions converging to u in the sense of distribution theory. Then

$$< u_i \circ f, \phi >= \int_U u_i(f(x))\phi(x)dx$$

$$= \int_V u_i(x_n)\phi(\Phi^{-1}(x_1,\cdots,x_n)) |\det \frac{\partial(\Phi^{-1})}{\partial x}|dx$$

$$= \int_{\mathbb{R}^{n-1}} < u_i, \phi(\Phi^{-1}(x_1,\cdots,\cdot)) |\det \frac{\partial(\Phi^{-1})}{\partial x}| > dx_1\cdots dx_{n-1}$$

$$\to \int_{\mathbb{R}^{n-1}} < u, \phi(\Phi^{-1}(x_1,\cdots,\cdot)) |\det \frac{\partial(\Phi^{-1})}{\partial x}| > dx_1\cdots dx_{n-1}$$

To pass to the limit inside the integral, we need the following lemma:

Then $\langle u_i, \phi(x_1, \cdots, x_{n-1}, \cdot) \rangle \to \langle u, \phi(x_1, \cdots, x_{n-1}, \cdot)$ and the sequence is uniformly bounded in (x_1, \cdots, x_{n-1}) . This follows from the uniform boundedness principle in a Frechet space. As a consequence, the chain rule is true. Indeed, given u we know we can find $u_i \to u$ in $\mathcal{D}'(\mathbb{R}), u_i \in C^{\infty}$. Let $f : \mathbb{R}^n \to \mathbb{R}, C^{\infty}$, such that $\nabla f(x) \neq 0$ for all x. Then $u_i \circ f \to u \circ f$ as above, and $\nabla(u_i \circ f) = (u'_i \circ f) \nabla f \to$ $(u' \circ f) \nabla f = \nabla(u \circ f)$. So $\nabla(u \circ f) = (u' \circ f) \nabla f$.

Remark 9.2. As an important application, let U be a C^1 bounded domain given by a defining function r. $U = \{r > 0\}$. Then $H \circ r = \chi_U$, and $\nabla(H \circ r) = \nabla(\chi_U) = dS \frac{\nabla r}{|\nabla r|}$, but $\nabla(H \circ r)$ also equals $H'(r)\nabla r =$ $\delta(r)\nabla r$. Here δ stands for the delta function on the real line. As a consequence, $\delta(f) = \frac{dS}{|\nabla f|}$ where dS is surface measure on the surface f = 0.

At this stage, $\chi_{+}^{\frac{1-n}{2}}(t^2 - \cdots - x_n^2)$ is defined in the set $\mathbb{R}^{n+1} - \{0\}$, and homogeneous of degree -n+1.

To extend it to $\mathcal{D}'(\mathbb{R}^{n+1})$ we need the following technical result (Theorem 3.2.3 in Hörmander). We will not prove this in class.

Theorem 9.3. If $u \in \mathcal{D}'(\mathbb{R}^n - \{0\})$ is homogeneous of degree α and α is not an integer $\leq -n$, then u has a unique extension to $\mathcal{D}'(\mathbb{R}^n)$, and this extension is also homogeneous of degree α .