EXPOSITORY NOTES ON DISTRIBUTION THEORY AND OTHER TOPICS, FALL 2018

While these notes are under construction, I expect there will be many typos.

The main reference for this is volume 1 of Hörmander, The analysis of liner partial differential equations. I have picked a few of the most useful and concrete highlights. The references are based on the 1989 hardcover second edition.

1. Generalities (from Ch. 2 and 3)

Definition 1.1. Let U be an open set in \mathbb{R}^{n}. A distribution $u \in \mathcal{D}^{\prime}(U)$ is a linear function $u: C_{0}^{\infty}(U) \rightarrow \mathbb{C}$. One can write $u(\phi)=<u, \phi>$ and think of this, informally, as $u(\phi)=\int u \phi$. It is required that u is continuous in the following sense:

For every $K \subset U$ compact there exist C, k such that

$$
\begin{equation*}
|u(\phi)|=\left|<u, \phi>\left|\leq C \sum_{|\alpha| \leq k} \sup _{x}\right| \partial^{\alpha} \phi\right| \tag{1}
\end{equation*}
$$

for every $\phi \in C_{0}^{\infty}(U)$ supported in K.
If one k works for all K, u is of finite order. The smallest such k is the order of u.

We will need an equivalent formulation of the continuity condition.
Definition 1.2. Let $\phi_{j}, \phi \in C_{0}^{\infty}(U)$. The sequence $\phi_{j} \rightarrow \phi$ in $C_{0}^{\infty}(U)$ if there exists a compact subset of U which contains the support of all ϕ_{j}, ϕ and for every fixed $\alpha, \sup _{x}\left|\partial^{\alpha}\left(\phi_{j}(x)-\phi(x)\right)\right| \rightarrow 0$ as $j \rightarrow \infty$.

Theorem 1.3. A linear function $u: C_{0}^{\infty}(U) \rightarrow \mathbb{C}$ is a distribution if and only if $u\left(\phi_{j}\right) \rightarrow u(\phi)$ for every $\phi_{j} \rightarrow \phi$ in $C_{0}^{\infty}(U)$.

Proof. To show that if u is a distribution, then $u\left(\phi_{j}\right) \rightarrow u(\phi)$ for every $\phi_{j} \rightarrow \phi$ in $C_{0}^{\infty}(U)$ is clear from the definition. The other half is an easy exercise in negations.

Examples:
(1) If \tilde{u} is a locally integrable function, $u(\phi):=\int \tilde{u} \phi$. This identifies the function \tilde{u} with a distribution u.
(2) Dirac delta function. $\delta_{a}(\phi)=\phi(a)$
(3) Weak derivatives: If u is a smooth function, and $\phi \in C_{0}^{\infty}$ is a test function, $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ is a multi-index and $\partial^{\alpha} u=$ $\partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}}^{\alpha_{n}} u$, then
$<\partial^{\alpha} u, \phi>:=\int \partial^{\alpha} u \phi=(-1)^{|\alpha|} \int u \partial^{\alpha} \phi=(-1)^{|\alpha|}<u, \partial^{\alpha} \phi>$. (integration by parts). This motivates the definition of $\partial^{\alpha} u$ for any distribution $u:\left\langle\partial^{\alpha} u, \phi\right\rangle=(-1)^{|\alpha|}<u, \partial^{\alpha} \phi>$.
(4) It takes some work (thm. 4.4.7 in Hörmander) and we will not prove this, but the above essentially accounts for all possible distributions:
If $u \in \mathcal{D}^{\prime}(U)$ then there exists a locally finite family of continuous functions f_{α} (each compact subset of U intersects only finitely many of the supports of the $f_{\alpha} \mathrm{s}$) such that

$$
u=\sum_{\alpha} \partial^{\alpha} f_{\alpha}
$$

Definition 1.4. A sequence of distributions u_{i} converges to u in $\mathcal{D}^{\prime}(U)$ (or in the sense of distribution theory) if $u_{i}(\phi) \rightarrow u(\phi)$ for every $\phi \in$ $C_{0}^{\infty}(U)$

Also, if $u_{i} \in \mathcal{D}^{\prime}(U)$ and for each fixed $\phi \in C_{0}^{\infty}(U)$ the limit $u_{i}(\phi)$ exists and is denoted $u(\phi)$, then u is automatically a distribution. See Theorem 2.1.8. We will not prove this.

Definition 1.5. Let $u \in \mathcal{D}(U)$ and $f \in C^{\infty}(U)$. Then the distributions $\frac{\partial u}{\partial x_{k}}$ and $f u$ are defined by

$$
\begin{array}{r}
\left(\frac{\partial u}{\partial x_{k}}\right)(\phi)=-u\left(\frac{\partial}{\partial x_{k}}\right) \\
(f u)(\phi)=u(f \phi)
\end{array}
$$

Unlike classical convergence, if $u_{i} \rightarrow u$ in $\mathcal{D}^{\prime}(U)$, then $\partial^{\alpha} u_{i} \rightarrow \partial^{\alpha} u$ in $\mathcal{D}^{\prime}(U)$ is trivial.

Example 1: Let H be the Heavyside function. Then $H^{\prime}=\delta_{0}$.
The following will be worked out in class:
If E is the fundamental solution of the Laplace operator, ∇E in the sense of distributions agrees with the locally integrable function ∇E defined for $x \neq 0$, but ΔE in the sense of distributions does not agree with the locally integrable function $\Delta E=0$ defined for $x \neq 0$. In fact $\Delta E=\delta_{0}$.

Definition 1.6. A distribution u is defined to be 0 in an open set $V \subset U$ if $u(\phi)=0$ for every $\phi \in C_{0}^{\infty}(V)$. The union of all such subsets V is the largest open set where u is 0 , and the complement of that is defined to be the support of u.

Thus the support of a distribution $u \in \mathcal{D}(U)$ is always (relatively) closed in U. If the support of u is compact, u is called compactly supported. The set of compactly supported distributions in U is denoted by $\mathcal{E}^{\prime}(U)$

Recall the support of a function ϕ is the closure of the set $\{\phi(x) \neq 0\}$. If $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, and the support of ϕ and u are disjoint, then $u(\phi)=0$. However, if ϕ is zero on the support of u, it does not follow that $u(\phi)=0$. Example: $\delta^{\prime}(x)$.

If $u \in \mathcal{E}^{\prime}(U), u(\phi)$ is well defined for $\phi \in C^{\infty}$: Let K be the support of $u, K \subset V \subset U$ with V open. There exists a smooth cut-off function $\zeta \in C_{0}^{\infty}(U)$, and $\zeta=1$ in V. Then $u(\zeta \phi)$ is well-defined, and is independent of the choice of ζ. Define $u(\phi)=u(\zeta \phi)$ for ζ as above.

Definition 1.7. A distribution u is defined to be smooth in an open set $V \subset U$ if there exists $\tilde{u} \in C^{\infty}(V)$ such that $u(\phi)=\int \tilde{u}(x) \phi(x) d x$ for all $\phi \in C_{0}^{\infty}(V)$ The union of all such subsets V is the largest open set where u is smooth, and the complement of that is defined to be the singular support of u.

2. Distributions supported at one point

Theorem 2.1. If $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is supported at a point, say 0 , then u is a finite linear combination

$$
u=\sum c_{\alpha} \partial^{\alpha} \delta
$$

Proof. Assume u is of order k (and prove: any compactly supported distribution is of finite order). Pick a test function ϕ and write $\phi(x)=$ $T(x)+R(x)$ the k th order Taylor polynomial plus remainder. $u(T)$ is what we want (check!), and the point is to show that $u(R)=0$ where R is the remainder. We know $|R(x)| \leq C|x|^{k+1}$ for $|x| \leq 1$ and in fact $\left|\partial^{\alpha} R(x)\right| \leq C|x|^{k+1-|\alpha|}$ for all $|\alpha| \leq k$. Let $\epsilon>0$, and let χ be a cut-off function, identically 1 in a neighborhood of 0 .
Then $\left.|u(R)|=\left|u\left(\chi\left(\frac{x}{\epsilon}\right) R\right) \leq C \sum_{|\alpha| \leq k} \sup _{x}\right| \partial^{\alpha}\left(\chi\left(\frac{x}{\epsilon}\right) R\right) \right\rvert\, \leq C \epsilon$. Now let $\epsilon \rightarrow 0$.

Application to PDE: Let $E=\frac{1}{|x|^{n-2}}(n \geq 3)$. Then $\Delta E=0$ for x away from 0 by calculation, thus ΔE is a distribution supported at 0 . It is a finite linear combination of the delta function and its derivatives. An additional homogeneity argument shows $\Delta E=c \delta$.

If u is a locally integrable function in $\mathbb{R}^{n}-\{0\}, \mathrm{u}$ is homogeneous of degree α if $u(t x)=t^{\alpha} u(x)$ for all $t>0$ and $x \neq 0$. Denoting
$\phi_{t}(x)=t^{n} \phi(t x)$ this is equivalent to

$$
\int u \phi=t^{\alpha} \int u \phi_{t}
$$

and the definition of a homogeneous distribution in $\mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{R}^{n}-\{0\}\right)$ is

$$
u(\phi)=t^{\alpha} u\left(\phi_{t}\right)
$$

for every $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ or $C_{0}^{\infty}\left(\mathbb{R}^{n}-\{0\}\right)$.

3. Convolutions (Chapter 4 in Hörmander's book)

The major goal of this section is to prove

1) If $f \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$, then there exists $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ such that $\Delta u=f$.
2) If u, f are as above, and $f \in C^{\infty}(V)$ for some open set V, then $u \in C^{\infty}(V)$.

Both of these goals follow from the properties of the convolution of a distribution with a compactly supported distribution. Part 1 follows by writing $u=E * f, \Delta u=(\Delta E) * f=\delta * f=f$, but we have to assign rigorous meaning to this. Part 2 follows from the fact that the fundamental solution E is C^{∞} away from 0 . The exact same results hold for $\frac{\partial}{\partial t}-\Delta$ but not $\frac{\partial^{2}}{\partial t^{2}}-\Delta$.

Definition 3.1. If $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,
$u * \phi(x)=<u, \phi(x-\cdot)>($ where \cdot stands for y, and u acts in the y variable)
Check $u * \phi \in C^{\infty}, \partial^{\alpha}(u * \phi)(x)=\left(\partial^{\alpha} u\right) * \phi=u *\left(\partial^{\alpha} \phi\right)(x)$: We have

$$
\phi\left(x-y+\epsilon e_{i}\right)-\phi(x-y)=\epsilon \frac{\partial}{\partial x_{i}} \phi(x-y)+R(x-y, \epsilon)
$$

where

$$
\begin{array}{r}
R(x-y, \epsilon)=\int_{0}^{1} \frac{d^{2}}{d t^{2}}\left(\phi\left(x-y+t \epsilon e_{i}\right)\right)(1-t) d t \\
=\epsilon^{2} \int_{0}^{1}\left(\frac{\partial^{2} \phi}{\partial x_{i}^{2}}\right)\left(x-y+t \epsilon e_{i}\right)(1-t) d t
\end{array}
$$

Fix $x . R(x-y, \epsilon)$ is in C_{0}^{∞}, and $\sup _{y}\left|\partial_{y}^{\alpha} R(x-y, \epsilon)\right| \leq C_{\alpha} \epsilon^{2}$. Using the continuity condition (1) we see

$$
\lim _{\epsilon \rightarrow 0}\left\langle u, \frac{R(x-\cdot, \epsilon)}{\epsilon}\right\rangle=0
$$

and

$$
\lim _{\epsilon \rightarrow 0} \frac{u\left(\phi\left(x-\cdot+\epsilon e_{i}\right)\right)-u(\phi(x-\cdot))}{\epsilon}=u\left(\frac{\partial}{\partial x_{i}} \phi(x-\cdot)\right)=\frac{\partial u}{\partial x_{i}}(\phi(x-\cdot)
$$

Check support $(u * \phi) \subset$ support $u+$ support ϕ : Fix x. If $\phi(x-\cdot)$ is supported in the complement of support u, then $u(\phi(x-\cdot)=0$ by the definition of support u. If $u(\phi(x-\cdot) \neq 0$, then $\exists y \in$ support u and $y \in \operatorname{support} \phi(x-\cdot)$. Thus $y=\lim y_{i}$ with $\phi\left(x-y_{i}\right) \neq 0$, and $x-y \in$ support ϕ.

Finally, if $x \in$ supportu $* \phi$, there exist $x_{i} \rightarrow x$ with $u * \phi\left(x_{i}\right) \neq 0$ and

$$
\begin{aligned}
& x_{i} \in \text { support } \phi+\text { support } u \\
& x \in \overline{\text { support } \phi+\text { support } u}=\text { support } \phi+\text { support } u
\end{aligned}
$$

because support u is compact.
We also have
Theorem 3.2. Let $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, and $\phi, \psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Then $(u * \phi) * \psi=$ $u *(\phi * \psi)$.

Proof. Before starting the proof, review Definition (1.2). $u * \phi \in C^{\infty}$. Fix x.

$$
\begin{aligned}
& (u * \phi) * \psi(x)=\int(u * \phi)(x-y) \psi(y) d y \\
& =\lim _{h \rightarrow 0+} \sum_{k \in \mathbb{Z}^{n}}(u * \phi)(x-k h) \psi(k h) h^{n} \\
& =\lim _{h \rightarrow 0+} u\left(\sum_{k \in \mathbb{Z}^{n}} \phi(x-k h-\cdot) \psi(k h) h^{n}\right) \\
& =u\left(\int \phi(x-y-\cdot) \psi(y) d y\right)
\end{aligned}
$$

In the last line, we used the (obvious) fact that, for x fixed,

$$
\sum_{k \in \mathbb{Z}^{n}} \phi(x-k h-z) \psi(k h) h^{n} \rightarrow \int \phi(x-y-z) \psi(y) d y
$$

uniformly in z, and the same is true for after differentiating with respect to z an arbitrary number of times. Also, both LHS and RHS are supported in a fixed compact set. In other words, LHS \rightarrow RHS in C_{0}^{∞}.

This implies the important theorem on approximating distributions by C^{∞} functions.

Theorem 3.3. Let $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, and let η_{ϵ} be the standard mollifier. Then $u * \eta_{\epsilon} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $u * \eta_{\epsilon} \rightarrow u$ in the sense of distribution theory (as $\epsilon \rightarrow 0$).

Proof. We have to check

$$
\left(u * \eta_{\epsilon}\right)(\phi) \rightarrow u(\phi)
$$

for every $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. The proof is based on the observation that $u(\phi)=u * \phi_{-}(0)$ where $\phi_{-}(x)=\phi(-x)$. So it suffices to show $\left(u * \eta_{\epsilon}\right) *$ $\phi(0) \rightarrow u * \phi(0)$. But

$$
\left(u * \eta_{\epsilon}\right) * \phi(0)=u *\left(\eta_{\epsilon} * \phi\right)(0) \rightarrow u * \phi(0)
$$

since $\eta_{\epsilon} * \phi \rightarrow \phi$ in C_{0}^{∞}.
Now we define the convolution of two distribution u_{1}, u_{2}, one of which is compactly supported.

This is defined so that the formula

$$
\left(u_{1} * u_{2}\right) * \phi=u_{1} *\left(u_{2} * \phi\right)
$$

holds for all $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. For simplicity, let's assume u_{2} is compactly supported. Instead of defining $\left\langle u_{1} * u_{2}, \phi>\right.$ it suffices to define $\left(u_{1} * u_{2}\right) * \phi(0)$. This is done in the obvious way:

$$
\left(u_{1} * u_{2}\right) * \phi(0)=u_{1} *\left(u_{2} * \phi\right)(0)
$$

We have to check that $u_{1} * u_{2}$ satisfies the continuity condition. Let $\phi_{j} \rightarrow 0$ in $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ (see Definition (1.2)). Then so does $u_{2} * \phi_{j}$, and $u_{1} *\left(u_{2} * \phi_{j}\right)(0) \rightarrow 0$.

Also, it τ_{h} denotes a translation, $\left(\tau_{h} \phi\right)(x)=\phi(x+h)$, then $\tau_{h}(u * \phi)=$ $u *\left(\tau_{h} \phi\right)$ and

$$
\begin{array}{r}
\left(u_{1} * u_{2}\right) * \phi(h)=\tau_{h}\left(\left(u_{1} * u_{2}\right) * \phi\right)(0)=\left(\left(u_{1} * u_{2}\right) * \tau_{h} \phi\right)(0) \\
=u_{1} *\left(u_{2} * \tau_{h} \phi\right)(0)=u_{1} *\left(\tau_{h}\left(u_{2} * \phi\right)\right)(0) \\
=u_{1} *\left(u_{2} * \phi\right)(h)
\end{array}
$$

Proposition 3.4. Let $u_{1}, u_{2} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, one of which is compactly supported. Then

$$
\text { support }\left(u_{1} * u_{2}\right) \subset \text { support } u_{1}+\text { support }_{2}
$$

Proof. Let η_{ϵ} be a standard mollifier supported in a ball or radius ϵ. It suffices to show

$$
\text { support }\left(u_{1} * u_{2}\right) \subset \text { support } u_{1}+\text { support } u_{2}+\text { support } \eta_{\epsilon_{0}}
$$

for all $\epsilon_{0}>0$. We do know

$$
\begin{aligned}
& \text { support }\left(u_{1} * u_{2} * \eta_{\epsilon}\right) \subset{\text { support } u_{1}+\text { support }_{2}+\text { support }_{\eta_{\epsilon}}}^{\subset \text { support } u_{1}+\text { support } u_{2}+\text { support } \eta_{\epsilon_{0}}}
\end{aligned}
$$

for all $0<\epsilon<\epsilon_{0}$. Also remark that if A is closed and u is a distribution such that support $u * \eta_{\epsilon} \subset A$ for all $\epsilon_{0}>\epsilon>0$, then support $u \subset A$. This amounts to showing that if $u * \eta_{\epsilon}=0$ in A^{c}, then $u=0$ in A^{c}, which follows from $u * \eta_{\epsilon} \rightarrow u$ in the sense of distributions.

Theorem 3.5. Let u_{1}, u_{2}, u_{3} distributions in \mathbb{R}^{n}, two of which are compactly supported. Then

$$
\left(u_{1} * u_{2}\right) * u_{3}=u_{1} *\left(u_{2} * u_{3}\right)
$$

Proof. The proof follows by noticing it suffices to check
$\left(\left(u_{1} * u_{2}\right) * u_{3}\right) * \phi=\left(u_{1} *\left(u_{2} * u_{3}\right)\right) * \phi$ for every $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ which follows easily from the defining property of Theorem (3.2).

Theorem 3.6. Let $u_{1}, u_{2} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, one of which is compactly supported. Then

$$
u_{1} * u_{2}=u_{2} * u_{1}
$$

Proof. The strategy is to show that $\left(u_{1} * u_{2}\right) *(\phi * \psi)=\left(u_{2} * u_{1}\right) *(\phi * \psi)$ for all test functions ϕ, ψ. This is done using the associativity property Theorem (3.2) together with the fact that convolutions of functions is commutative. We will not prove this

Theorem 3.7. Let $u_{1}, u_{2} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, one of which is compactly supported. Then

$$
\begin{equation*}
\partial^{\alpha}\left(u_{1} * u_{2}\right)=\left(\partial^{\alpha} u_{1}\right) * u_{2}=u_{1} * \partial^{\alpha} u_{2} \tag{2}
\end{equation*}
$$

Proof. We already know $\partial^{\alpha}(u * \phi)=\left(\partial^{\alpha} u\right) * \phi=u *\left(\partial^{\alpha} \phi\right)$, so the theorem is proved by convolving (2) with ϕ.

Theorem 3.8. Let $u_{1}, u_{2} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, one of which is compactly supported. Then

$$
\text { sing support }\left(u_{1} * u_{2}\right) \subset \text { sing support } u_{1}+\operatorname{sing} \text { support } u_{2}
$$

Proof. The proof is based on the fact that if one of u_{1}, u_{2} is smooth, so is $u_{1} * u_{2}$. Let χ_{1}, χ_{2} be supported in small neighborhoods of sing support u_{1}, sing support u_{2}, so that $\left(1-\chi_{1}\right) u_{1}$ and $\left(1-\chi_{2}\right) u_{2}$ are smooth. Then sing support $\left(u_{1} * u_{2}\right) \subset$ sing support $\left(\chi_{1} u_{1}\right) *\left(\chi_{2} u_{2}\right) \subset$ support $\chi_{1} u_{1}+$ support $\chi_{2} u_{2}$

Now we come back to PDEs. Let $P(D)$ be a constant coefficient differential operator. A distribution $E \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is called a fundamental solution if $P(D) E=\delta$. We already know formulas for (the) fundamental solution of the Laplace and heat operators. We will write down later several fundamental solutions of the wave operator.

Theorem 3.9. If sing support $(E)=\{0\}$, U is open and $u \in \mathcal{D}^{\prime}(U)$ is such that $P(D) u \in C^{\infty}(U)$, then $u \in C^{\infty}(U)$

Proof. Let $V \subset \subset U$ an arbitrary open subset. It suffices to show $u \in C^{\infty}(V)$. Let $\zeta \in C_{0}^{\infty}(U), \zeta=1$ on V. Then $P(D)(\zeta u)=P(D) u$ in V, and in particular is C^{∞} there. Finally,

$$
\zeta u=\zeta u * \delta=\zeta u * P(D)(E)=(P(D)(\zeta u)) * E
$$

and therefore
sing support $(\zeta u) \subset \operatorname{sing}$ support $(P(D)(\zeta u))+\{0\}=\operatorname{sing}$ support $(P(D)(\zeta u))$
But we know that sing support $(P(D)(\zeta u))$ is disjoint from V, so sing support ($\zeta u)$ is also disjoint from V, in other words ζu, which equals u in V, is smooth there.

4. The Fourier transform

Definition 4.1. The space of Schwartz functions \mathcal{S} is defined by the requirement that all semi-norms

$$
\sup _{x}\left|x^{\alpha} \partial^{\beta} f\right|
$$

be finite. Convergence in this space means

$$
\sup _{x}\left|x^{\alpha} \partial^{\beta}\left(f_{n}-f\right)\right| \rightarrow 0
$$

for all α, β.
The Fourier transform $\mathcal{F}(f)=\hat{f}$ is defined by

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} f(x) d x
$$

The following are elementary properties which will be checked in class:

Lemma 4.2. Let $f \in \mathcal{S}$, denote $f_{\lambda}(x)=f(\lambda x)(\lambda>0), \tau_{y} f(x)=$ $f(x+y)\left(y \in \mathbb{R}^{n}\right)$ and $D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}}$. Then $\hat{f} \in \mathcal{S}$ and $f \rightarrow \hat{f}$ is
continuous in the topology of \mathcal{S}. Also,

$$
\begin{aligned}
& \hat{f}_{\lambda}(\xi)=\frac{1}{\lambda^{n}} \hat{f}\left(\frac{\xi}{\lambda}\right) \\
& \mathcal{F}\left(\tau_{y} f\right)(\xi)=e^{i y \cdot \xi} \hat{f}(\xi) \\
& \mathcal{F}\left(D_{j} f\right)(\xi)=\xi_{j} \hat{f}(\xi) \\
& \mathcal{F}\left(x_{j} f\right)(\xi)=-D_{j} \hat{f}(\xi) \\
& \mathcal{F}\left(e^{-\frac{|x|^{2}}{2}}\right)(\xi)=(2 \pi)^{n / 2} e^{-\frac{|\xi|^{2}}{2}} \\
& \int f \hat{h}=\int \hat{f} g \text { for all } \hat{f}, \hat{h} \in \mathcal{S} \\
& \mathcal{F}(f * g)=\hat{f} \hat{g}
\end{aligned}
$$

These easily imply the inversion formula and Plancherel formulas, which will be proved in class.

Theorem 4.3. Let $f \in \mathcal{S}$. Then

$$
f(x)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} \hat{f}(\xi) d \xi
$$

Also,

$$
\int_{\mathbb{R}^{n}} f(x) \bar{g}(x) d x=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \hat{f}(\xi) \overline{\hat{g}}(\xi) d \xi
$$

Definition 4.4. The space of continuous linear functionals $u: \mathcal{S} \rightarrow \mathbb{C}$ is the space of tempered distributions $\mathcal{S}^{\prime} . u \in \mathcal{S}^{\prime}$ if and only if there exists N and C such that

$$
\left|<u, \phi>\left|\leq C \sum_{|\alpha|,|\beta| \leq N} \sup _{x}\right| x^{\alpha} \partial^{\beta}(f)\right|
$$

for all $\phi \in \mathcal{S}$. If $u \in \mathcal{S}^{\prime}$, then $\hat{u} \in \mathcal{S}^{\prime}$ is defined by

$$
<\hat{u}, \phi>=<u, \hat{\phi}\rangle
$$

for all $\phi \in \mathcal{S}$.
Example: The constant function $1 \in \mathcal{S}$ and $\hat{1}=(2 \pi)^{n} \delta$.

5. Integrating Functions on a k-DIMENSIONAL HYPERSURFACE IN \mathbb{R}^{n}

This section uses geometric notation: coodinates are written x^{i}.

Let S be a compact C^{1} k-dimensional hypersurface in \mathbb{R}^{n}.
We will integrate $f: S \rightarrow \mathbb{R}$, continuous.
Each point in S has a neighborhood (a ball B) such that $S \cap B$ can be parametrized:

There exists

$$
P: C \rightarrow S \cap B \subset \mathbb{R}^{n}
$$

where C is open in \mathbb{R}^{k} and P is one-to-one and onto. We assume P is C^{1} and the n vectors ∇P_{i} are linearly independent. This insures S is a C^{1} hypersurface. S can be covered by finitely many such balls $B_{r_{i}}\left(x_{i}\right)$.

Before anything else, we break up f as a finite sum of continuous functions f_{i}, each supported in one such B.

For convenience and without loss of generality, we assume f has been extended as a continuous function to \mathbb{R}^{n}, and is supported in the union of the $B_{r_{i}}\left(x_{i}\right)$.

Theorem 5.1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{l} function supported in a finite union of k balls $\cup_{i=1}^{k} B_{r_{i}}\left(x_{i}\right)$. Then there exist C^{l} functions f_{i} supported in $B_{r_{i}}\left(x_{i}\right)$ such that $f=\sum f_{i}$.

Proof. First we argue that there are $s_{i}<r_{i}$ such that the support of f is covered by $\cup B_{s_{i}}\left(x_{i}\right)$. Indeed, the infinite union $\cup_{s_{i}<r_{i}} B_{s_{i}}\left(x_{i}\right)$ cover the compact support of f, so finitely many also do.

Let χ_{i} be C^{l} functions supported in $B_{r_{i}}\left(x_{i}\right), \chi_{i}=1$ on $B_{s_{i}}\left(x_{i}\right)$. (It is easy to construct such functions). Write

$$
0=f(x)\left(1-\chi_{1}(x)\right)\left(1-\chi_{2}(x)\right) \cdots\left(1-\chi_{k}(x)\right)
$$

so

$$
\begin{aligned}
& f(x)=f(x) \chi_{1}(x)+f(x)\left(1-\chi_{1}(x)\right) \chi_{2}(x)+f(x)\left(1-\chi_{1}(x)\right)\left(1-\chi_{2}(x)\right) \chi_{3}(x) \\
& +\cdots f(x)\left(1-\chi_{1}(x)\right)\left(1-\chi_{2}(x)\right) \cdots \chi_{k}(x) \\
& =: f_{1}(x)+f_{2}(x)+\cdots f_{k}(x)
\end{aligned}
$$

We proceed to integrate one of the $f_{i} \mathrm{~s}$, written as f from now on.
The Euclidean metric in \mathbb{R}^{n} induces a Riemannian metric on S. With respect to there coordinates, $g_{i j}(x)$ is defined as the Euclidean inner
product of the push-forward of the usual basis vectors in \mathbb{R}^{k} :

$$
g_{i j}(x)=\frac{\partial P(x)}{\partial x^{i}} \cdot \frac{\partial P(x)}{\partial x^{j}}
$$

In matrix notation,

$$
\left(g_{i j}(x)\right)=(D P(x))^{T} D P(x)
$$

The standard Riemannian geometry definition of $\int_{S} f d V o l$ is

$$
\int_{S} f d V o l=\int_{C} f(P(x)) \sqrt{\left|\operatorname{det}\left(g_{i j}(x)\right)\right|} d x^{1} \cdots d x^{k}
$$

An explicit calculation shows this is independent of the parametrization. It agrees with familiar formulas in low dimensions:

Example 1: $k=1$ (curves in \mathbb{R}^{n}). Here $P:(a, b) \rightarrow \mathbb{R}^{n}, P^{\prime}(x) \neq 0$ for all x, and $g_{11}(x)=\left|P^{\prime}(x)\right|^{2}$, so

$$
\int_{S} f d s=\int_{a}^{b} f\left(P(x)\left|F^{\prime}(x)\right| d x\right.
$$

Example 2: $k=2, n=3$ (surfaces in \mathbb{R}^{3}).
Here $D P(x)$ has two columns, $\frac{\partial P}{\partial x^{1}}$ and $\frac{\partial P}{\partial x^{2}}$.
Exercise (using a suitable rotation)

$$
\left|\operatorname{det}\left(g_{i j}\right)\right|=\left|\frac{\partial P}{\partial x^{1}} \times \frac{\partial P}{\partial x^{2}}\right|^{2}
$$

so this is consistent with the Math 241 formula

$$
\int_{S} f d S=\int_{C} f(P(x))\left|\frac{\partial P}{\partial x^{1}} \times \frac{\partial P}{\partial x^{2}}\right| d x^{1} d x^{2}
$$

Example 3: $k=n$.
Here $\left(g_{i j}\right)=(D P(x))^{T} D P(x), \operatorname{det}\left(g_{i j}\right)=\operatorname{det}(D P)^{2}$ so we get the change-of-variables formula

$$
\int_{S} f d x=\int_{C} f(P(x))|\operatorname{det} D P(x)| d x
$$

Example 4 (what we need to prove the divergence theorem)
Let $k=n-1$ and S given (locally) as the graph of a function r :

$$
P\left(x^{1}, \cdots x^{n-1}\right)=\left(x^{1}, \cdots x^{n-1}, r\left(x^{1}, \cdots x^{n-1}\right)\right)
$$

Then

$$
\begin{aligned}
\left(g_{i j}(x)\right) & =\left(\begin{array}{cccc}
1 & 0 & \cdots & \frac{\partial r}{\partial x^{1}} \\
\cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 1 & \frac{\partial r}{\partial x^{n-1}}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 1 \\
\frac{\partial r}{\partial x^{1}} & \frac{\partial r}{\partial x^{2}} & \cdots & \frac{\partial r}{\partial x^{n-1}}
\end{array}\right) \\
& =I_{(n-1) \times(n-1)}+\left(\begin{array}{c}
\frac{\partial r}{\partial x^{1}} \\
\frac{\partial r}{\partial x^{2}} \\
\cdots \\
\frac{\partial r}{\partial x^{n-1}}
\end{array}\right)\left(\frac{\partial r}{\partial x^{1}} \frac{\partial r}{\partial x^{2}} \cdots \frac{\partial r}{\partial x^{n-1}}\right)
\end{aligned}
$$

Exercise: $\operatorname{det}\left(g_{i j}\right)=1+|\nabla r|^{2}$.
So

$$
\int_{S} f d S=\int_{C} f\left(x^{1}, \cdots, r\left(x^{1}, \cdots x^{n-1}\right)\right) \sqrt{1+|\nabla r|^{2}} d x^{1} \cdots d x^{n-1}
$$

5.2. The length of a curve and the equation for geodesics as

 an Euler-Lagrange equation. In the same set-up as before, let $x:[a, b] \rightarrow C \subset \mathbb{R}^{k}$ (C open) be a parametrized C^{2} curve, $P: C \rightarrow$ $S \subset \mathbb{R}^{n}$ the parametrization of (a subset of) the surface $S\left(P\right.$ is C^{2}, $D P(x)$ has maximal rank for all $x)$. The length of the parametrized curve on S given by $\gamma(s)=P \circ x(s)$ is$$
\begin{align*}
& \int_{a}^{b}\left|(P \circ x(s))^{\prime}\right| d s=\int_{a}^{b} \sqrt{<\left(D P(x(s)) x^{\prime}(s),\left(D P(x(s)) x^{\prime}(s)>\right.\right.} d s \\
& =\int_{a}^{b} \sqrt{\sum g_{i j}\left(x(s) \dot{x^{i}}(s) \dot{x^{j}}(s)\right.} d s \tag{3}
\end{align*}
$$

We can forget P and S, and, given a Riemannian metric $g_{i j}(x)$ on C (that is, the matrix $g_{i j}(x)$ is positive definite for every x, and C^{1}, we can define the length of a parametrized curve $x(s)$ by (3).

We will prove the following:
Theorem 5.3. If $x(s)$ is parametrized by arc-length (that is, $\sum g_{i j}\left(x(s) x^{i}(s) x^{j}(s)=\right.$ 1), and if $x(s)$ is the shortest path from $A=x(a)$ to $B=x(b),(A, B$ fixed) then it satisfies the geodesic equation

$$
\begin{equation*}
\ddot{x^{i}}(s)+\Gamma_{j k}^{i}(x(s)) \dot{x}^{j}(s) \dot{x}^{k}(s)=0 \tag{4}
\end{equation*}
$$

where the Christoffel symbols $\Gamma_{j k}^{i}$ are defined by

$$
\Gamma_{j k}^{i}(x)=\sum g^{i l}(x) \Gamma_{l j k}(x)
$$

where

$$
\begin{aligned}
& \left(g^{i l}(x)\right)=\left(g_{i l}(x)\right)^{-1} \text { matrix inverse } \\
& \Gamma_{l j k}=\frac{1}{2}\left(\frac{\partial g_{l j}}{\partial x^{k}}+\frac{\partial g_{l k}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{l}}\right)
\end{aligned}
$$

Proof. The proof follows section 31.2 of volume 1 of the books by Dubrovin, Fomenko and Novikov. Let $L_{1}(\dot{x}, x)$ be the Lagrangian density $L_{1}(\dot{x}, x)=\sqrt{\sum g_{i j}\left(x(s) \dot{x^{i}}(s) \dot{x^{j}}(s)\right.}$, and $L_{2}(\dot{x}, x)=\left(L_{1}(\dot{x}, x)\right)^{2}=$ $\sum g_{i j}\left(x(s) \dot{x^{i}}(s) \dot{x^{j}}(s)\right.$. Easy calculus shows that if x is parametrized by arc-length, then the Euler-Lagrange equations for L_{1} are equivalent with the Euler-Lagrange equations for $\left(L_{1}\right)^{2}$.

It is also easy to see that the Euler-Lagrange equations for

$$
L_{2}(\dot{x}, x)=\sum g_{i j}\left(x(s) \dot{x^{i}}(s) \dot{x^{j}}(s)\right.
$$

are exactly (4). We will also show that they satisfy $\sum g_{i j}(x(s)) \dot{x^{i}}(s) \dot{x^{j}}(s)=$ const.. This is "conservation of energy", similar to the conservation formulas for the energy-momentum tensor for PDEs which are EulerLagrange equations.

6. The gradient of a characteristic function

This is background material (formula 3.1.5 in Hörmander's book).
Theorem 6.1. Let U be an open set with C^{1} boundary. Then

$$
\nabla \chi_{U}=-\nu d S
$$

where $d S$ is surface measure on ∂U and ν is the outward pointing unit normal.

Proof. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a smoothed out Heaviside function: $h(x)=0$ if $x \leq 0, h(x)=1$ if $x \geq 1$ and smooth in-between. Using a partition of unity, it suffices the prove the theorem for test functions ϕ supported in a small neighborhood of $x_{0} \in \partial U$, where U agrees with $x_{n}>r\left(x_{1}, \cdots x_{n-1}\right)$. Then

$$
\begin{aligned}
& <\nabla \chi_{U}, \phi>=-\left\langle\chi_{U}, \nabla \phi\right\rangle \\
& =-\lim _{\epsilon \rightarrow 0} \int h\left(\frac{x_{n}-r\left(x_{1}, \cdots x_{n-1}\right)}{\epsilon}\right) \nabla \phi\left(x_{1}, \cdots, x_{n}\right) d x_{1} \cdots d x_{n} \\
& =\lim _{\epsilon \rightarrow 0} \int \nabla\left(h\left(\frac{x_{n}-r\left(x_{1}, \cdots x_{n-1}\right)}{\epsilon}\right)\right) \phi\left(x_{1}, \cdots, x_{n}\right) \\
& =\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{n}} \frac{1}{\epsilon} h^{\prime}\left(\frac{x_{n}-r\left(x_{1}, \cdots x_{n-1}\right)}{\epsilon}\right) \cdot\left(-\nabla r\left(x_{1}, \cdots, x_{n-1}\right), 1\right) \phi(x) d x \\
& =\int_{\mathbb{R}^{n-1}}\left(-\nabla r\left(x_{1}, \cdots, x_{n-1}\right), 1\right)\left(\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}} \frac{1}{\epsilon} h^{\prime}\left(\frac{x_{n}-r\left(x_{1}, \cdots x_{n-1}\right)}{\epsilon}\right) \phi(x) d x_{n}\right) d x_{1} \cdots d x_{n-1} \\
& =\int_{\mathbb{R}^{n-1}} \phi\left(x_{1}, \cdots x_{n-1}, r\left(x_{1}, \cdots r_{x-1}\right)\right)\left(-\nabla r\left(x_{1}, \cdots, x_{n-1}\right), 1\right) d x_{1} \cdots d x_{n-1} \\
& =-\int_{\partial U} \phi \nu d S
\end{aligned}
$$

(by the Calculus formulas for ν and $d S$). We used the fact that $\frac{1}{\epsilon} h^{\prime}\left(\frac{x}{\epsilon}\right)$ is an "approximation to the identity".
7. Solving the Cauchy problem for the wave equation in 1 AND 3 DIMENSIONS

To solve (in $n+1$ dimensions, i.e. $x \in \mathbb{R}^{n}, t \in \mathbb{R}$)

$$
\begin{align*}
& u_{t t}-\Delta u=0 \text { if } t>0 \tag{5}\\
& u(0, x)=f(x) \\
& u_{t}(0, x)=g(x)
\end{align*}
$$

with $u \in C^{2}, u(t, \cdot) \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ for each fixed $t>0$, take Fourier transform in x :

$$
\begin{aligned}
& \hat{u}_{t t}(t, \xi)+|\xi|^{2} \hat{u}(t, \xi)=0 \text { if } t>0 \\
& \hat{u}(0, \xi)=\hat{f}(\xi) \\
& \hat{u}_{t}(0, \xi)=\hat{g}(\xi)
\end{aligned}
$$

This ODE has solution

$$
\hat{u}(t, \xi)=\cos (t|\xi|) \hat{f}(\xi)+\frac{\sin (t|\xi|)}{|\xi|} \hat{g}(\xi)
$$

As it is clear from this formulation, it suffices to solve the problem with $f=0$.

So we want $u(t, x)$ such that

$$
\hat{u}(t, \xi)=\frac{\sin (t|\xi|)}{|\xi|} \hat{g}(\xi)
$$

We are looking for a compactly supported distribution $E(t) \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ such that

$$
\hat{E}(t)=\frac{\sin (t|\xi|)}{|\xi|}
$$

At least in 1 and 3 dimensions, such a distribution is well-known and "elementary" (see the next section for other dimensions).

Then the solution will be

$$
\begin{aligned}
& u(t, x)=E(t) * g \\
& \text { or, equivalently } \\
& \hat{u}(t, \xi)=\hat{E}(t, \xi) \hat{g}(\xi)
\end{aligned}
$$

(Background facts: if E is a compactly supported distribution and $g \in \mathcal{S}, E * g(x)$ is defined as $<E, g(x-\cdot)>$. Its Fourier transform is $\hat{E} \hat{g}$. See Theorem 7.1.5 in Hörmander's book).

Also, for a compactly supported distribution $E, \hat{E}(\xi)=<E, e^{-i x \cdot \xi}>$ (E acts in the x variable). See Theorem 7.1.14 in Hörmander's book.

In one dimension, the Fourier transform of the characteristic function of $[-t, t]$ is

$$
\int_{-t}^{t} e^{-i x \cdot \xi} d x=2 \frac{\sin (t \xi)}{\xi}
$$

We found that in one space dimension

$$
E(t, x)=\frac{1}{2} \chi_{[-t, t]}
$$

and the solution to (5) with $f=0$ is

$$
\begin{aligned}
& u(t, x)=\int E(t, y) g(x-y) d y \\
& =\frac{1}{2} \int_{-t}^{t} g(x-y) d y \\
& =\frac{1}{2} \int_{x-t}^{x+t} g(y) d y
\end{aligned}
$$

In 3 space dimensions, we compute the Fourier transform of surface measure on $S^{2}: \int_{S^{2}} e^{-i x \cdot \xi} d S_{x}$. Without loss of generality, $\xi=(0,0,|\xi|)$.

Integrating in spherical coordinates $\left(x_{1}, x_{2}, x_{3}\right)=(\sin (\phi) \cos (\theta), \sin (\phi) \sin (\theta), \cos (\phi))$,

$$
\begin{aligned}
& \int_{S^{2}} e^{-i x_{3}|\xi|} d S_{x}=\int_{0}^{\pi} \int_{0}^{2 \pi} e^{-i \cos (\phi)|\xi|} \sin (\phi) d \phi d \theta \\
& =2 \pi \int_{0}^{\pi} e^{-i \cos (\phi)|\xi|} \sin (\phi) d \phi \\
& =2 \pi \int_{-1}^{1} e^{-i \lambda|\xi|} d \lambda \\
& =4 \pi \frac{\sin (|\xi|)}{|\xi|}
\end{aligned}
$$

By the exact same calculation, the Fourier transform of surface measure on the sphere of radius $t>0$ is $4 \pi t \frac{\sin (t|\xi|)}{|\xi|}$.

Thus in 3 dimensions, if $f=0$,

$$
E(t, x)=\frac{1}{4 \pi t} \text { surface measure on the sphere of radius } t
$$

and

$$
\begin{aligned}
& u(t, x)=\frac{1}{4 \pi t} \int_{\partial B(0, t)} g(x-y) d S_{y} \\
& =\frac{1}{4 \pi t} \int_{\partial B(x, t)} g(y) d S_{y}
\end{aligned}
$$

while, in general, the solution to (5) is

$$
\begin{aligned}
& u(t, x)=\frac{\partial}{\partial t}\left(\frac{1}{4 \pi t} \int_{\partial B(x, t)} f(y) d S_{y}\right) \\
& +\frac{1}{4 \pi t} \int_{\partial B(x, t)} g(y) d S_{y}
\end{aligned}
$$

8. The formula for the Cauchy problem for the wave EQUATION IN $n+1$ DIMENSIONS

We need the (famous) family of distributions χ_{+}^{α}. For $\alpha>-1$, these are functions defined by

$$
\chi_{+}^{\alpha}=\frac{x_{+}^{\alpha}}{\Gamma(\alpha+1)}
$$

Using properties of the Γ function,

$$
\left(\chi_{+}^{\alpha}\right)^{\prime}=\chi_{+}^{\alpha-1}
$$

This allows one to define χ_{+}^{α} for $\alpha \leq-1$. Of special interest to us are

$$
\begin{aligned}
& \chi_{+}^{0}(x)=H(x) \text { (the Heaviside function) } \\
& \chi_{+}^{-\frac{1}{2}}(x)=\frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{x}} H(x) \\
& \chi_{+}^{-1}=H^{\prime}=\delta
\end{aligned}
$$

The general statement (which we will not prove right now) is

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x_{1}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{n}^{2}}\right) \chi_{+}^{\frac{1-n}{2}}\left(t^{2}-\cdots-x_{n}^{2}\right)=4 \pi^{\frac{n-1}{2}} \delta
$$

The definition of the composition of a distribution with a smooth function is explained in the next section.

The above formula provides a fundamental solution for the wave equation (there are others, see Hörmander's book). The solution to the Cauchy problem,

$$
\begin{aligned}
& \left(\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x_{1}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{n}^{2}}\right) u=0 \text { if } t>0 \\
& u(0, x)=0, \quad u_{t}(0, x)=f
\end{aligned}
$$

is

$$
u(t, x)=\left(E_{+}(t, \cdot) * f\right)(x)
$$

where E_{+}is defined as follows in the open set $t>0$:

$$
E+=\frac{1}{2 \pi^{\frac{n-1}{2}}} \chi_{+}^{\frac{1-n}{2}}\left(t^{2}-\cdots-x_{n}^{2}\right)
$$

This agrees with the results from the previous section. To see that in 3 dimensions, we need the important formula $\delta(f)=\frac{d S}{|\nabla f|}$ if f is C^{1}, $\nabla f(x) \neq 0$ if $f(x)=0$ and $d S$ is surface measure on $f=0$ (explained in the next section).
9. Compositions with smooth functions and the chain rule

Theorem 9.1. Let $u \in \mathcal{D}^{\prime}(\mathbb{R})$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R} C^{\infty}$, such that $\nabla f(x) \neq 0$ for all $x \in \operatorname{supp} u$. Then there exists a unique distribution $u \circ f$ (or $f^{*} u$) such that if u_{i} is a sequence of continuous functions, $u_{i} \rightarrow u$ in the sense of distribution theory, then $u_{i} \circ f \rightarrow u \circ f$. As a consequence, the chain rule is true.

Proof. Using a partition of unity, it suffices to prove this for test functions supported in a sufficiently small open set. Let U open such that $\frac{\partial f}{\partial x_{n}}$ is bounded away from 0 on U. Consider the map Φ defined by
$\left(x_{1}, \cdots x_{n}\right) \rightarrow\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n}\right)\right)$. By the inverse function theorem, after possibly shrinking U, we have $\Phi: U \rightarrow V$, one to one, onto, with a smooth inverse, and V open. Also,

$$
f\left(\Phi^{-1}\left(x_{1}, \cdots, x_{n}\right)\right)=x_{n} \text { for all }\left(x_{1}, \cdots, x_{n}\right) \in V
$$

Let ϕ be a test function supported in U, and let u_{i} be a sequence of continuous functions converging to u in the sense of distribution theory. Then

$$
\begin{aligned}
& <u_{i} \circ f, \phi>=\int_{U} u_{i}(f(x)) \phi(x) d x \\
& =\int_{V} u_{i}\left(x_{n}\right) \phi\left(\Phi^{-1}\left(x_{1}, \cdots, x_{n}\right)\right)\left|\operatorname{det} \frac{\partial\left(\Phi^{-1}\right)}{\partial x}\right| d x \\
& =\int_{\mathbb{R}^{n-1}}<u_{i}, \phi\left(\Phi^{-1}\left(x_{1}, \cdots, \cdot\right)\right)\left|\operatorname{det} \frac{\partial\left(\Phi^{-1}\right)}{\partial x}\right|>d x_{1} \cdots d x_{n-1} \\
& \rightarrow \int_{\mathbb{R}^{n-1}}<u, \phi\left(\Phi^{-1}\left(x_{1}, \cdots, \cdot\right)\right)\left|\operatorname{det} \frac{\partial\left(\Phi^{-1}\right)}{\partial x}\right|>d x_{1} \cdots d x_{n-1}
\end{aligned}
$$

To pass to the limit inside the integral, we need the following lemma:
Then $<u_{i}, \phi\left(x_{1}, \cdots, x_{n-1}, \cdot\right)>\rightarrow<u, \phi\left(x_{1}, \cdots, x_{n-1}, \cdot\right)$ and the sequence is uniformly bounded in $\left(x_{1}, \cdots, x_{n-1}\right)$. This follows from the uniform boundedness principle in a Frechet space. As a consequence, the chain rule is true. Indeed, given u we know we can find $u_{i} \rightarrow u$ in $\mathcal{D}^{\prime}(\mathbb{R}), u_{i} \in C^{\infty}$. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, C^{\infty}$, such that $\nabla f(x) \neq 0$ for all x. Then $u_{i} \circ f \rightarrow u \circ f$ as above, and $\nabla\left(u_{i} \circ f\right)=\left(u_{i}^{\prime} \circ f\right) \nabla f \rightarrow$ $\left(u^{\prime} \circ f\right) \nabla f=\nabla(u \circ f)$. So $\nabla(u \circ f)=\left(u^{\prime} \circ f\right) \nabla f$.
Remark 9.2. As an important application, let U be a C^{1} bounded domain given by a defining function $r . U=\{r>0\}$. Then $H \circ r=\chi_{U}$, and $\nabla(H \circ r)=\nabla\left(\chi_{U}\right)=d S \frac{\nabla r}{|\nabla r|}$, but $\nabla(H \circ r)$ also equals $H^{\prime}(r) \nabla r=$ $\delta(r) \nabla r$. Here δ stands for the delta function on the real line. As a consequence, $\delta(f)=\frac{d S}{|\nabla f|}$ where $d S$ is surface measure on the surface $f=0$.

At this stage, $\chi_{+}^{\frac{1-n}{2}}\left(t^{2}-\cdots-x_{n}^{2}\right)$ is defined in the set $\mathbb{R}^{n+1}-\{0\}$, and homogeneous of degree $-n+1$.

To extend it to $\mathcal{D}^{\prime}\left(\mathbb{R}^{n+1}\right)$ we need the following technical result (Theorem 3.2.3 in Hörmander). We will not prove this in class.
Theorem 9.3. If $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}-\{0\}\right)$ is homogeneous of degree α and α is not an integer $\leq-n$, then u has a unique extension to $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, and this extension is also homogeneous of degree α.

