Problem 1. (15 points) Let \(K = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\} \) and let \(A = \{a + b\sqrt{2} \in K : a, b \in \mathbb{Z}\} \).
(a) Show that \(K \) is a subring of \(\mathbb{R} \).
(b) Show that \(A \) is a subring of \(K \).
(c) Show that \(K \) is a field.

Problem 2. (10 points) Suppose \(R \) is a commutative ring.
(a) Suppose \(A \) is a subring of \(R \times R \). Assume that \(A \) is also an equivalence relation on \(R \). Show that \(I_A := \{r \in R : (r, 0) \in A\} \) is an ideal in \(R \).
(b) Suppose \(I \) is an ideal in \(R \). Set \(A_I := \{(r, s) \in R \times R : r - s \in I\} \). Show that \(A_I \) is a subring of \(R \times R \) which is also an equivalence relation on \(R \).
(c) (5 point bonus) Show that \(I_{A_I} = I \) for any ideal \(I \subset R \), and that \(A_{I_A} = A \) for any equivalence relation \(A \subset R \times R \).

Problem 3. (10 points) Suppose \(D \) is a division ring and \(I \) is a left ideal in \(D \). Show that either \(I = \{0\} \) or \(I = D \). Then draw the following conclusion: If \(\rho : D \to R \) is a homomorphism of rings where \(D \) is a division ring, then either \(R = 0 \) or \(\rho \) is one-to-one.

Problem 4. (10 points) Suppose \(R \) is a commutative ring.
(a) Suppose \(A \) is a subring of \(R \times R \). Assume that \(A \) is also an equivalence relation on \(R \). Show that \(I_A := \{r \in R : (r, 0) \in A\} \) is an ideal in \(R \).
(b) Suppose \(I \) is an ideal in \(R \). Set \(A_I := \{(r, s) \in R \times R : r - s \in I\} \). Show that \(A_I \) is a subring of \(R \times R \) which is also an equivalence relation on \(R \).
(c) (5 point bonus) Show that \(I_{A_I} = I \) for any ideal \(I \subset R \), and that \(A_{I_A} = A \) for any equivalence relation \(A \subset R \times R \).

Problem 5. (25 points) Suppose \(R \) is a ring.
(a) Show that, if \(A \) and \(B \) are subrings of \(R \), then so is \(A \cap B \).
(b) Generalize (a) in the following way. Suppose \(\{A_i\}_{i \in I} \) is a set of subrings of \(R \). Show that \(A = \bigcap_{i \in I} A_i \) is a subring of \(R \).
(c) Suppose \(S \) is a subset of \(R \). Let \(A \) denote the intersection of all subrings of \(R \) containing \(S \). Show that \(A \) is the smallest subring of \(R \) containing \(S \). It is called the subring of \(R \) generated by \(S \).
(d) Keeping a notation of (c), define a sequence \(A_n \) of subsets of \(R \) inductively as follows: \(A_0 = \{0, 1\} \cup S \), \(A_{n+1} = \{x - y, xy : x, y \in A_n\} \). Show that \(A = \bigcup_{n=0}^{\infty} A_n \) (In other words, \(A \) is the union of the sets \(A_n \)).
(e) Now suppose that \(B \) is a subring of \(R \) and \(S \) is a subset of \(R \). Let \(B[S] \) denote the subring of \(R \) generated by \(B \cup S \). Now set \(R = \mathbb{R} \) (the ring of real numbers), \(B = \mathbb{Q} \) and \(S = \{\sqrt{2}\} \). Set \(\mathbb{Q}[\sqrt{2}] := B[S] \). Show that \(\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\} \).

Problem 6. (30 points) Let
\[
H = \left\{ \begin{pmatrix} t + x & -y - zi \\ y - zi & t - xi \end{pmatrix} : t, x, y, z \in \mathbb{R} \right\}
\]
contained in the ring \(M_2(\mathbb{C}) \) of \(2 \times 2 \) matrices with complex coefficients. To ease the notation, define
\[
\tilde{a} := \begin{pmatrix} 0 & 1 \\ i & -i \end{pmatrix}, \tilde{b} := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \tilde{c} := \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}.
\]
These are elements of \(H \) and the general matrix in \(H \) can then be written (uniquely and more compactly) as \(t + x\tilde{a} + y\tilde{b} + z\tilde{c} \).
(a) Show that \(\tilde{a}^2 = \tilde{b}^2 = \tilde{c}^2 = -1 \) and \(\tilde{a}\tilde{b} = \tilde{c}, \tilde{b}\tilde{c} = \tilde{a}, \tilde{c}\tilde{a} = \tilde{b} \).
(b) Show that \(H \) is a subring of \(M_2(\mathbb{C}) \).
(c) Show that the determinant of any element of \(H \) is a non-negative real number. Show further that \(\det X = 0 \) iff \(X = 0 \) for \(X \in H \).
(d) For \(X = t + x\tilde{a} + y\tilde{b} + z\tilde{c} \in H \), define \(X^* := t - x\tilde{a} - y\tilde{b} - z\tilde{c} \). Show that \(XX^* = \det X \).
(e) Show that, for \(X \neq 0 \), \(X^{-1} = (\det X)^{-1}X^* \). Then conclude that \(H \) is a division ring.
(f) Show that \(\tilde{b}\tilde{a} = -\tilde{c} \) and conclude that \(H \) is not a field.