1. Consider the vector field
\[\vec{F}(x, y, z) = yz^2 \hat{i} + xz^2 \hat{j} + [2xyz + 2\cos(2z)]\hat{k}. \]

(a.) Prove that \(\vec{F} \) is a conservative vector field and find a potential function \(f \) for \(\vec{F} \).
(b.) Determine \(\text{curl} \vec{F} \).
(c.) Evaluate the following line integral
\[I = \int_C \vec{F} \cdot d\vec{r}, \]
where \(C \) is the oriented curve parametrized by \(\vec{r}(t) = \cos(\pi t^3)\hat{i} + t^{10}\hat{j} + \frac{\pi}{2} \frac{t}{1+t^4}\hat{k} \) and \(-1 \leq t \leq 1 \).

2. Let \(R \) be the region of the plane bounded by the curves \(xy = \pi/2 \) and \(xy = \pi \), \(y(2-x) = 2 \) and \(y(2-x) = 4 \). Compute the following double integral
\[\iint_R y\cos(xy) dA, \]
by using the following change of variables: \(x = \frac{2u}{u+v} \), and \(y = u + v \).

3. Let \(S \) be the portion of the surface \(z = xy \) that is inside the cylinder \(x^2 + y^2 = 1 \).
(a.) Find a parametrization of \(S \).
(b.) Find the area of the surface \(S \).

4. Express and evaluate the following integral in cylindrical coordinates:
\[\iiint_D (z^2 + 1) dV, \]
where \(D \) is the solid region bounded below by the upper nappe of the cone \(z^2 = 3x^2 + 3y^2 \) and above by the sphere \(x^2 + y^2 + z^2 = 4 \).