HODGE DECOMPOSITION AND KÄHLER MANIFOLDS

YU-CHI HOU

Abstract

This is my manuscript on RIT on Hodge Theory organized by Professor Patrick Brosnan at UMD in 2023 Fall.

CONTENTS

1. Singular/de Rham Cohomology and de Rham Theorem 1
2. Hodge Theorem on Harmonic Forms 5
3. Complex Manifolds and Kähler Metrics 8
4. Kähler Identities and Hodge Decomposition on Compact Kähler Manifolds 14

1. Singular/de Rham Cohomology and de Rham Theorem

1.1. Singular Cohomology. Let X be any topological space. Recall that a singular k-simplex is a continuous map $\sigma: \Delta^{k} \rightarrow X$, where Δ^{k} is the standard k-simplex given by

$$
\Delta^{k}:=\left\{\left(t_{0}, \ldots, t_{k}\right) \in \mathbb{R}^{k+1}: \sum_{i=0}^{k} t_{i}=1, \quad t_{i} \geqslant 0, \quad 0 \leqslant i \leqslant k\right\}
$$

For $0 \leqslant i \leqslant k$, we define a singular $(k-1)$-complex by

$$
\partial_{i} \sigma\left(t_{0}, \ldots, t_{k-1}\right)=\sigma\left(t_{0}, \ldots, t_{i-1}, 0, t_{i}, \ldots, t_{k-1}\right),
$$

The singular k-chains $S_{k}(X)$ is the free abelian groups generated by the set of all singular k-simplices and we define $\partial: S_{k}(X) \rightarrow S_{k-1}(X)$ by

$$
\partial\left(\sum_{j} n_{j} \sigma_{j}\right)=\sum_{j} n_{j} \partial \sigma_{j}, \quad \partial \sigma_{j}=\sum_{i=0}^{k}(-1)^{i} \partial_{i} \sigma_{j} .
$$

One can verify direct that $\partial^{2}=0$ and thus defines a complex $(S \bullet(X), \partial)$. The k-th singular homology of X is defined by

$$
H_{k}(X):=\operatorname{ker}\left(\partial: S_{k}(X) \rightarrow S_{k-1}(X)\right) / \operatorname{im}\left(\partial: S_{k+1}(X) \rightarrow S_{k}(X)\right)
$$

Fact 1 (Poincaré Lemma). If U is a convex open set in \mathbb{R}^{n}, then $H_{k}(U)=0$ for $k>0$.
This is proved by constructing a homotopy operator $h: S_{k}(X) \rightarrow S_{k+1}(X)$ via cone construction satisfying $\partial h \sigma+h \partial \sigma=\sigma$, for any $\sigma \in S_{k}(X)$.

Now, if R is a commutative ring, then we set $S^{k}(X, R)=\operatorname{Hom}_{\mathbb{Z}}\left(S_{k}(X), R\right)$ and $\delta^{k}: S^{k}(X, R) \rightarrow$ $S^{k+1}(X, R)$ is the dual homomorphism. Again, we still have $\delta^{2}=0$ and thus the k-th singular cohomology with coefficients in R is given by

$$
H^{k}(X, R):=\operatorname{ker}\left(\delta: S^{k}(X, R) \rightarrow S^{k+1}(X, R)\right) / \operatorname{im}\left(\delta: S^{k-1}(X, R) \rightarrow S^{k}(X, R)\right)
$$

By Poincaré lemma, we also have $H^{k}(U, R)=0$ for any convex open set $U \subset \mathbb{R}^{n}$ and $k>0$.
1.2. Recap on Differential Forms and de Rham Cohomology. Let M be a smooth manifold of dimension m, i.e.,
(i) M is a second countable, Hausdorff space,
(ii) there exists an open covering $\left\{U_{\alpha}\right\}_{\alpha \in I}$ and homeomorphism $\sigma_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{m}$ onto some open set V_{α} such that the transition maps

$$
\sigma_{\alpha \beta}:=\sigma_{\alpha} \circ \sigma_{\beta}^{-1}: \sigma_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \sigma_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)
$$

are smooth for any $\alpha, \beta \in I$.
Remark 1. Here, we always assume that M is second countable. The important consequence of second countability is that M admits a smooth partition of unity: for any open covering $\left\{U_{\alpha}\right\}_{\alpha \in I}$, there exists $\left\{\rho_{\alpha} \in C^{\infty}(M)\right\}_{\alpha \in I}$ (indexed over the same set I) such that supp $\rho_{\alpha} \subset U_{\alpha},\left\{\operatorname{supp} \rho_{\alpha}\right\}_{\alpha \in I}$ is locally finit $\left\{^{17}\right.$, and $\sum_{\alpha \in I} \rho_{\alpha}=1$.

We denote $T M$ by its tangent bundle and $T^{*} M$ by its cotangent bundle. For $0 \leqslant k \leqslant m, \Lambda^{k} T^{*} M$ is the k-th exterior bundle for $T^{*} M$. A smooth k-form is a smooth section $\alpha: M \rightarrow \Lambda^{k} T^{*} M$. Locally, given a local coordinate system $\left(x_{1}, \ldots, x_{m}\right)$ near p, we can write α locally as

$$
\alpha=\sum_{|I|=k} \alpha_{I} d x_{I}
$$

where we use the multi-indices notation: $I=\left(i_{1}, \ldots, i_{k}\right) \in \mathbb{N}^{k}$ with $0 \leqslant i_{1}<\cdots<i_{k} \leqslant m$ and $\alpha_{I}:=\alpha_{i_{1} \cdots i_{k}} d x_{I}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$, and $|I|:=k$.

We denote $A^{k}(M)$ by the space of smooth k-forms on M. There is a natural differentiation $d: A^{k}(M) \rightarrow A^{k+1}(M)$, called the exterior derivative, which is locally defined by

$$
d \alpha=\sum_{|I|=k} \sum_{j=1}^{m} \frac{\partial \alpha_{I}}{\partial x_{j}} d x_{j} \wedge d x_{I} .
$$

By commutativity of mixed derivatives, one can easily see that $d^{2}=0$. This defines a complex

$$
\left(A^{\bullet}(M), d\right): 0 \rightarrow C^{\infty}(M) \xrightarrow{d} A^{1}(M) \xrightarrow{d} A^{2}(M) \rightarrow \cdots \xrightarrow{d} A^{m}(M) \rightarrow 0,
$$

called the de Rham complex. The k-th cohomology of the complex is called the de Rham cohmology:

$$
H_{d R}^{k}(M, \mathbb{R}):=\operatorname{ker}\left(d: A^{k}(M) \rightarrow A^{k+1}(M)\right) / \operatorname{im}\left(d: A^{k-1}(M) \rightarrow A^{k}(M)\right)
$$

We usually call $\alpha \in \operatorname{ker}(d)$ a closed form and $\alpha \in \operatorname{im}(d)$ an exact form. Moreover, recall that

$$
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{k} \alpha \wedge d \beta
$$

Hence, $H_{d R}^{\bullet}(M, \mathbb{R})=\oplus_{k} H_{d R}^{k}(M, \mathbb{R})$ is a graded ring. If $f: M \rightarrow N$ is a smooth map between smooth manifolds, then it induces a \mathbb{R}-linear map $f^{*}: A^{k}(N) \rightarrow A^{k}(M)$ given by

$$
\left(f^{*} \alpha\right)_{p}\left(v_{1}, \ldots, v_{k}\right)=\alpha_{(f(p)}\left(d f_{p}\left(v_{1}\right), \ldots, d f_{p}\left(v_{k}\right)\right), \quad \forall p \in M, \quad v_{1}, \ldots, v_{k} \in T_{p} M
$$

where $d f_{p}: T_{p} M \rightarrow T_{p} N$ is the differential at p and we identify $\Lambda^{k} T_{p}^{*} M$ as the space of alternating k-linear form on $T_{p} M$. Moreover, we have

$$
f^{*}(\alpha \wedge \beta)=f^{*} \alpha \wedge f^{*} \beta, \quad f^{*} d \alpha=d f^{*} \alpha .
$$

Particularly, f induces a ring homomorphism $f^{*}: H_{d R}^{*}(N, \mathbb{R}) \rightarrow H_{d R}^{\bullet}(M, \mathbb{R})$.
Finally, we recall Poincaré Lemma for de Rham cohomology.
Lemma 1. Let $U \subset \mathbb{R}^{m}$ be a convex open set. For $1 \leqslant k \leqslant m$, if $\alpha \in A^{k}(U)$ is a closed form, then there exists $\beta \in A^{k-1}(U)$ such that $\alpha=d \beta$. In other words, $H_{d R}^{k}(U, \mathbb{R})=0$.

[^0]Sketch of Proof. The idea is again to construct a homotopy operator on the cochain level. WLOG, we may assume that $0 \in U$. If $\alpha=\sum_{|I|=k} f_{I}\left(x_{1}, \ldots, x_{m}\right) d x_{I}$, then we define

$$
K: A^{k+1}(U) \rightarrow A^{k}(U), \quad K \alpha=\sum_{|I|=k}\left(\int_{0}^{1} t^{k} f_{I}(t x) d t\right) \sum_{j=1}^{k}(-1)^{j} x_{i_{j}} d x_{i_{1}} \wedge \cdots \wedge \widehat{d x_{i_{j}}} \cdots d x_{i_{k}}
$$

By direct computation and fundamental theorem of Calculus, $\alpha=d K \alpha+K d \alpha=d(K \alpha)$.

1.3. de Rham Theorem. Now, we can state de Rham Theorem.

Theorem 1. Let M be a smooth manifold. Then we have a natural isomorphism

$$
H^{k}(M, \mathbb{R}) \cong H_{d R}^{k}(M, \mathbb{R})
$$

In order to sketch some ideas on de Rham theorem, we need some preparation. Notice that via projection, Δ^{k} is affine equivalent to

$$
\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}: \sum_{j=1}^{k} x_{j} \leqslant 1, \quad x_{j} \geqslant 0, \quad 1 \leqslant j \leqslant k\right\}
$$

which we still denote by Δ^{k}. We say $\sigma: \Delta^{k} \rightarrow M$ is a smooth singular k-simplex if σ extends to some smooth maps on an open neighborhood of $\Delta^{k} \subset \mathbb{R}^{k}$. Proceeding as the construction in section 1.1. we can define the $C_{k}(M)$, the chain complex of smooth k-simplices and boundary operator $\partial: C_{k}(M) \rightarrow C_{k-1}(M)$ with $\partial^{2}=0$. We denote $H_{k}^{\infty}(M)$ by the corresponding homology group, called the smooth singular homology of M.

Given a k-form $\alpha \in A^{k}(M), \sigma^{*} \alpha$ is a k-form defined on an open neighborhood of Δ^{k}, we can define

$$
\int_{\sigma} \alpha:=\int_{\Delta^{k}} \sigma^{*} \alpha .
$$

We extend this \mathbb{Z}-linear to any $\sum_{i} n_{i} \sigma_{i}$ and get a group homomorphism

$$
\int \alpha: C_{k}(M) \rightarrow \mathbb{R}, \quad \sigma \mapsto \int_{\sigma} \alpha .
$$

Also, notice that $\int \alpha$ is also linear in α and thus we obtain a group homomorphism

$$
\int: A^{k}(M) \rightarrow C^{k}(M, \mathbb{R}):=\operatorname{Hom}_{\mathbb{Z}}\left(C_{k}(M), \mathbb{R}\right), \quad \alpha \mapsto\left(\sigma \mapsto \int_{\sigma} \alpha\right)
$$

By fundamental theorem of Calculus, it is easy to prove the following Stokes' theorem for chain:

$$
\int_{\sigma} d \alpha=\int_{\partial \sigma} \alpha, \quad \forall \alpha \in A^{k-1}(M), \quad \sigma \in C_{k}(M)
$$

As in singular cohomology, we denote $\delta: C^{k}(M, \mathbb{R}) \rightarrow C^{k+1}(M, \mathbb{R})$ by the adjoint of ∂ and define singular cohomology for smooth cochains by

$$
H_{s m}^{k}(M, \mathbb{R}):=\operatorname{ker}\left(\delta: C^{k}(M, \mathbb{R}) \rightarrow C^{k+1}(M, \mathbb{R})\right) / \operatorname{im}\left(\delta: C^{k-1}(M, \mathbb{R}) \rightarrow C^{k}(M, \mathbb{R})\right)
$$

Then Stokes' theorem reads $\int_{\sigma} d \alpha=\delta \int \alpha$ and thus this defines a group homomorphism

$$
\begin{equation*}
\int: H_{d R}^{k}(M, \mathbb{R}) \rightarrow H_{s m}^{k}(M, \mathbb{R}) \tag{1.1}
\end{equation*}
$$

We prove that (1.1) is an isomorphism in the following steps.
(1) Both $H_{d R}^{k}$ and $H_{s m}^{k}$ satisfies Mayer-Vietoris property: for two open sets $U, V \subset M$, then we have a long exact sequence in cohomology:

an (1.1) on the corresponding domain forms the above commutative diagram. By 5-lemma, if (1.1) is an isomorphism on U, V, and $U \cap V$, then it is an isomorphism on $U \cup V$.
(2) If (1.1) is an isomorphism on a family of disjoint open sets, then it is an isomorphism on their union. This is obvious from $H_{*}^{k}\left(\bigcup_{\alpha} U_{\alpha}\right)=\oplus_{\alpha} H_{*}^{k}\left(U_{\alpha}\right)$ for $*=d R$ or $s m$.
(3) By Poincaré Lemma for both singular cohomology and de Rham cohomology, we know that \int is an isomorphism for convex open set $U \subset \mathbb{R}^{m}$. By induction and $\left(U_{1} \cup \cdots U_{N}\right) \cap V=$ $\left(U_{1} \cap V\right) \cup \cdots\left(U_{N} \cap V\right)$, it is an isomorphism for finite union of convex open sets.
(4) Let $f: M \rightarrow[0, \infty)$ be a proper map ${ }^{2}$. i.e., preimage of compact sets are compact. Let $A_{n}=$ $f^{-1}([n, n+1])$. We can cover A_{n} by finite union U_{n} of open sets which are diffeomorphic to convex sets in \mathbb{R}^{m} which are contained in $f^{-1}([n-1 / 2, n+3 / 2])$. We then set $U=\bigcup_{k} U_{2 k}$ and $V=\bigcup_{k} U_{2 k+1}$ which are disjoint unions of convex open sets. By (2) and (4), (1.1) is an isomorphism on U, V, and $U \cap V$. Hence, (1.1) is an isomorphism on $M=U \cup V$.
(5) The final step is to show that the inclusion $C_{k}(M) \hookrightarrow S_{k}(M)$ is a chain homotopic equivalence. A well-known facts known as Whitney approximation theorem from differential topology asserts that any continuous map between smooth manifolds can be approximated by smooth one. Using this, for each singular k-simplex $\sigma: \Delta^{k} \rightarrow M$, one can construct a (continuous) homotopy $H: \Delta \times[0,1] \rightarrow M$ so that $H(\cdot, 0)=\sigma$ and $H(\cdot, 1)$ is a smooth singular k-simplex. Once we construct such operator, one can easily deduce that $C_{k}(M) \hookrightarrow S_{k}(M)$ induces an isomorphism $H_{k}^{\infty}(M) \cong H_{k}(M)$ and thus $H_{s m}^{k}(M, \mathbb{R}) \cong H^{k}(M, \mathbb{R})$. The detail is quite tedious and can be found in John Lee's Introduction to Smooth Manifolds, Theorem 18.7.

Remark 2. The procedure above is known as Mayer-Vietoris argument. This was later generalized by Weil to Čech complex with respect an open covering. We give a short outline on the modern proof of de Rham-Weil isomorphism. Let $C_{M, \mathbb{R}}^{k}$ be the sheaf of singular k-cochains defined by $U \mapsto C^{k}(U, \mathbb{R}), \mathcal{A}_{M, \mathbb{R}}^{k}$ be the sheaf of smooth k-forms defined by $U \mapsto A^{k}(U)$, and \mathbb{R}_{M} be the constant sheaf with stalk \mathbb{R} on M. The exterior derivative and coboundary operator extends to a morphism of sheaves $d: \mathcal{A}_{M, \mathbb{R}}^{k} \rightarrow \mathcal{A}_{M, \mathbb{R}}^{k+1}$ and $\delta: C_{M, \mathbb{R}}^{k} \rightarrow C_{M, \mathbb{R}}^{k+1}$. Moreover, Poincaré Lemma for both cohomology theories and partition of unity shows that

$$
\begin{aligned}
& 0 \rightarrow \mathbb{R}_{M} \rightarrow \mathcal{A}_{M, \mathbb{R}}^{0} \xrightarrow{d} \mathcal{A}_{M, \mathbb{R}}^{1} \xrightarrow{d} \cdots, \\
& 0 \rightarrow \mathbb{R}_{M} \rightarrow C_{M, \mathbb{R}}^{0} \xrightarrow{\delta} C_{M, \mathbb{R}}^{1} \xrightarrow{\delta} \cdots .
\end{aligned}
$$

are both acyclic resolution of \mathbb{R}_{M}. Hence, we have the isomorphism:

$$
H^{k}(M)=H^{k}\left(\Gamma\left(C_{M, \mathbb{R}}^{\bullet}\right), \delta\right) \cong H^{k}\left(M, \mathbb{R}_{M}\right) \cong H^{k}\left(\Gamma\left(\mathcal{A}_{M, \mathbb{R}}^{\bullet}\right), d\right)=H_{d R}^{k}(M, \mathbb{R})
$$

Remark 3. In fact, (1.1) is a ring homomorphism (for singular cohomology, ring structure is given by cup product) and is functorial.

[^1]
2. Hodge Theorem on Harmonic Forms

2.1. Preliminaries. Let us first recap some simple linear algebra. Let V be a \mathbb{R}-vector space of dimension m. Given an inner product $\langle\cdot, \cdot\rangle$ on V, this induces an inner product on $\Lambda^{k} V$ for $0 \leqslant k \leqslant m$ by first defining on monomials

$$
\left\langle u_{I}, v_{J}\right\rangle=\operatorname{det}\left(\left\langle u_{i_{k}}, v_{j_{l}}\right\rangle\right), \quad u_{I}=u_{i_{1}} \wedge \cdots \wedge u_{i_{k}}, v_{J}=v_{j_{1}} \wedge \cdots \wedge v_{j_{k}} \in \Lambda^{k} V,
$$

and then extending bilinearly to whole $\Lambda^{k} V$. Particularly, if $\left\{e_{1}, \ldots, e_{m}\right\}$ is an ONB for V, then $\left\{e_{I}: I=\left(i_{1}, \ldots, i_{k}\right), \quad 1 \leqslant i_{1}<\cdots<i_{k} \leqslant m\right\}$ is an ONB for $\Lambda^{k} V$.Particularly, for $k=m$, we call the top form $d V:=e_{1} \wedge \cdots \wedge e_{m}$ a Riemannian volume form of V (with respect to the inner product).

Now, we define Hodge *-operator by

$$
*: \Lambda^{k} V \rightarrow \Lambda^{m-k} V, \quad e_{I} \mapsto e_{I^{c}}
$$

where $I=\left(i_{1}, \ldots, i_{k}\right)$ and I^{c} is the complement of I in $\{1, \ldots, m\}$ with the ordering so that

$$
e_{I} \wedge * e_{I}=e_{1} \wedge \cdots \wedge e_{m} .
$$

Again, we extend \mathbb{R}-linearly to general k-vector $\alpha=\sum_{|I|=k} \alpha_{I} e_{I}, \beta=\sum_{|J|=k} \beta_{J} e_{J}$:

$$
\alpha \wedge * \beta=\sum_{|I|=|J|=k} \alpha_{I} \beta_{J} e_{I} \wedge * e_{J}=\langle\alpha, \beta\rangle d V
$$

Note that $*$ is independent of the choice of ONB with the same orientation and

$$
\begin{equation*}
*^{2}=(-1)^{k(m-k)}=(-1)^{k(m-1)} \tag{2.1}
\end{equation*}
$$

Previously, we define integration of differential forms with respect to a smooth singular simplex. Now, we review integration of differential forms on smooth manifolds. Let M be an oriented smooth manifold, i.e., M admits a smooth atlas whose transition functions has positive Jacobians, for $u \in A^{m}(M)$, we can define integration of u on M by
(1) First, if u vanishes outside a coordinate chart U and $u=f\left(x_{1}, \ldots, x_{m}\right) d x_{1} \wedge \cdots \wedge d x_{m}$, then

$$
\int_{M} u:=\int_{U} f\left(x_{1}, \ldots, x_{m}\right) d x_{1} \cdots d x_{m} .
$$

(2) If we take $\left\{\rho_{\alpha}\right\}_{\alpha \in I}$ be the partition of unity subordinated to the oriented atlas, then we define

$$
\int_{M} u:=\sum_{\alpha \in I} \int_{U_{\alpha}} \rho_{\alpha} u .
$$

The key upshot is that under oriented hypothesis, the change of variable formula shows that the integration is independent of the choice of coordinates. The key formula for us is Stokes' formula:

$$
\int_{M} d u=\int_{\partial M} u, \quad u \in A^{m-1}(M) .
$$

Now, for an oriented m-dimensional Riemannian manifold (M, g). By definition, for each $p \in M$, g_{p} is an inner product on each tangent space $T_{p} M$. By duality, g also induces an inner product on $V=T_{p}^{*} M$ and thus on $\Lambda^{k} T_{p}^{*} M$ for $0 \leqslant k \leqslant m$, which we denote by $\langle\cdot, \cdot\rangle$. Since M is oriented, we denote Riemannian volume form on M (with respect to g) by $d V_{g} \in A^{m}(M)$. We then define Hodge *-operator *: $A^{k}(M) \rightarrow A^{m-k}(M)$ by applying above construction to each $T_{p}^{*} M$. By construction,

$$
\begin{equation*}
\alpha \wedge * \beta=\langle\alpha, \beta\rangle d V_{g}, \quad \alpha, \beta \in A^{k}(M) \tag{2.2}
\end{equation*}
$$

For simplicity, we now assume that M is closed ${ }^{3}$ and endow $A^{k}(M)$ an L^{2}-inner product by

$$
\begin{equation*}
(\alpha, \beta)=\int_{M}\langle\alpha, \beta\rangle d V_{g}, \quad \forall \alpha, \beta \in A^{k}(M) \tag{2.3}
\end{equation*}
$$

and we denote $\|\alpha\|=(\alpha, \alpha)^{1 / 2}$. We define adjoint $d^{*}: A^{k+1}(M) \rightarrow A^{k}(M)$ of d by

$$
\begin{equation*}
(d \alpha, \beta)=\left(\alpha, d^{*} \beta\right), \quad \alpha \in A^{k}(M), \beta \in A^{k+1}(M) . \tag{2.4}
\end{equation*}
$$

By (2.2), (2.3), and Stokes' formula, we get

$$
(d \alpha, \beta)=\int_{M}\langle d \alpha, \beta\rangle d V_{g}=\int_{M} d \alpha \wedge * \beta=\int_{M} d(\alpha \wedge * \beta)-(-1)^{k} \alpha \wedge d(* \beta)=(-1)^{k+1} \int_{M} \alpha \wedge d(* \beta) .
$$

Then (2.1) implies

$$
(d \alpha, \beta)=(-1)^{k+1}(-1)^{k(m-1)} \int_{M} \alpha \wedge * *(d * \beta)=(-1)^{k m+1}(\alpha, * d * \beta) .
$$

This shows that the adjoint d^{*} can be expressed into d and Hodge $*$-operator: $d^{*}=(-1)^{k m+1} * d *$.
Definition 1. The Hodge Laplacian $\triangle: A^{k}(M) \rightarrow A^{k}(M)$ on k-forms is defined by by $\triangle=$ $d d^{*}+d^{*} d$. A smooth k-form $\alpha \in A^{k}(M)$ is harmonic if $\triangle \alpha=0$ and we denote $\mathcal{H}^{k}(M)$ by the space of harmonic k-forms on M.

One can easily verify that for $M=\mathbb{R}^{m}$ with Euclidean metric $g=\sum_{j=1}^{m} d x_{j}^{2}$,

$$
\triangle \alpha=-\sum_{|I|=k}\left(\sum_{j=1}^{m} \frac{\partial^{2} \alpha_{I}}{\partial x_{j}^{2}}\right) d x_{I}, \quad \forall \alpha=\sum_{|I|=k} \alpha_{I} d x_{I} \in A^{k}(M)
$$

This justifies the name Laplcian for Hodge Laplacian \triangle. Also, notice that \triangle is self-adjoint, i.e.,

$$
(\triangle \alpha, \beta)=(\alpha, \triangle \beta), \quad \forall \alpha, \beta \in A^{k}(M)
$$

2.2. Hodge Theorem: Statement and Some Ideas of Proof. Let M be an oriented, closed manifold. Given a cohomology class $[\alpha] \in H_{d R}^{k}(M, \mathbb{R})$, we wish to find a canonical representative within the class. If we endow M a Riemannian metric g, then we endow $A^{k}(M)$ a pre-Hilbert space structure by the L^{2}-norm (energy) by (2.3). One possibility is to require α to have minimal energy among the cohomology class $[\alpha]$. For any $\beta \in A^{k-1}(M)$ with $d \beta \neq 0$ and $t \in \mathbb{R}$, we find that

$$
\begin{aligned}
& \|\alpha+t d \beta\|^{2}=\|\alpha\|^{2}+2 t(\alpha, d \beta)+t^{2}\|d \beta\|^{2} \\
= & \|d \beta\|^{2}\left(t+(\alpha, d \beta) /\|d \beta\|^{2}\right)^{2}+\|\alpha\|^{2}-|(\alpha, d \beta)|^{2} /\|d \beta\|^{2} \leqslant\|\alpha\|^{2}
\end{aligned}
$$

iff $(\alpha, d \beta)=\left(d^{*} \alpha, \beta\right)=0$ for any $\beta \in A^{k-1}(M)$. Hence, $d^{*} \alpha=0$. On the other hand,

$$
(\Delta \gamma, \gamma)=\left(d d^{*} \gamma, \gamma\right)+\left(d^{*} d \gamma, \gamma\right)=\|d \gamma\|^{2}+\left\|d^{*} \gamma\right\|^{2}, \quad \forall \gamma \in A^{k}(M) .
$$

Based on discussion above, we conclude that $\mathcal{H}^{k}(M)=\operatorname{ker}(d) \cap \operatorname{ker}\left(d^{*}\right)$ and
Proposition 1. Let (M, g) be an oriented, closed Riemannian manifold, $\left[\alpha_{0}\right] \in H_{d R}^{k}(M, \mathbb{R})$ be a cohomology class. Then $\alpha \in\left[\alpha_{0}\right]$ has minimal energy if and only if $\alpha \in \mathcal{H}^{k}(M)$.
Remark 4. Above proposition is the analogous to so called Dirichlet principle for harmonic functions. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded open set. We define Dirichlet energy by

$$
E[f]=\frac{1}{2} \int_{\Omega}|\nabla f|^{2} d x .
$$

The Euler-Lagrange equation for E is exact the usual Laplace equation $\triangle f=0$.

[^2]Thus, the question in consideration becomes whether one can find a harmonic representative among each cohomology class? Hodge theorem asserts that the answer is affirmative:

Theorem 2. Let (M, g) be an oriented, closed Riemannian manifold. For each cohomology class $\left[\alpha_{0}\right] \in$ $H_{d R}^{k}(M, \mathbb{R})$, there exists a unique harmonic representative $\alpha \in \mathcal{H}^{k}(M)$ with $\alpha \in\left[\alpha_{0}\right]$. In other words,

$$
H_{d R}^{k}(M, \mathbb{R}) \cong \mathcal{H}^{k}(M), \quad\left[\alpha_{0}\right] \mapsto \alpha
$$

An important consequence of Theorem 2 is that it gives a quick proof for Poincaré duality.
Corollary 1 (Poincaré Duality). Let M be an oriented compact manifold. The bilinear pairing $A^{k}(M) \times$ $A^{n-k}(M) \rightarrow \mathbb{R}$ give by $(\alpha, \beta) \mapsto \int_{M} \alpha \wedge \beta$ descends to a non-degenerate pairing on de Rham cohmology $H_{d R}^{k}(M, \mathbb{R}) \times H_{d R}^{m-k}(M, \mathbb{R}) \rightarrow \mathbb{R}$.

Proof. By Stokes' theorem, it is clear that the pairing descends to the level of de Rham cohomology. We choose a Riemannian metric g on X and identify $H_{d R}^{k}(M, \mathbb{R}) \cong \mathcal{H}^{k}(M)$ and $H_{d R}^{m-k}(M) \cong$ $\mathcal{H}^{m-k}(M)$ by Theorem 2. Notice that Hodge $*$-operator commutes with \triangle, since $\beta \in A^{m-k}(M)$, ** $\beta=(-1)^{k(m-k)} \beta$ and thus

$$
\begin{aligned}
& \triangle * \beta=(-1)^{m(k-1)+1} d * d * * \beta+(-1)^{k m+1} * d * d * \beta \\
= & (-1)^{m(m-k-1)+1} * d * d * \beta+(-1)^{m(m-k)+1} * * d * d \beta=* \triangle \beta .
\end{aligned}
$$

It follows that $*: \mathcal{H}^{k}(M) \rightarrow \mathcal{H}^{m-k}(M)$ is an isomorphism. Moreover, if $\alpha \in \mathcal{H}^{p}(M)$ and $\alpha \neq 0$, then

$$
\int_{M} \alpha \wedge * \alpha=\|\alpha\|^{2}>0
$$

Thus, the pairing is non-degenerate. induces an isomorphism $*: \mathcal{H}^{k}(M) \xrightarrow{\sim} \mathcal{H}^{m-k}(M)$. Combing with Hodge isomorphism, $*: H_{d R}^{k}(M, \mathbb{R}) \xrightarrow{\sim} H_{d R}^{m-k}(M, \mathbb{R})$.

In fact, Theorem 2 is deduced from the following stronger statement.
Theorem 3 (Hodge Decomposition). Let (M, g) be an oriented, closed Riemannian manifold. We have an orthogonal decomposition with respect to (2.3):

$$
\begin{equation*}
A^{k}(M)=\mathcal{H}^{k}(M) \oplus \triangle\left(A^{k}(M)\right) \tag{2.5}
\end{equation*}
$$

Proof of Theorem 2 Given any closed form $\alpha_{0} \in A^{k}(M)$, we decompose α_{0} uniquely by (2.5):

$$
\alpha_{0}=\alpha+\triangle \beta=\alpha+\left(d d^{*} \beta+d^{*} d \beta\right),
$$

for some $\beta \in A^{k}(M)$. By assumption, $d \alpha_{0}=0=d d^{*} d \beta$ and hence $d^{*} d \beta=0$ since

$$
0=\left(d d^{*} d \beta, d^{*} d \beta\right)=\left\|d^{*} d \beta\right\|^{2}
$$

Therefore, $\alpha_{0}=\alpha+d\left(d^{*} \beta\right)$ and α is the unique harmonic representative within $\left[\alpha_{0}\right]$.
Notice that (2.5) is equivalent to solvability for inhomogeneous equation for Hodge Laplacian.
Theorem 4. Given $\beta \in A^{k}(M), \Delta \alpha=\beta$ is solvable iff $\beta \in \mathcal{H}^{k}(M)^{\perp}$.
One direction is clear. If $\triangle \alpha=\beta$ for some $\alpha \in A^{k}(M)$, then for any $\gamma \in \mathcal{H}^{k}(M)$,

$$
(\beta, \gamma)=(\triangle \alpha, \gamma)=(\alpha, \triangle \gamma)=0 .
$$

The other inclusion requires some (nowadays standard) PDE techniques. Let us sketch the ideas of proof. The first step is some functional analytic formalism. Recall that $A^{k}(M)$ is a pre-Hilbert space with respect to L^{2}-inner product (2.3). Given $\beta \in A^{k}(M)$, if $\triangle \alpha=\beta$ is solvable, then

$$
(\alpha, \Delta \gamma)=(\Delta \alpha, \gamma)=(\beta, \gamma), \quad \forall \gamma \in A^{k}(M),
$$

which is a linear form on $\operatorname{im}(\triangle)$. The essence here is to construct α first in the dual formulation. Given $\beta \in \mathcal{H}^{k}(M)^{\perp}$, we define a linear form ℓ on the subspace $\operatorname{im}(\triangle) \subset A^{k}(M)$ by

$$
\begin{equation*}
\ell(\Delta \gamma):=(\beta, \gamma), \quad \forall \gamma \in A^{k}(M) . \tag{2.6}
\end{equation*}
$$

Notice that this is well-defined since $\beta \in \mathcal{H}^{k}(M)$: if $\gamma^{\prime} \in A^{k}(M)$ with $\triangle \gamma^{\prime}=\triangle \gamma$, then $\gamma^{\prime}-\gamma \in$ $\mathcal{H}^{k}(M)$ and thus $(\beta, \gamma)=\left(\beta, \gamma^{\prime}\right)$. The first difficulty is to prove the following estimate:
Proposition 2 (Closed Range). There exists $C>0$ such that $\|\beta\| \leqslant C\|\Delta \beta\|$ for any $\beta \in \mathcal{H}^{k}(M)^{\perp}$.
With Proposition 2, we prove that ℓ is a bounded linear form on $\operatorname{im}(\triangle)$. Indeed, since $\mathcal{H}^{k}(M)=$ $\operatorname{ker}(\triangle)$ is a closed subspace, we denote $P: A^{k}(M) \rightarrow \mathcal{H}^{k}(M)$ by the projection. We set $\theta:=$ $\gamma-P(\gamma) \in \mathcal{H}^{k}(M)^{\perp}$. Then $\Delta \theta=\Delta \gamma$ and

$$
|\ell(\triangle \gamma)|=|\ell(\triangle \theta)\|=|(\beta, \theta)| \leqslant\| \beta\| \| \theta\|\leqslant C\| \beta\| \| \triangle \theta\|=C\| \beta\| \| \Delta \gamma \| .
$$

Hence, by Hahn-Banach theorem, ℓ can be extended to a bounded linear form ℓ on $A^{k}(M)$ with the same norm. In the terminology of PDE, we call a bounded linear operator ℓ on $A^{k}(M)$ satisfying (2.6) a weak solution of $\triangle \alpha=\beta$. The final analytic input is the following proposition.

Proposition 3 (Elliptic Regularity). For any weak solution ℓ of $\triangle \alpha=\beta$ is actually smooth, i.e., there exists $\alpha \in A^{k}(M)$ such that $\ell(\gamma)=(\alpha, \gamma)$ for any $\gamma \in A^{k}(M)$.

We find $\mathcal{H}^{k}(M)^{\perp}=\operatorname{im}(\triangle)$, assuming Proposition 2 and 3 . We end with a few comments on them.
(1) Proposition 2 is also known as the closed range for if $\left(\beta_{j}\right)_{j=1}^{\infty}$ is a sequence such that $\triangle \beta_{j} \rightarrow \gamma$ in L^{2}-norm, then Proposition 2 implies that

$$
\left\|\beta_{j}-\beta_{k}\right\| \leqslant C\left\|\triangle\left(\beta_{j}-\beta_{k}\right)\right\| \rightarrow 0, \quad j, k \rightarrow \infty
$$

Hence, $\left\{\beta_{j}\right\}_{j=1}^{\infty}$ is a Cauchy sequence in the pre-Hilbert space $A^{k}(M)$. A technical point here is that β_{j} converges a priori to the limit β_{∞} in the completion of $A^{k}(M)$. By Riesz representation theorem, β_{∞} is the weak solution of $\triangle \beta=\gamma$. By Proposition 3, $\beta_{\infty} \in A^{k}(M)$ and hence $\triangle \beta_{\infty}=\gamma$. In other words, $\mathrm{im}(\triangle)$ is closed.
(2) Both Proposition 2 and 3 depend heavily on the differential operator \triangle. The type of operators enjoy these facts are called elliptic operators. A prototype of ellipitc operator is of course the standard Laplacian on Euclidean space. Proposition 3 is the generalization of the classical facts that harmonic functions are actually smooth.
(3) The proof for closed range also shows that $\operatorname{dim}_{\mathbb{R}} \mathcal{H}^{k}(X)<\infty$.
(4) The actual proof of both Propositions requires some knowledge on Sobolev spaces, which generalizes the notion of derivatives to non-differentiable functions. For definitions and related results of Sobolev spaces, and details of actual proof to both Propositions, one can consult Griffths-Harris, Wells, and Warner.

3. Complex Manifolds and Kähler Metrics

3.1. An Interlude on Complex Linear Algebra. We begin with a digression on linear algebra.
(1) Let W be a complex vector space with $\operatorname{dim}_{C} W=n$. We choose a \mathbb{C}-basis $\left\{e_{1}, \ldots, e_{n}\right\}$ so that $W \cong \mathbb{C}^{n}$. Let $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ be the corresponding coordinates. By splitting z_{j} into real and imaginary parts

$$
z_{j}=x_{j}+i y_{j}, \quad 1 \leqslant j \leqslant n,
$$

we see that W has a (non-canonical) real vector space structure $W_{\mathbb{R}}$ of real dimension $2 n$ with \mathbb{R}-basis $\left\{e_{1}, \ldots, e_{n}, i e_{1}, \ldots, i e_{n}\right\}$. Multiplication by imaginary unit $w \mapsto i w$ can be identified as an \mathbb{R}-linear endomorphism $J: W_{\mathbb{R}} \rightarrow W_{\mathbb{R}}$ whose matrix representation with respect to above \mathbb{R}-basis is given by $J=\left(\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right)$ and satisfies $J^{2}=-I d_{W_{\mathbb{R}}}$.
(2) Conversely, given a real vector space V, a linear complex structure $J: V \rightarrow V$ is a \mathbb{R}-linear endomorphism with $J^{2}=-I d_{V}$. We can then endow V a \mathbb{C}-vector space structure by

$$
(a+i b) v:=a+b J v, \quad \forall v \in V, \quad \forall a, b \in V .
$$

Notice that if V admits a linear complex structure, then $\operatorname{dim}_{\mathbb{R}} V$ must be even ${ }^{4}$. Hence, a complex vector space is equivalent to a real vector space with a linear complex structure. Moreover, a \mathbb{R}-linear map $T:(V, J) \rightarrow\left(V^{\prime}, J^{\prime}\right)$ is \mathbb{C}-linear iff $J^{\prime} \circ T=T \circ J$. Hence, the category of \mathbb{C}-vector space is equivalent to the category of \mathbb{R}-vector space equipped with a linear complex structure.
(3) Another way to obtain a complex vector space from a real one is extension by scalar. Let V be a real vector space with $\operatorname{dim}_{\mathbb{R}} V=m$. The complexification of V is defined by $V_{\mathbb{C}}:=V \otimes_{\mathbb{R}} \mathbb{C}$. which is a \mathbb{C}-vector space. If $\left\{e_{1}, \ldots, e_{m}\right\}$ is a \mathbb{R}-basis for V, then $\left\{e_{1} \otimes 1, \ldots, e_{m} \otimes 1\right\}$ is a C -basis for V_{C}. This shows that $\operatorname{dim}_{\mathrm{C}} V_{\mathrm{C}}=m$. On the complexification V_{C} of V, we can define (canonical) complex conjugation, which is an anti \mathbb{C}-linear map given by

$$
\therefore V_{\mathrm{C}} \rightarrow V_{\mathrm{C}}, \quad v \otimes z \mapsto v \otimes \bar{z} .
$$

and extends additiviely. Notice that V embeds into a \mathbb{R}-linear subspace of V_{C} by $v \mapsto v \otimes 1$ which can be characterized as the fixed subspace $\left\{v^{\prime} \in V_{\mathrm{C}}: \overline{v^{\prime}}=v^{\prime}\right\}$.
Remark 5. Let W be a C-vector space. There are two ways to define complex conjugation.
(a) We can define a \mathbb{C}-vector space \bar{W} which is the same underlying abelian group as W and conjugate complex multiplication $z \cdot w:=\bar{z} w$ for $w \in W$ and $z \in \mathbb{C}$. Then $I d_{W}: W \rightarrow \bar{W}$ is an anti C -linear isomorphism.
(b) By choosing a C-basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of W, we identify $W \cong \mathbb{C}^{n}$. However, $\mathbb{C}^{n}=\mathbb{R}^{n} \otimes_{\mathbb{R}} \mathbb{C}=$ $\mathbb{R}^{n} \oplus i \mathbb{R}^{n}$. Hence, we define $\bar{w}=v-i u$ if $w=v+i u$ according to the direct sum decomposition. Notice that this construction depends on the choice of basis and thus is not canonical.
(4) Conversely, given a complex vector space W with $\operatorname{dim}_{C} W=m$ with an anti C-linear involution $c: W \rightarrow W$, i.e., $c^{2}=I d_{W}$, the fixed subspace $V:=W^{c}:=\{w \in W: c(w)=w\}$ is a \mathbb{R}-vector subspace $W_{\mathbb{R}}$, called the real form of W. One can easily show that $W=V \otimes_{\mathbb{R}} \mathbb{C}$. In other words, a complex vector space W is the complexification of some real vector space V iff we endow W an anti C-linear involution $c: W \rightarrow W$.

Remark 6. Notice that the real form of a complex vector space is not unique. For instance, in representation theory, $\mathfrak{s l}(n, \mathbb{C})$ is both the complexification of $\mathfrak{s l}(n, \mathbb{R})$ and $\mathfrak{u}(n)$.
(5) Let (V, J) be a real vector space with linear complex structure of real dimension $2 n$, which is equivalent to a complex vector space of complex dimension n by (2). If we complexify V into V_{C} and extend J to V_{C} by $J(v \otimes z)=J(v) \otimes z$, then we have eigenspace decomposition:

$$
V_{\mathrm{C}}=V^{1,0} \oplus V^{0,1}, \quad V^{1,0}:=\left\{v^{\prime} \in V_{\mathrm{C}}: J v^{\prime}=i v^{\prime}\right\}, \quad V^{0,1}:=\left\{v^{\prime \prime} \in V_{\mathrm{C}}: J v^{\prime \prime}=-i v^{\prime \prime}\right\}
$$

Notice that $V^{1,0}, V^{0,1}$ are C-linear space of (complex) dimension n and complex conjugation induces a \mathbb{R}-linear isomorphism $V^{1,0} \cong V^{0,1}$. Moreover, $(V, J) \cong\left(V^{1,0}, i\right)$ and $(\bar{V}, \bar{J}) \cong$ $\left(V^{0,1}, i\right)$ as \mathbb{C}-vector space. Here, (\bar{V}, \bar{J}) means the conjugate \mathbb{C}-vector spac ${ }^{5}$] of (V, J).
(6) Let (V, J) be a real vector space with linear complex structure. We denote $V^{*}:=\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R})$ be the \mathbb{R}-dual space of V. Then J induces a linear complex structure on V^{*} by

$$
\langle v, J u\rangle:=\langle J v, u\rangle, \quad v \in V, u \in V^{*},
$$

[^3]where $\langle\cdot, \cdot\rangle: V \times V^{*} \rightarrow \mathbb{R}$ is the natural pairing. By functoriality of complexification,
$$
\left(V^{*}\right)_{\mathbb{C}}:=\left(V^{*}\right) \otimes_{\mathbb{R}} \mathbb{C} \cong \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C}) \cong \operatorname{Hom}_{\mathbb{C}}\left(V_{\mathbb{C}}, \mathbb{C}\right)=:\left(V_{\mathbb{C}}\right)^{*},
$$
and the induced eigenspace decomposition on $\left(V^{*}\right)_{\mathrm{C}}$ is given by
\[

$$
\begin{aligned}
& \left(V^{*}\right)^{1,0} \cong\left\{u \in \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C}): J u=i u\right\} \cong\left(V^{1,0}\right)^{*} \\
& \left(V^{*}\right)^{0,1} \cong\left\{u \in \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C}): J u=-i u\right\} \cong\left(V^{0,1}\right)^{*} .
\end{aligned}
$$
\]

Finally, notice that $\left(V^{*}\right)^{1,0} \cong \operatorname{Hom}_{\mathbb{C}}((V, J), \mathbb{C})$.
(7) Again let (V, J) be a complex vector space. The decomposition $V_{\mathrm{C}}=V^{1,0} \oplus V^{0,1}$ induces a decomposition on the exterior algebra (over \mathbb{C}):

$$
\Lambda^{k} V_{\mathrm{C}} \cong \bigoplus_{k=p+q} \Lambda^{p, q} V, \quad \Lambda^{p, q} V:=\Lambda^{p} V^{1,0} \otimes \mathrm{C} \Lambda^{q} V^{0,1}
$$

For each $1 \leqslant p, q \leqslant n=\operatorname{dim}_{\mathbb{C}}(V, J)$, we identify $\Lambda^{p, q} V$ as a subspace of $\Lambda^{k} V_{\mathbb{C}}$ by

$$
v_{I} \otimes u_{K} \mapsto v_{I} \wedge u_{K}
$$

and from $\overline{V^{1,0}}=V^{0,1}$, we see that $\overline{\Lambda^{p, q} V} \cong \Lambda^{q, p} V$.
(8) Let (V, g) be an Euclidean vector space. A linear complex structure J on V is compatible with g with $J \in \mathrm{O}(V, g)$, i.e., $g(v, w)=g(J v, J w)$ for any $v, w \in V$. In this case, we set

$$
\omega(v, w):=g(J v, w), \quad v, w \in V
$$

Notice that $\omega(w, v)=g(J w, v)=g\left(J^{2} w, J v\right)=-g(w, J v)=-\omega(v, w)$. Hence, $\omega \in \Lambda^{2} V$ and

$$
\omega(J v, J w)=g\left(J^{2} v, J w\right)=-g(v, J w)=-\omega(w, v)=\omega(v, w), \quad \forall v, w \in V
$$

If we extend $\omega \mathrm{C}$-linear to $\bigwedge^{2} V_{\mathrm{C}}$, then for $v, w \in V^{1,0}$ or $V^{0,1}$,

$$
\omega(v, w)=\omega(J v, J w)=\omega(\pm i v, \pm i w)=-\omega(v, w) \Longrightarrow \omega(v, w)=0 .
$$

As a result, $\omega \in \Lambda^{1,1} V^{*} \cap \Lambda^{2} V$, called the hermitian form of (V, g, J).
(9) Let (V, g, J) be an Euclidean space with compatible linear complex structure. We set

$$
h(v, w):=g(v, w)-i \omega(v, w), \quad v, w \in V .
$$

Then h is clearly \mathbb{R}-bilinear and $h(v, v)=g(v, v)>0$ for $v \in V \backslash\{0\}$. Moreover,

$$
h(w, v)=g(v, w)+i \omega(v, w)=\overline{g(v, w)-i \omega(v, w)}=\overline{h(v, w)}
$$

and $h(J v, w)=g(J v, w)-i \omega(J v, w)=\omega(v, w)+i g(v, w)=i h(v, w)$. Thus, h is a positive definite hermitian product on (V, J).
(10) Alternatively, one can extend g into a hermitian metric on V_{C} by

$$
g_{\mathbb{C}}(v \otimes \mu, w \otimes \lambda)=\mu \bar{\lambda} g(v, w), \quad v, w \in V, \quad \mu, \lambda \in \mathbb{C} .
$$

One can easily see that $g_{C}\left(V^{1,0}, V^{0,1}\right)=0$ and thus $V=V^{1,0} \oplus V^{0,1}$ is an orthogonal decomposition. However, under the isomorphism $(V, J) \cong\left(V^{1,0}, i\right), h=\left.2 g_{C}\right|_{V^{1,0}}$.
(11) We now summarize above discussion in coordinates. Let $\left(x_{1}, \ldots, x_{n}\right)$ be a C-basis for (V, J). Then $\left(x_{1}, y_{1}:=J x_{1}, \ldots, x_{n}, y_{n}=J x_{n}\right)$ is a \mathbb{R}-basis for V. Then

$$
z_{j}:=\frac{1}{2}\left(x_{j}-i y_{j}\right), \quad \bar{z}_{j}:=\frac{1}{2}\left(x_{j}+i y_{j}\right), \quad 1 \leqslant j \leqslant n
$$

form bases for $V^{1,0}$ and $V^{0,1}$ respectively. Dually, if $\left(x^{1}, \ldots, x^{n}\right)$ is a C-basis for $\left(V^{*}, J\right)$, then $y^{j}=J x^{j}$ is dual basis for y_{j} and

$$
z^{j}:=x^{j}+i y^{j}, \quad z^{j}:=x^{j}-i y^{j}, \quad 1 \leqslant j \leqslant n,
$$

are dual bases for z_{j} and \bar{z}_{j} respectively. Suppose that $h\left(x_{i}, x_{j}\right)=h_{i j}$. Then $g_{\mathrm{C}}\left(z_{j}, z_{k}\right)=\frac{1}{2} h_{j k}$ and

$$
h\left(x_{j}, y_{k}\right)=h\left(x_{j}, J x_{k}\right)=-i h_{j k}, \quad h\left(y_{j}, y_{k}\right)=h\left(J x_{j}, J x_{k}\right)=h\left(x_{j}, x_{k}\right)=h_{j k}
$$

Since $g=\operatorname{Re} h$ and $\omega=-\operatorname{Im} h$, we see that

$$
\begin{aligned}
& \omega\left(x_{j}, x_{k}\right)=\omega\left(y_{j}, y_{k}\right)=-\operatorname{Im} h_{j k}, \quad \omega\left(x_{j}, y_{k}\right)=\operatorname{Re} h_{j k} \\
& g\left(x_{j}, x_{k}\right)=g\left(y_{j}, y_{k}\right)=\operatorname{Re}\left(h_{j k}\right), \quad g\left(x_{j}, x_{k}\right)=\operatorname{Im}\left(h_{j k}\right)
\end{aligned}
$$

Hence, we write

$$
\omega=-\sum_{j<k} \operatorname{Im}\left(h_{j k}\right)\left(x^{j} \wedge x^{k}+y^{j} \wedge y^{k}\right)+\sum_{j, k=1}^{n} \operatorname{Re}\left(h_{j k}\right) x^{j} \wedge y^{k}
$$

From $z^{j} \wedge \bar{z}^{k}=x^{j} \wedge x^{k}-i\left(x^{j} \wedge y^{k}+x^{k} \wedge y^{j}\right)+y^{j} \wedge y^{k}$, we see that

$$
\begin{equation*}
\omega=\frac{i}{2} \sum_{j, k=1}^{n} h_{j k} z^{j} \wedge \bar{z}^{k} \in \Lambda^{1,1} V^{*} \cap \Lambda^{2} V \tag{3.1}
\end{equation*}
$$

If we choose an $\operatorname{ONB}\left(x_{1}, y_{1} \ldots, x_{n}, y_{n}\right)$ for g, then $\omega=\frac{i}{2} \sum_{j=1}^{n} z^{j} \wedge \bar{z}^{j}=\sum_{j=1}^{n} x^{j} \wedge y^{j}$. We find that hermitian form determines the Riemannian volume form on (V, g, J) :

$$
\begin{aligned}
& \frac{\omega^{n}}{n!}=\left(\frac{i}{2}\right)^{n}\left(z^{1} \wedge \bar{z}^{1}\right) \wedge \cdots \wedge\left(z^{n} \wedge \bar{z}^{n}\right) \\
= & x^{1} \wedge y^{1} \wedge x^{2} \wedge y^{2} \wedge \cdots x^{n} \wedge y^{n}=: d V_{g} \in \Lambda^{n, n} V^{*} \cap \Lambda^{2 n} V^{*}
\end{aligned}
$$

(12) As in the real case discussed in section 2, a hermitian product $g_{\mathbb{C}}$ on $V_{\mathbb{C}}$ induces hermitian products $\langle\cdot, \cdot\rangle_{\mathbb{C}}$ on $\Lambda^{k} V_{\mathbb{C}}^{*}$ for all $0 \leqslant k \leqslant 2 n$. We can then extend Hodge $*$-operator on (V, g) \mathbb{C}-linearly to $*: \bigwedge^{k} V_{\mathbb{C}} \rightarrow \bigwedge^{2 n-k} V_{\mathbb{C}}$ which is characterized by

$$
\alpha \wedge * \bar{\beta}=\langle\alpha, \beta\rangle_{\mathbb{C}} d V_{g}, \quad \forall \alpha, \beta \in \Lambda^{k} V_{\mathbb{C}}
$$

Since $V_{\mathrm{C}}=V^{1,0} \oplus V^{0,1}$ is orthogonal with respect to $g_{\mathrm{C}}, \Lambda^{k} V_{\mathrm{C}}^{*}=\oplus_{p+q=k} \Lambda^{p, q} V^{*}$ is also an orthogonal decomposition. Moreover, notice that if $\gamma_{j} \in \Lambda^{p_{j}, q_{j}} V^{*}$ for $j=1,2$ with $p_{1}+p_{2}+q_{1}+q_{2}=2 n$ but $\left(p_{1}+p_{2}, q_{1}+q_{2}\right) \neq(n, n)$, then $\gamma_{1} \wedge \gamma_{2}=0$. Hence, by (3.2),

$$
: \Lambda^{p, q} V^{} \rightarrow \Lambda^{n-q, n-p} V^{*}
$$

3.2. Complex Manifold and Kähler Metrics. First, we recall the definition of holomorphic functions in several variables. Let $\Omega \subset \mathbb{C}^{n}$ be an open set, $\left(z_{1}, \ldots, z_{n}\right)$ be standard complex coordinates on \mathbb{C}^{n}. We identify $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ via $z_{j}=x_{j}+i y_{j}$. Hence, $T_{p} \Omega$ has \mathbb{R}-basis $\left\{\partial / \partial x_{1}, \partial / \partial y_{1}, \ldots, \partial / \partial x_{n}, \partial / \partial y_{n}\right\}$ with linear complex structure $J: T_{p} \Omega \rightarrow T_{\partial} \Omega$ given by

$$
J\left(\partial / \partial x_{j}\right)=\partial / \partial y_{j}, \quad J\left(\partial / \partial y_{j}\right)=-\partial / \partial x_{j}, \quad j=1, \ldots n
$$

Applying the discussion in previous section, if we consider the complexification $\left(T_{p} \Omega\right)_{\mathbb{C}}$, then $\left(T_{p} \Omega\right)_{C}=T_{p}^{1,0} \Omega \oplus T_{p}^{0,1} \Omega$ and

$$
\partial / \partial z_{j}=\frac{1}{2}\left(\partial / \partial x_{j}-i \partial / \partial y_{j}\right), \quad \partial / \partial \bar{z}_{j}:=\frac{1}{2}\left(\partial / \partial x_{j}+i \partial / \partial y_{j}\right): j=1, \ldots, n
$$

are \mathbb{C}-basis for $T_{p}^{1,0} \Omega$ and $T_{p}^{0,1} \Omega$ respectively. Similarly, on contangent space $T_{p}^{*} \Omega$ has \mathbb{R}-basis $\left\{d x_{1}, d y_{1}, \ldots, d x_{n}, d y_{n}\right\}$ with linear complex structure

$$
J\left(d x_{j}\right)=d y_{j}, \quad J\left(d y_{j}\right)=-d x_{j}, \quad j=1, \ldots, n
$$

and the complexification $\left(T_{p}^{*} \Omega\right)_{\mathrm{C}}=T_{p}^{* 1,0} \Omega \oplus T_{p}^{* 0,1} \Omega$ with dual basis $\left\{d z_{j}:=d x_{j}+i d y_{j}\right\}_{j=1}^{n}$ and $\left\{d \bar{z}_{j}:=d x_{j}-i d y_{j}\right\}_{j=1}^{n}$, respectively.

For $f \in C^{1}(\Omega, \mathbb{C})$, we can write the differential $d f_{p} \in \operatorname{Hom}_{\mathbb{R}}\left(T_{p} \Omega, \mathbb{C}\right) \cong\left(T_{p}^{*} \Omega\right)_{\mathbb{C}}$ as

$$
d f_{p}=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(p) d x_{j}+\sum_{j=1}^{n} \frac{\partial f}{\partial y_{j}}(p) d y_{j}=\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}}(p) d z_{j}+\frac{\partial f}{\partial \bar{z}_{j}}(p) d \bar{z}_{j} .
$$

Definition 2. We say f is holomorphic if $d f_{p} \in \Lambda^{1,0} T_{p}^{*} \Omega$ for any $p \in \Omega$. Equivalently,
(a) $d f_{p} \in \operatorname{Hom}_{\mathbb{C}}\left(T_{p} \Omega, \mathbb{C}\right)$, i.e., $d f_{p}$ is \mathbb{C}-linear.
(b) f satisfies Cauchy-RIemann equation $\partial f / \partial \bar{z}_{j}=0$ on Ω for $j=1, \ldots, n$.

We denote $\mathcal{O}(\Omega)$ by the set of holomorphic functions on Ω.
A C^{1}-map $F=\left(F_{1}, \ldots, F_{m}\right): \Omega \rightarrow \mathbb{C}^{m}$ is called holomorphic if each $F_{j} \in \mathcal{O}(\Omega)$. Hence, $d F_{p}\left(T_{p}^{1,0} \Omega\right) \subset T_{F(p)}^{1,0} \mathbb{C}^{m}$ and $d F_{p}\left(T_{p}^{0,1} \Omega\right) \subset T_{F(p)}^{0,1} \mathbb{C}^{m}$. Now, we recall

Definition 3. A complex manifold X of (complex) dimesnon n is a smooth manifold of (real) dimension $2 n$ with a holomorphic atlas , i.e., there exists an open covering $\left\{U_{\alpha}\right\}_{\alpha \in I}$ and homeomorphism $\sigma_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}^{n}$ onto some open set V_{α} such that the transition maps

$$
\sigma_{\alpha \beta}:=\sigma_{\alpha} \circ \sigma_{\beta}^{-1}: \sigma_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \sigma_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)
$$

are holomorphic, $\forall \alpha, \beta \in I$. We write $\sigma_{\alpha}=\left(z_{1}, \ldots, z_{n}\right)$, called local complex coordinates on U_{α}.
For $x \in X$, say $x \in U_{\alpha}$ for some $\alpha \in I$, we define holomorphic tangent space $T_{x} X$ to be $T_{\left.\sigma_{\alpha}(x)\right)} V_{\alpha}$ with linear complex structure defined as above. Since transition maps are holomorphic, $d\left(\sigma_{\alpha \beta}\right)_{\sigma_{\beta}(x)}$ is a C-linear isomorphism and thus is independent of the choice of σ_{α}.

On the other hand, X has a underlying smooth manifold structure and thus $T_{x} X$ has a underlying real vector space structure, denoted by $T_{x, \mathbb{R}} X$. The discussion above on open sets in \mathbb{C}^{n} can be applied to X in a direct manner and generalize to bundle level:

$$
\begin{aligned}
& \mathbb{C} T_{\mathbb{R}} X:=T_{\mathbb{R}} X \otimes_{\mathbb{R}} \mathbb{C}=T^{1,0} X \oplus T^{0,1} X, \quad T X \cong T^{1,0} X, \quad \overline{T X} \cong T^{0,1} X ; \\
& \mathbb{C} T_{\mathbb{R}}^{*} X=T^{* 1,0} X \oplus T^{* 0,1} X, \quad \Lambda^{k}(\mathbb{C} T X)=\bigoplus_{p+q=k} \Lambda^{p, q} T^{*} X .
\end{aligned}
$$

When X is a complex manifold, we always denote $A^{k}(X)$ by the smooth sections of $\Lambda^{k}(\mathbb{C} T X)$, i.e., the complex-valued differential forms, and $A^{k}(X, \mathbb{R})$ by the real ones. A smooth section of $\Lambda^{p, q} T^{*} X$ is called a (p, q)-form. We denote $A^{p, q}(X)$ by the space of (p, q)-forms. We also have

$$
A^{k}(X)=\bigoplus_{p+q=k} A^{p, q}(X)
$$

For $\alpha \in A^{p, q}(X)$, we can locally write α with respect to a local complex coordinates

$$
\alpha=\sum_{|I|=p,|J|=q} \alpha_{I J} d z_{I} \wedge d \bar{z}_{J} .
$$

If we extend exterior derivative to complex-valued form $d: A^{k}(X) \rightarrow A^{k+1}(X)$ and restrict to $A^{p, q}$, then we can decompose $d=\partial+\bar{\partial}$, where

$$
\begin{aligned}
& \partial: A^{p, q}(X) \rightarrow A^{p+1, q}(X), \quad \partial \alpha=\sum_{|I|=p,|J|=q} \sum_{j=1}^{n} \frac{\alpha_{I J}}{\partial z_{j}} d z_{j} \wedge d z_{I} \wedge d \bar{z}_{J} \\
& \bar{\partial}: A^{p, q}(X) \rightarrow A^{p, q+1}(X), \quad \bar{\partial} \alpha=\sum_{|I|=p,|J|=q} \sum_{j=1}^{n} \frac{\partial \alpha_{I J}}{\partial \bar{z}_{j}} d \bar{z}_{j} \wedge d z_{I} \wedge d \bar{z}_{J} .
\end{aligned}
$$

Since $d^{2}=0$ and $d^{2}=\partial^{2}+\bar{\partial} \partial+\partial \bar{\partial}+\bar{\partial}^{2}$ are in types $(p+2,0),(p+1, q+1)$, and $(p, q+2)$, we have

$$
\partial^{2}=\bar{\partial}^{2}=\bar{\partial} \partial+\partial \bar{\partial}=0 .
$$

Notice that for $p=0, \operatorname{ker}(\bar{\partial})=\mathcal{O}(X)$, the space of holomorphic functions on X. For $p>0$, $\operatorname{ker}(\bar{\partial})=\Omega^{p}(X)$, the space of holomorphic p-forms on X, the holomorphic section of $\Lambda^{p, 0} T^{*} X$. Clearly, on a coordinate open set $U, \alpha \in \Omega^{p}(X)$ can be locally written as

$$
\left.\alpha\right|_{U}=\sum_{|I|=p} \alpha_{I} d z_{I}, \quad \alpha_{I} \in \mathcal{O}(U)
$$

Hence, for each $0 \leqslant p \leqslant n$, we obtain a complex

$$
\left(A^{p, \bullet}(X), \bar{\partial}\right): 0 \rightarrow \Omega^{p}(X) \rightarrow A^{p, 0}(X) \xrightarrow{\bar{\partial}} A^{p, 1}(X) \xrightarrow{\partial} \cdots \rightarrow A^{p, n}(X) \rightarrow 0 .
$$

The q-th cohomology of the complex is called the q-th Dolbeault cohomology of X :

$$
\begin{equation*}
H^{p, q}(X)=\operatorname{ker}\left(\bar{\partial}: A^{p, q}(X) \rightarrow A^{p, q+1}(X)\right) / \operatorname{im}\left(\bar{\partial}: A^{p, q-1}(X) \rightarrow A^{p, q}(X)\right) . \tag{3.3}
\end{equation*}
$$

As in the case of de Rham case, we call $\alpha \in A^{p, q}(X)$ is $\bar{\partial}$-closed if $\bar{\partial} \alpha=0$ and $\bar{\partial}$-exact if $\alpha=\bar{\partial} \beta$ for some $\beta \in A^{p, q-1}(X)$.
Remark 7. An important fact is that we also have $\bar{\partial}$-Poincaré Lemma, also known as DolbeaultGrothendieck Lemma, which says that on any open set $U \subset \mathbb{C}^{n}$ and $\alpha \in A^{p, q}(U)$ with $\bar{\partial} \alpha=0$, then there exists a "suitable" open set $V \subset \mathbb{C}^{n} \beta \in A^{p, q-1}(U)$ so that $\bar{\partial} \beta=\alpha$ on V. Hence, the corresponding complex on the sheaf level is exact.

$$
0 \rightarrow \Omega_{X}^{p} \rightarrow \mathcal{A}_{X}^{p, 0} \rightarrow \mathcal{A}_{X}^{p, 1} \cdots \text { to } \mathcal{A}_{X}^{p, q} \rightarrow 0
$$

Moreover, $\mathcal{A}_{X}^{p, q}$ is acyclic since we can multiply a (p, q)-forms by partition of unity. Hence, we obtain Dolbeault theorem which is complex analogue of de Rham theorem:

$$
H^{q}\left(X, \Omega_{X}^{p}\right) \cong H^{p, q}(X)
$$

Now, we discuss the metric structure on a complex manifold. A hermitian metric h on a complex manifold X is a smooth positive definite hermitian bundle metric on holomorphic tangent bundle TX. That is, in terms of local coordinates $\left(z_{1}, \ldots, z_{n}\right)$ on a coordinate open set U, we can write

$$
h=\sum_{j, k=1}^{n} h_{j k}(z) d z_{j} \otimes d \bar{z}_{k}, \quad h_{j k} \in C^{\infty}(U),
$$

and $\left(h_{j k}(z)\right)$ is a positive-definite hermitian matrix for each $x \in U$. Following the discussion as in previous section, h is equivalent to a Riemannian metric $g=\operatorname{Re} h$ on TX or $\omega=-\operatorname{Im} h \in$ $A^{1,1}(X) \cap A^{2}(X, \mathbb{R})$ locally given by

$$
\omega=\frac{i}{2} \sum_{j<k} h_{j k} d z_{j} \wedge d \bar{z}_{k} .
$$

Definition 4. Let X be a complex manifold.
(i) A hermitian manifold is a pair (X, ω), where ω is a smooth, positive-definite real (1,1)-form, called a hermitian metric, hermitian form, or fundamental (1,1)-form associated to h.
(ii) A hermitian metric is called Kähler if $d \omega=0$.
(iii) X is called a Kähler manifold if X admits a Kähler metric.

We know that if ω is a hermitian metric, then one can express Riemannian volume form by

$$
d V_{\omega}=\frac{\omega^{n}}{n!}
$$

Since ω is real, $d \omega=0, \partial \omega=0$, and $\bar{\partial} \omega=0$ are equivalent. In local coordinates, $\partial \omega=0$ means

$$
\frac{\partial h_{j k}}{\partial z_{l}}=\frac{\partial h_{l k}}{\partial z_{j}}, \quad 1 \leqslant j, k, l \leqslant n .
$$

Using this, one can show existence of holomorphic normal coordinates for Kähler metric.

Theorem 5. Let (X, ω) be a hermitian manifold. Then ω is Kähler iff for any $x \in X$, there exists local holomorphic coordinates $\left(z_{1}, \ldots, z_{n}\right)$ centered at x so that $h_{j k}=\delta_{j k}+O\left(|z|^{2}\right)$.

The proof is quite standard so we omit (see Wells or Griffths-Harris, or many other textbooks). We end this section by discussing some examples and non-examples for Kähler manifolds.

Example 1. The most important example for us is complex projective space $\mathbb{C P}^{n}$. We have a natural Kähler metric given by Fubini-Study metric:

$$
p^{*} \omega_{F S}=\frac{i}{2 \pi} \partial \bar{\partial} \log \left(\left|\xi_{0}\right|^{2}+\cdots+\left|\xi_{n}\right|^{2}\right)
$$

where $\left(\xi_{0}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n+1}$ and $p: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C P}^{n}$ is the projection. Let $z=\left(\xi_{1} / \xi_{0}, \ldots, \xi_{n} / \xi_{0}\right)$ be the local coordinates on $U_{0}=\left\{\left[\xi_{0}: \cdots: \xi_{n}\right] \in \mathbb{C P}^{n}: \xi_{0} \neq 0\right\} \cong \mathbb{C}^{n}$. Then $\omega_{F S}$ satisfies

$$
\omega_{F S}=\frac{i}{2 \pi} \partial \bar{\partial} \log \left(1+|z|^{2}\right), \quad \int_{\mathbb{C P}^{n}} \omega_{F S}^{n}=1 .
$$

Example 2. Let (X, ω) be a Kähler manifold. If $\iota: Y \hookrightarrow X$ is a complex submanifold, then $\omega_{Y}:=\iota^{*} \omega$ is still a positive definite real (1,1)-form on Y. Moreover, since $d \iota^{*} \omega=\iota^{*} d \omega=0, \omega_{Y}$ defines a Kähler metric on Y. Particularly, any non-singular smooth projective variety is Kähler.
Example 3. A complex torus is a quotient $X:=\mathbb{C}^{n} / \Lambda$, where Λ is a lattice of rank $2 n$. Then X is a compact complex manifold. Moreover, any positive hermitian form $\omega=i \sum_{1 \leqslant j<k \leqslant n} h_{j k} d z_{j} \wedge d \bar{z}_{k}$ with constant coefficients defines a Kähler metric on X.

Notice that $d \omega=0$ imposes topological constraints on compact Kähler manifolds. Indeed, since $\operatorname{vol}_{g}(X)=\int_{X} \omega^{n} / n!>0$, for $1 \leqslant k \leqslant n, \omega^{k}$ cannot be exact for $\int_{X} \omega^{n} / n!=0$ by Stokes' formula. Hence, $\left[\omega^{k}\right] \neq 0$ in $H_{d R}^{2 k}(X, \mathbb{R})$.
Example 4. Let $X=\left(\mathbb{C}^{2} \backslash\{0\}\right) / \Gamma$, where $\Gamma:=\left\{\lambda^{n}: n \in \mathbb{Z}\right\}$ acts on \mathbb{C}^{2} by $\left(z_{1}, z_{2}\right) \mapsto\left(\lambda^{n} z_{1}, \lambda^{n} z_{2}\right)$. One can show that X is a compact complex manifold and X is diffeomorphic to $S^{1} \times S^{3}$. Thus, $H^{2}(X, \mathbb{R})=0$ and hence, X cannot be Kähler.

4. Kähler Identities and Hodge Decomposition on Compact Kähler Manifolds

4.1. Operators on Kähler Manifolds and their Commutation Relations. Let (X, ω) be a hermitian manifold. As mentioned before, $g_{\mathbb{C}}$ induces a hermitian inner product $\langle\cdot, \cdot\rangle_{\mathbb{C}}$ on $\Lambda^{k}\left(\mathbb{C} T_{x}^{*} X\right)$ and we can define Hodge $*$-operator with respect to ω by

$$
*: A^{p, q}(X) \rightarrow A^{n-q, n-p}(X)
$$

which is a C-linear isometry and satisfies $\alpha \wedge * \bar{\beta}=\langle\alpha, \beta\rangle_{C} d V_{\omega}$. If X is compact, then we can endow a L^{2}-inner product on $A^{p, q}(X)$ by

$$
(\alpha, \beta):=\int_{X}\langle\alpha, \beta\rangle_{C} d V_{\omega}, \quad \forall \alpha, \beta \in A^{p, q}(X) .
$$

Thus, we can define adjoint $d^{*}=-* d *: A^{k+1}(X) \rightarrow A^{k}(X)$ as before as well as

$$
\partial^{*}=-* \bar{\partial} *: A^{p+1, q}(X) \rightarrow A^{p, q}(X), \quad \bar{\partial}^{*}=-* \partial *: A^{p, q+1}(X) \rightarrow A^{p, q}(X) .
$$

From $d=\partial+\bar{\partial}$, we also have $d^{*}=\partial^{*}+\bar{\partial}^{*}$. Hence, we can define Hodge Laplacian $\triangle=d d^{*}+d^{*} d$ as well as ∂-Laplacian and $\bar{\partial}$-Laplacian:

$$
\triangle_{\partial}:=\partial^{*} \partial+\partial \partial^{*}, \quad \triangle_{\bar{\partial}}:=\bar{\partial}^{*} \bar{\partial}+\bar{\partial}_{\bar{\partial}} \bar{\partial}^{*} .
$$

Now, we define the spaces of harmonic (p, q)-forms for Hodge Laplacians $\mathcal{H}^{p, q}(X):=\mathcal{H}^{k}(X) \cap$ $A^{p, q}(X)$ and for $\partial, \bar{\partial}$-Laplcian:

$$
\mathcal{H}_{\partial}^{p, q}(X)=\left\{\alpha \in A^{p, q}(X): \triangle_{\partial} \alpha=0\right\}, \quad \mathcal{H}_{\bar{\partial}}^{p, q}(X):=\left\{\alpha \in A^{p, q}(X): \triangle_{\bar{\partial}} \alpha=0\right\}
$$

By definition, $\overline{\triangle_{\bar{\jmath}}}=\Delta_{\partial}$ and thus $\overline{\mathcal{H}_{\bar{\partial}}^{p, q}(X)}=\mathcal{H}_{\partial}^{q, p}(X)$. Granting the fact that $\triangle, \triangle_{\partial}$, and $\triangle_{\bar{\partial}}$ are elliptic operators, we can proceed exactly same as Hodge theorem for compact Riemannian manifolds to show the following Hodge decompostion for for a compact hermitian manifolds.
$A^{k}(X)=\mathcal{H}^{k}(X) \oplus \triangle\left(A^{k}(X)\right), \quad A^{p, q}(X)=\mathcal{H}_{\bar{\partial}}^{p, q}(X) \oplus \triangle_{\bar{\partial}}\left(A^{p, q}(X)\right), \quad A^{p, q}(X)=\mathcal{H}_{\partial}^{p, q}(X) \oplus \triangle_{\partial}\left(A^{p, q}(X)\right)$, which is orthogonal with respect to L^{2}-norm on $A^{k}(X)$ and $A^{p, q}(X)$. Thus, we have $H^{k}(X, \mathbb{C}) \cong$ $\mathcal{H}^{k}(X)$ and $H_{\bar{\partial}}^{p, q}(X) \cong \mathcal{H}_{\bar{\partial}}^{p, q}(X)$. Also, we have $\operatorname{dim}_{\mathbb{C}} \mathcal{H}^{k}(X), \operatorname{dim}_{\mathbb{C}} \mathcal{H}_{\bar{\partial}}^{p, q}(X), \operatorname{dim}_{\mathbb{C}} \mathcal{H}_{\partial}^{p, q}(X)<$ infty.
Proposition 4 (Kodaira-Serre Duality). Let (X, ω) be a compact hermitian manifold. The bilinear pairing

$$
A^{p, q}(X) \times A^{n-p, n-q}(X) \rightarrow \mathbb{C}, \quad(\alpha, \beta) \mapsto \int_{X} \alpha \wedge \beta
$$

descends to a non-degenerate paring on $H_{\bar{\partial}}^{p, q}(X) \times H_{\bar{\partial}}^{n-p, n-q}(X) \rightarrow \mathbb{C}$. Particularly, $H_{\bar{\partial}}^{p, q}(X) \cong\left(H_{\bar{\partial}}^{n-p, n-q}(X)\right)^{*}$.
Proof. For $\alpha \in A^{p, q}(X), \gamma \in A^{n-p, n-q-1}(X)$, since $\alpha \wedge \gamma \in A^{n, n-1}(X)$, we have

$$
d(\alpha \wedge \gamma)=\bar{\partial}(\alpha \wedge \gamma)=\bar{\partial} \alpha \wedge \gamma+(-1)^{p+q} \alpha \wedge \bar{\partial} \gamma
$$

Hence, if β, β^{\prime} are $\bar{\partial}$-closed and $\beta^{\prime}=\beta+\bar{\partial} \gamma$, then by Stokes' theorem,

$$
\int_{X} \alpha \wedge \beta^{\prime}=\int_{X} \alpha \wedge \beta+\int_{X} \alpha \wedge \bar{\partial} \gamma=\int_{X} \alpha \wedge \beta+(-1)^{p+q} \int_{X} d(\alpha \wedge \gamma)=\int_{X} \alpha \wedge \beta
$$

Similarly, the pairing is independent of representative of the Dolbeault cohomology class $[\alpha] \in$ $H_{\bar{\partial}}^{p, q}(X)$. Therefore, the pairing descends to the Dolbeault cohomology level. Similar to the proof of Poincaré duality, one notice that $* \triangle_{\bar{g}}=\triangle_{\partial} *$ and thus

$$
*: \mathcal{H}_{\partial}^{p, q}(X) \rightarrow \mathcal{H}_{\partial}^{n-q, n-p}(X)
$$

Since $\overline{\mathcal{H}_{\partial}^{n-q, n-p}(X)}=\mathcal{H}_{\bar{\partial}}^{n-p, n-q}(X), \alpha \mapsto * \bar{\alpha}$ maps $\mathcal{H}_{\bar{\partial}}^{p, q}(X) \rightarrow \mathcal{H}_{\bar{\partial}}^{n-p, n-q}(X)$. Finally, notice that $\mathcal{H}_{\bar{\partial}}^{p, q}(X) \rightarrow \mathcal{H}_{\bar{\partial}}^{p, q}(X) \rightarrow \mathbb{C}$ is non-degenerate since $\int_{X} \alpha \wedge * \alpha=\|\alpha\|^{2}>0$ if $\alpha \neq 0$. Therefore, the result follows from $\mathcal{H}_{\bar{\partial}}^{p, q}(X) \cong H_{z}^{p, q}(X)$.

However, for compact hermitian manifolds (X, ω),
(a) $\mathcal{H}^{k}(X)$ may not respect the bidgree decomposition.
(b) $\mathcal{H}_{\bar{\partial}}^{p, q}(X), \mathcal{H}_{\partial}^{p, q}(X)$, and $\mathcal{H}^{p, q}(X)$ might be different.

Both issues will be resolved when ω is a Kähler. The key is the Kähler identities we now discuss.
Now, we assume that (X, ω) is a Kähler manifold. We define Lefschetz operator

$$
\begin{equation*}
L: A^{p, q}(X) \rightarrow A^{p+1, q+1}(X), \quad \alpha \mapsto \omega \wedge \alpha \tag{4.1}
\end{equation*}
$$

and its adjoint $\Lambda:=-* L *: A^{p+1, q+1}(X) \rightarrow A^{p, q}(X)$ satisfying

$$
\begin{equation*}
\langle L \alpha, \beta\rangle_{\mathrm{C}}=\langle\alpha, \Lambda \beta\rangle, \quad \forall \alpha \in A^{p, q}(X), \beta \in A^{p+1, q+1}(X) . \tag{4.2}
\end{equation*}
$$

Theorem 6 (Kähler Identities). Let (X, ω) be a Kähler manifold. Then

$$
\begin{align*}
& {\left[\bar{\partial}^{*}, L\right]=i \partial, \quad[\Lambda, \bar{\partial}]=-i \partial^{*}} \tag{4.3}\\
& {\left[\partial^{*}, L\right]=-i \bar{\partial}, \quad[\Lambda, \partial]=i \bar{\partial}^{*}} \tag{4.4}
\end{align*}
$$

Proof. Notice that (4.4) follows from (4.3) by taking complex conjugation and $[\Lambda, \bar{\partial}]=-i \partial^{*}$ follows from $\left[\bar{\partial}^{*}, L\right]=i \partial$ by taking adjoint.

Now, we sketch the proof $\left[\bar{\partial}^{*}, L\right]=i \partial$ for the case wheb $X \subset \mathbb{C}^{n}$ is a bounded open set with standard Kähler metric $\omega=i \sum_{j=1}^{n} d z_{j} \wedge d \bar{z}_{j}$. For $\alpha=\sum_{|I|=p,|J|=q} \alpha_{I J} d z_{I} \wedge d \bar{z}_{J} \in A^{p, q}\left(\mathbb{C}^{n}\right)$,

$$
\partial \alpha=\sum_{|I|=p,|| |=q} \sum_{k=1}^{n} \frac{\partial \alpha_{I J}}{\partial z_{k}} d z_{k} \wedge d z_{I} \wedge d \bar{z}_{J}, \quad \bar{\partial} \alpha=\sum_{|I|=p,|J|=q} \sum_{k=1}^{n} \frac{\partial \alpha_{I J}}{\partial \bar{z}_{k}} d \bar{z}_{k} \wedge d z_{I} \wedge d \bar{z}_{J}
$$

Notice that for $v=\sum_{|K|=p,|L|=q} v_{K L} d z_{K} \wedge d \bar{z}_{L},\langle u, v\rangle_{\mathrm{C}}=\sum_{|I|=p,|J|=q} u_{I J} \overline{v_{I J}}$ and thus

$$
(u, v)=\int_{\mathrm{X}} \sum_{|I|=p,|J|=q} u_{I J} \overline{v_{I J}} d V
$$

where $d V=\omega^{n} / n!=2^{n}\left(d x_{1} \wedge d y_{1} \wedge \cdots d x_{n} \wedge d y_{n}\right)$. Then one can directly compute that

$$
\bar{\partial}^{*} \alpha=-\sum_{|I|=p,|J|=q} \sum_{k=1}^{n} \frac{\partial \alpha_{I J}}{\partial z_{k}} \iota_{\partial / \partial \bar{z}_{k}} d z_{I} \wedge d \bar{z}_{J}=:-\sum_{k=1}^{n} \iota_{\partial / \partial \bar{z}_{k}} \frac{\partial \alpha}{\partial z_{k}} .
$$

Here, $\iota_{\partial / \partial \bar{z}_{k}} \alpha$ is the interior multiplication of $\partial / \partial \bar{z}_{k}$ into α. Then we get

$$
[\bar{\partial}, L] \alpha=-\sum_{k=1}^{n} \iota_{\partial / \partial \bar{z}_{k}}\left(\frac{\partial}{\partial z_{k}}(\omega \wedge \alpha)\right)+\omega \wedge \sum_{k=1}^{n} \iota_{\partial / \partial \bar{z}_{k}} \frac{\partial \alpha}{\partial z_{k}} .
$$

Since ω has constant coefficients, $\frac{\partial}{\partial z_{k}}(\omega \wedge \alpha)=\omega \wedge \frac{\partial \alpha}{\partial z_{k}}$ and therefore

$$
\left[\bar{\partial}^{*}, L\right] \alpha=-\sum_{k=1}^{n} \iota_{\partial / \partial \bar{z}_{k}}\left(\omega \wedge \frac{\partial \alpha}{\partial z_{k}}\right)-\omega \wedge\left(\iota_{\partial / \partial \bar{z}_{k}} \frac{\partial u}{\partial x_{k}}\right)=-\sum_{k=1}^{n}\left(\iota_{\partial / \partial \bar{z}_{k}}\right) \wedge \frac{\partial u}{\partial z_{k}} .
$$

Since $\iota_{\partial / \partial \bar{z}_{k}} \omega=-i d z_{k}$, we get

$$
\left[\bar{\partial}^{*}, L\right] \alpha=i \sum_{k=1}^{n} d z_{k} \wedge \frac{\partial u}{\partial z_{k}}=i \partial u .
$$

Finally, for general (X, ω) and any $x \in X$, if we choose holomorphic normal coordinates $\left(z_{1}, \ldots, z_{n}\right)$ centered at x as in Theorem 5 , above calculation go through with error term

$$
\left[\bar{\partial}^{*}, L\right] \alpha=i \partial \alpha+O(|z|),
$$

for (p, q)-form α supported in a neighborhood of x. Particularly, $\left[\bar{\partial}^{*}, L\right] \alpha(x)=i \partial \alpha(x)$, for $x \in X$.
Corollary 2. If (X, ω) is Kähler, then

$$
\begin{align*}
& {\left[\partial, \bar{\partial}^{*}\right]=\left[\bar{\partial}, \partial^{*}\right]=0} \tag{4.5}\\
& \triangle=2 \triangle_{\bar{\partial}}=2 \triangle_{\partial}, \tag{4.6}
\end{align*}
$$

and \triangle commutes with $*, \partial, \bar{\partial}, \partial^{*}, \bar{\partial}^{*}, L, \Lambda$.
Proof. We have $\left[\partial, \bar{\partial}^{*}\right]=-i[\partial,[\Lambda, \partial]]$ and Jacobi identity implies

$$
-[\partial .[\Lambda, \partial]]+[\Lambda,[\partial, \partial]]+[\partial,[\partial, \Lambda]]=0 .
$$

Hence, $-2[\partial,[\Lambda, \partial]]=0$ and $\left[\partial, \bar{\partial}^{*}\right]=0$. The second relation $\left[\bar{\partial}, \partial^{*}\right]=0$ is the adjoint of the first. Next,

$$
\triangle_{\bar{\partial}}=\left[\bar{\partial}, \bar{\partial}^{*}\right]=-i[\bar{\partial},[\Lambda, \partial]] .
$$

Since $[\partial, \bar{\partial}]=0$, Jacobi identity implies $-[\bar{\partial},[\Lambda, \partial]]+[\partial,[\bar{\partial}, \Lambda]]=0$. Hence,

$$
\triangle_{\bar{\partial}}=[\partial,-i[\bar{\partial}, \Lambda]]=\left[\partial, \partial^{*}\right]=\triangle_{\partial} .
$$

From (4.5), we have $\triangle=\left[\partial+\bar{\partial}, \partial^{*}+\bar{\partial}^{*}\right]=\triangle_{\partial}+\Delta_{\bar{\partial}}+\left[\partial, \bar{\partial}^{*}\right]+\left[\bar{\partial}, \partial^{*}\right]=\triangle_{\partial}+\triangle_{\partial}$. Finally, $\left[\partial, \Delta_{\partial}\right]=$ $\left[\partial^{*}, \triangle_{\partial}\right]=\left[\bar{\partial}, \triangle_{\bar{\partial}}\right]=\left[\bar{\partial}^{*}, \triangle_{\bar{\partial}}\right]=0$ and $\left[\triangle_{,} *\right]=0$ are immediate. Furthermore, $[\partial, L]=\partial \omega=0$ together with Jacobi identity implies

$$
\left[L, \triangle_{\partial}\right]=\left[L,\left[\partial, \partial^{*}\right]\right]=-\left[\partial,\left[\partial^{*}, L\right]\right]=i[\partial, \bar{\partial}]=0 .
$$

By taking adjoint, $\left[\triangle_{\partial}, \Lambda\right]=0$.
4.2. Hodge Theory on Compact Kähler Manifolds. Now, we assume that (X, ω) is a comapct Kähler manifold. The identity $\triangle=2 \triangle_{\bar{\rho}}$ shows that \triangle is homogeneous with respect to bidegree, $\mathcal{H}_{\bar{\partial}}^{p, q}(X)=\mathcal{H}^{p, q}(X)$, and that there is an orthogonal decomposition

$$
\begin{equation*}
\mathcal{H}^{k}(X)=\bigoplus_{p+q=k} \mathcal{H}^{p, q}(X) \tag{4.7}
\end{equation*}
$$

As $\overline{\triangle_{\bar{\partial}}}=\triangle_{\partial}=\triangle_{\bar{\partial}}$, we have $\mathcal{H}^{p, q}(X)=\overline{\mathcal{H}^{p, q}(X)}$. Using Hodge theorem for de Rham and Dolbeault cohomology, we get Hodge decomposition on compact Kähler manifolds:

$$
\begin{align*}
& H^{k}(X, \mathbb{C}) \cong \bigoplus_{p+q=k} H_{\bar{\partial}}^{p, q}(X) \tag{4.8}\\
& H_{\bar{\partial}}^{p, q}(X) \cong \overline{H_{\bar{\partial}}^{q, p}(X)} \tag{4.9}
\end{align*}
$$

A priori, it is not clear that the decomposition is independent of the choice of Kähler metrics. We now show the following result known as $\partial \bar{\partial}$-Lemma which will deduce that this is the case.
Lemma 2. Let (X, ω) be a compact Kähler manifold. For a d-closed (p, q)-form α, TFAE
(a) α is d-exact.
(b) α is ∂-exact.
(b)' α is $\bar{\partial}$-exact
(c) α is $\partial \bar{\partial}$-exact, i.e., there exists $v \in A^{p-1, q-1}(X)$ such that $\alpha=\partial \bar{\partial} v$.
(d) $\alpha \in \mathcal{H}^{p, q}(X)^{\perp}$.

Proof. $(\mathrm{c}) \Rightarrow(\mathrm{a}),(\mathrm{b}),(\mathrm{b})^{\prime}$ and (a), or (b) or $\left(\mathrm{b}^{\prime}\right) \Rightarrow(\mathrm{d})$ are obvious. It suffices to show that $(\mathrm{d}) \Rightarrow(\mathrm{c})$. As $d \alpha=0$, we have $\partial \alpha=0=\bar{\partial} \alpha=0$. Since $\alpha \in \mathcal{H}^{p, q}(X)^{\perp}$, there exists $\beta \in A^{p, q-1}(X$ such that $\alpha=\bar{\partial} \beta$. By Hodge decomposition for \triangle_{∂} :

$$
A^{p, q-1}(X)=\mathcal{H}^{p, q-1}(X) \oplus \operatorname{im}\left(\triangle_{\partial}\right)
$$

we can write $\beta=h+\left(\partial \partial^{*}+\partial^{*} \partial\right) u$ for some $u \in A^{p, q-1}(X)$. Let $v:=\partial^{*} u \in A^{p-1, q-1}(X)$ and $w=\partial^{*} u \in A^{p+1, q-1}(X)$. Therefore, by (4.5),

$$
\alpha=\bar{\partial} \partial v+\bar{\partial} \partial^{*} w=-\partial \bar{\partial} v-\partial^{*} \bar{\partial} w
$$

However, as $\partial u=0$ and $\partial^{*} \bar{\partial} w \in \operatorname{ker} \partial^{\perp}, \partial^{*} \bar{\partial} w=0$ and hence $\alpha=\bar{\partial} \partial v$.
Corollary 3. 4.8 is independent of the choice of Kähler metric.
Proof. Let ω^{\prime} be another Kähler metric on X. We denote $\mathcal{H}^{p, q}(X, \omega)$ and $\mathcal{H}^{p, q}\left(X, \omega^{\prime}\right)$ be the harmonic forms with respect to ω and ω^{\prime} respectively. Given a Dolbeault cohomology class $\left[\alpha_{0}\right] \in H_{\bar{\partial}}^{p, q}(X)$, we denote $\alpha \in \mathcal{H}^{p, q}(X, \omega)$ and $\alpha^{\prime} \in \mathcal{H}^{p, q}\left(X, \omega^{\prime}\right)$ be the corresponding harmonic representative of $\left[\alpha_{0}\right]$. By definition, there exists $\gamma \in A^{p, q-q}(X)$ such that $\alpha=\alpha^{\prime}+\bar{\partial} \gamma$. However, $d \bar{\partial} \gamma=d\left(\alpha-\alpha^{\prime}\right)=0$ shows that $\bar{\partial} \gamma \in \mathcal{H}^{p, q}(X)^{\perp}$ by Hodge decomposition for \triangle. Hence, $\bar{\partial} \Delta \in \operatorname{im}(\triangle)$ and thus α, α^{\prime} represent the same de Rham cohomology class.

We denote Betti number and Hodge number by

$$
b_{k}=\operatorname{dim}_{\mathbb{C}} H^{k}(X, \mathbb{C}), \quad h^{p, q}:=\operatorname{dim}_{\mathbb{C}} H_{\partial}^{p, q}(X) .
$$

Then (4.8), (4.9), and Kodaira-Serre duality implies

$$
b_{k}(X)=\sum_{p+q=k} h^{p, q}, \quad h^{p, q}(X)=h^{q, p}, \quad h^{p, q}(X)=h^{n-p, n-q}(X) .
$$

Particular, this gives another topological constraints for compact Kähler manifolds
Corollary 4. If X is a compact manifold, then $b_{2 k+1}(X)$ is even.
Proof. This follows from $b_{2 k+1}(X)=2 \sum_{p=0}^{k} h^{p, k+1-p}(X)$.

[^0]: ${ }^{1}$ This means that for any $p \in M$, there exists a neighborhood U of p such that $\operatorname{supp} \rho_{\alpha} \cap U=\varnothing$ for all but finitely $\operatorname{many} \alpha \in I$

[^1]: ${ }^{2}$ One can construct such function by partition of unity. It is well-known that for any topological manifold M, one can find a countable open covering $\left\{U_{j}\right\}_{j=1}^{\infty}$ with $\overline{U_{i}}$ compact. Let $\left\{\rho_{j}\right\}_{j=1}^{\infty}$ be the partition of unity subordinated to $\left\{U_{j}\right\}_{j=1}^{\infty}$. We then set $f=\sum_{j=1}^{\infty} j \rho_{j}$.

[^2]: $3_{\text {i.e., }} M$ is compact and $\partial M=\varnothing$.

[^3]: ${ }^{4}$ If $\operatorname{dim}_{\mathbb{R}} V$ is odd, then there exists a real eigenvalue λ of J. However, $J^{2}=-I d_{V}$ implies $\lambda^{2}=-1$, a contradiction.
 ${ }^{5}$ Recall that for a \mathbb{C}-vector space W, \bar{W} is also a \mathbb{C}-vector space with the same underlying abelian group structure as W and conjugate complex multiplication $z \cdot w:=\bar{z} w$ for $w \in W$ and $z \in \mathbb{C}$.

