
1. Introduction

In this chapter, I introduce some of the fundamental objects of algbera: binary opera-
tions, magmas, monoids, groups, rings, fields and their homomorphisms.

2. Binary Operations

Definition 2.1. Let M be a set. A binary operation on M is a function

· : M × M → M

often written (x, y) 7→ x · y. A pair (M, ·) consisting of a set M and a binary operation · on
M is called a magma.

Example 2.2. Let M = Z and let + : Z × Z→ Z be the function (x, y) 7→ x + y. Then, + is
a binary operation and, consequently, (Z,+) is a magma.

Example 2.3. Let n be an integer and set Z≥n := {x ∈ Z | x ≥ n}. Now suppose n ≥ 0.
Then, for x, y ∈ Z≥n, x + y ∈ Z≥n. Consequently, Z≥n with the operation (x, y) 7→ x + y is a
magma. In particular, Z+ is a magma under addition.

Example 2.4. Let S = {0, 1}. There are 16 = 42 possible binary operations m : S ×S → S .
Therefore, there are 16 possible magmas of the form (S ,m).

Example 2.5. Let n be a non-negative integer and let · : Z≥n ×Z≥n → Z≥n be the operation
(x, y) 7→ xy. Then Z≥n is a magma. Similarly, the pair (Z, ·) is a magma (where · : Z×Z→ Z
is given by (x, y) 7→ xy).

Example 2.6. Let M2(R) denote the set of 2 × 2 matrices with real entries. If

A =

(
a11 a12
a21 a22

)
, and B =

(
b11 b12
b21 b22

)
are two matrices, define

A ◦ B =

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
.

Then (M2(R), ◦) is a magma. The operation ◦ is called matrix multiplication.

Definition 2.7. If (M, ·) is a magma, then M is called the underlying set and · is called the
binary operation or sometimes the multiplication.

Remark 2.8. There is a substantial amount of abuse of notation that goes along with binary
operations. For example, suppose (M, ·) is a magma and m, n ∈ M. Instead of writing m · n
we often omit the · from the notation and write mn as in Example 2.5. Moreover, when
referring to a magma (M, ·), we often simply refer to the underlying set M and write the
binary operation as (x, y) 7→ xy. That way we avoid having to write down a name for the
binary operation. So, for example, we say, “let M be a magma” when we should really say,
“let (M, ·) be a magma.” We use this abuse of notation in the following definition.

Definition 2.9. Let M be a magma. We say that M is commutative if, for all x, y ∈ M,
xy = yx. We say that M is associative if, for all x, y, z ∈ M, (xy)z = x(yz). An element
e ∈ S is an identity element if, for all m ∈ M, em = me = m.

Example 2.10. There is another important product on M2(R) called the Lie bracket. It is
given by (A, B) 7→ [A, B] := A ◦ B − B ◦ A. It is not associative. To see this, set

A = B =

(
0 0
1 0

)
,C =

(
0 1
0 0

)
.
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Then

[[A, B],C] =

(
0 0
0 0

)
, but

[A, [B,C]] =

(
0 0
−1 0

)
We write gl2(R) for the set M2(R) equipped with the Lie bracket binary operation.

Remark 2.11. If M is a commutative magma, then sometimes we write the binary oper-
ation as (m, n) 7→ m + n. We never use the symbol “+” for a binary operation which is
not commutative. Also, if the binary operation is written “+,” we never omit it from the
notation. For example, while we write 3 × 5 as (3)(5), we never write 3 + 5 as (3)(5).

Proposition 2.12. Let M be a magma. Then there is at most one identity element e ∈ S .

Proof. Suppose e, f are identity elements. Then e = e f = f . �

Remark 2.13. If M is a commutative magma with binary operation + then it is traditional
to let the symbol “0” denote the identity element. Otherwise, it is traditional to use the
symbol “e” or the symbol “1.”

2.14. Multiplication Tables. If M = {x1, x2, . . . , xn} is a finite set and “·” is a binary
operation on M. The multiplication table for M is the following n × n-table of elements of
M: 

x1x1 x1x2 · · · x1xn

x2x1 x2x2 · · · x2xn

. . . . . . . . .
xnx1 xnx2 · · · xnxn


Remark 2.15. The magma (Z,+) is associative and has 0 as its identity element. The
magma (N,+) is also associative with 0 as its identity element. If n > 0, then the magma
(Z≥n,+) is associative, but does not have an identity element.

The following definition is motivated by computer science.

Definition 2.16. Suppose k is a positive integer and S is a set. A word of length k in S
is a k-tuple m = (m1, . . . ,mk) of elements of S . If a = (a1, . . . , ai) and b = (b1, . . . , b j)
are two words of length i and j respectively then the concatenation of a and b is the word
a.b := (a1, . . . , ai, b1, . . . , b j).

Definition 2.17. Suppose M is a magma and m is a word of length k > 0 in M. We define
a set P(m) of products of m inductively as follows. If k = 1, then P(m) = {m1}. Suppose
then inductively that P(n) is defined for every word n of length strictly less than m. Then
P(n) is the set of all products xy where x ∈ P(a), y ∈ P(b) and n = a.b.

Theorem 2.18. Suppose M is an associative magma, and m = (m1, . . . ,mk) is a word in
M of length k > 0. Then P(m) consists of a single element.

Proof. We induct on k. For k = 1 the theorem is obvious. So suppose that k > 1 and the
theorem is known for all words of length strictly less than k. Write h = (m1, . . . ,mk−1)
and t = mk. Then, by induction, P(h) consists of a single element u and P(t) obviously
consists of the single element mk. Since m = h.t, umk ∈ P(m). Now suppose z ∈ P(m).
By definition, z = xy where x ∈ P(a), y ∈ P(b) with m = a · b. Suppose a = (m1, . . . ,mi)
and b = (mi+1, . . . ,mk). Since 1 ≤ i < k, P(b) consists of a single element. So, setting
b′ = (mi+1, . . . ,mk−1), we have y = y′mk where y′ is the unique element of P(b′). Then xy′
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is an element of P(h), so it is equal to u. So, by associativity, we have z = xy = x(y′mk) =

(xy′)mk = umk. �

Definition 2.19. If M is an associative magma and m = (m1, . . . ,mk) is a word in M of
length k > 0, then we write Π(m) or simply m1m2 · · ·mk for the unique element of P(m).

Exercises.

Exercise 2.1. Write sl2(R) for the set of all matrices(
a b
c d

)
in gl2(R) such that a + d = 0. Show that sl2(R) is a submagma of gl2(R).

Exercise 2.2. An element l of a magma M is called a left identity if, for all m ∈ M, lm = m.
Similarly, an element r of a magma M is called a right identity if, for all m ∈ M, mr = m.
Suppose M is a magma having a left identity l and a right identity r. Show that l = r and
that l is the identity element of the magma.

Exercise 2.3. The cross product on R3 is the binary operation given by

(x1, y1, z1) × (x2, y2, z2) = (y1z2 − y2z1, z1x2 − z3x1, x1y2 − x2y1).

Show that the cross product is neither associative nor commutative. Then show that it has
no identity element.

3. Homomorphisms ofMagmas

Definition 3.1. Suppose M and N are two magmas. A homomorphism of magmas from M
to N is a map φ : M → N such that, for all x, y ∈ M,

φ(xy) = φ(x)φ(y).

We write HomMagma(M,N) for the set of all magma homomorphisms from M to N.

Example 3.2. Recall that, if X is a set, we write idX for the function from X to itself given
by x 7→ x. This is called the identity function. If M is a magma, then clearly idM is a
magma homomorphism.

Proposition 3.3. Let X,Y,Z be magmas and let g ∈ HomMagma(X,Y), f ∈ HomMagma(Y,Z).
Then g ◦ f ∈ HomMagma(X,Z).

Proof. We have (g ◦ f )(ab) = g( f (ab)) = g( f (a) f (b)) = g( f (a))g( f (b)) = (g ◦ f )(a)(g ◦
f )(b). �

Definition 3.4. A homomorphism f : M → N of magmas is an isomorphism if there is a
magma homomorphism g : N → M such that f ◦ g = idN and g ◦ f = idM .

Recall that a map f : X → Y of sets is an isomophism of sets if it is one-to-one and onto.
In this case, there exists a unique map g : Y → X such that f ◦ g = idY and g ◦ f = idX .
The map g is defined by setting g(y) equal to the unique x ∈ X such that f (x) = y. The map
g is called the inverse of f .

Proposition 3.5. Suppose f : M → N is a homomorphism of magmas. Then f is an
isomorphism of magmas if and only if it is an isomorphism of sets.
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Proof. It is obvious that an isomorphism of magmas is necessarily an isomorphism of sets.
Suppose that f : M → N is a homomorphism of magmas which is also one-to-one and

onto. Let g : N → M be the inverve of f . Suppose n1, n2 ∈ N and set mi = g(ni) for
i = 1, 2. Then g(n1n2) = g( f (m1) f (m2)) = g( f (m1m2)) = m1m2 = g(n1)g(n2). So g is a
homomorphism of magmas. Therefore, f is an isomorphism of magmas. �

Definition 3.6. Suppose M and N are magmas. We say that M and N are isomorphic and
write M � N if there exists an isomorphism of magmas f : M → N.

Definition 3.7. Let (M, ·) be a magma. A subset N ⊂ M is said to be closed under multi-
plication if, for all n1, n2 ∈ N, n1 · n2 ∈ N. In this case the restriction of · to N × N defines
a binary operation on N. This is called the binary operation induced from M. A subset of
N of M which is closed under multiplication is called a submagma of M.

Suppose X and Y are sets and Y ⊂ X. Write iY,X : Y → X for the inclusion function.
That is, iY,X(y) = y.

Proposition 3.8. Let M be a magma and N be a subset closed under multiplication. Set
i = iN,M . Then the map i : N → M is a magma homomorphism.

Proof. Suppose n1, n2 ∈ N. Then i(n1n2) = n1n2 = i(n1)i(n2). �

Example 3.9. Let M = Zwith the binary operation +, and let n be an integer. Set N = Z≥n.
Then N is a submagma of M if and only if n ≥ 0.

Proposition 3.10. Suppose M and N are magmas and f : M → N is a magma homomor-
phism. Suppose that H is a submagma of M and K is a submagma of N. Then

(1) the subset f (H) is a submagma of N;
(2) the subset f −1(K) is a submagma of M.

Proof. (1): Suppose x, y ∈ H. Then f (xy) = f (x) f (y). So f (x) f (y) ∈ f (H).
(2): Suppose a, b ∈ f −1(K). Then f (ab) = f (a) f (b) ∈ K. So ab ∈ f −1(K). �

Corollary 3.11. Suppose that f : N → M is a magma homomorphism which is one-to-
one. Then f (N) is a submagma of M and the map f : N → f (N) is an isomorphism of
magmas.

Proof. The subset f (N) of M is a submagma by Proposition 3.10. The map f : N → f (N)
is one-one, onto and it is clearly a magma homomorphism. Therefore it is an isomorphism
of magmas. �

Exercises.

Exercise 3.1. Let C denote the set of complex numbers, and let M2(C) denote the set of
2 × 2 matrices with entries in the complex numbers. Define the operation (A, B) 7→ A ◦ B
of matrix multiplication on M2(C) as in Example 2.6. Let gl2(C) denote the set M2(C)
equipped with the Lie bracket binary operation (A, B) 7→ [A, B] = A ◦ B − B ◦ A.

4. Products

Definition 4.1. Suppose I is a set and for each i ∈ I suppose Mi is a magma. Set M =∏
i∈I Mi. We define a binary operation on M by setting

(mi)i∈I(ni)i∈I = (mini)i∈I .

We call M the product magma of the Mi.
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4.2. The most important special case of Definition 4.1 is the product M1 × M2 of two
magmas M1 and M2. In this case we can write the binary operation on M = M1 × M2 as

(m1,m2)(m′1,m
′
2) = (m1m′1,m2m′2).

Proposition 4.3. Suppose f : M → N is a homomorphism of magmas. Then M ×N M is a
submagma of M × M.

Proof. Suppose (x1, x2), (y1, y2) ∈ M×N M. Then, by definition, f (x1) = f (x2) and f (y1) =

f (y2). So f (x1y1) = f (x1) f (y1) = f (x2) f (y2) = f (x2y2). So (x1y1, x2y2) ∈ M ×N M. �

5. Quotients

Theorem 5.1. Suppose M is a magma and R is a submagma of M × M which is an equiv-
alence relation on M. Write π : M → M/R for the quotient map m 7→ [m] sending an
element in M to its equivalence class in M/R.

(1) There is a unique binary operation on M/R such that π : M → M/R is a magma
homomorphism.

(2) If f : M → N is any magma homomorphism such that M ×N M ⊃ R, then there is
a unique magma homomorphism g : M/R→ N such that f = g ◦ π.

Proof. (1): Uniqueness is obvious, because if π is a homomorphism of magmas and
[x], [y] ∈ M/R, then [x][y] = π(x)π(y) = π(xy) = [xy].

To see that there is a binary operation on M/R making π into a magma homomorphism,
write Q = M/R and let Γ denote the subset of (Q×Q)×Q = Q3 consisting of all triples of
the form (π(x), π(y), π(xy)) with x, y ∈ M. For every pair (a, b) = (π(x), π(y)) ∈ Q × Q, the
element (a, b, π(xy)) = (π(x), π(y), π(xy)) ∈ Γ. On the other hand, suppose (π(x), π(y), z) ∈
Γ. Then there are elements x′, y′ ∈ M such that π(x) = π(x′), π(y) = π(y′) and z =

π(x′y′). By the definition of M/R, it follows that (x, x′), (y, y′) ∈ R. But then (xy, x′y′) =

(x, x′)(y, y′) ∈ R. So π(xy) = π(x′y′) = z. In other words, for any (π(x), π(y)) ∈ Q2, the
element π(xy) is the unique element z of Q such that (π(x), π(y), z) ∈ Γ. Therefore Γ is the
graph of a function ∗ : Q2 → Q satisfying π(x) ∗ π(y) = π(xy). In other words, π is a
magma homomorphism from M to (Q, ∗).

(2): By the properties of M/R, for any function f : M → N such that M ×N M ⊃ R,
there exists a unique function g : M/R→ N such that f = g◦π. To show that g is a magma
homomorphism, suppose m1,m2 ∈ M. Then g(π(m1)π(m2)) = g(π(m1m2)) = f (m1m2) =

f (m1) f (m2) = g(π(m1))g(π(m2)).
�

6. Properties ofMagmas

Example 6.1. Let M be a magma. An element m ∈ M is central if, for all n ∈ M, nm = mn.
The center of M is the set of all central elements of M. I write Z(M) for the center of M.

If M is associative, then the center of M is a submagma. To see this, suppose a, b ∈
Z(M). Then, for m ∈ M, (ab)m = a(bm) = a(mb) = (am)b = (ma)b = m(ab).

Definition 6.2. A monoid is an associative magma which has an identity element.

Example 6.3. The natural numbers form a monoid under addition. This means that (N,+)
is a monoid. The natural numbers also form a monoid under multiplication: (N, ·) is a
monoid. The identity element of (N,+) is 0 and the idenitity element of (N, ·) is 1.
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Definition 6.4. Let M and N be monoids. A homomorphism f : M → N of magmas
is called a homomorphims of monoids if f (1) = 1. We write HomMonoid(M,N) for the
set of all homomorphisms of monoids f : M → N. A homomorphism of monoids is an
isomorphism if it is both one-to-one and onto.

Example 6.5. The inclusion N → Z is a homomorphism of monoids with addition as the
operations. It is also a homomorphism of monoids with multiplication as the operation. On
the other hand, consider the operation (N×N)× (N×N)→ N×N given by (a, b) · (c, d) =

(ac, bd). Define a map f : N→ N × N by n 7→ (n, 0). Then f defines a homomorphism of
magmas from (N, ·) to (N × N, ·). But f is not a homomorphism of monoids because the
identity of N × N is (1, 1), not (1, 0).

Definition 6.6. A homomorphism f : M → N of monoids is said to be an isomorphism
of monoids if there is a homomorphism g : N → M of monoids such that f ◦ g = idN and
g ◦ f = idM .

Proposition 6.7. Suppose f : M → N is a homomophism of monoids. Then f is an
isomorhism of monoids iff f is an isomorphism of sets.

Proof. If f is an isomorphism of monoids, then it is clearly an isomorphism of sets. Sup-
pose, that f is an isomorphism of sets. Let g : N → M be the inverse map. We know
by Proposition 3.5 that g is a magma homomorphism. To show that g is a monoid homo-
morphism, it suffices to check that g(1) = 1. But, since f is a monoid homomorphism,
f (1) = 1. So g(1) = g( f (1)) = 1. �

Definition 6.8. If M is a monoid, then a submonoid of M is a monoid N such that N ⊂ M
and the inclusion map iN,M : N → M is a homomorphism of monoids.

Definition 6.9. Let (M, ·) be a magma. The opposite magma is the magma (M, ∗) where
a ∗ b = b · a for a, b ∈ M. If M is a magma, we sometimes write Mop for the opposite
magma.

Proposition 6.10. Let M be a monoid and a, b ∈ M. Suppose ab = ba = 1. Then, for
c ∈ M, the following are equivalent.

(1) ac = 1;
(2) ca = 1;
(3) b = c.

Proof. (iii)⇒ (i) and (iii) ⇒ (ii) are both obvious from the hypothesis. To see that (i)⇒
(iii), suppose ac = 1. Then b = b1 = b(ac) = (ba)c = 1c = c. To see that (ii)⇒ (iii), apply
(i)⇒ (iii) to Mop. �

Definition 6.11. Let M be a monoid. An element of m ∈ M is invertible if there exists an
n ∈ M such that mn = nm = 1. I write M× for the set of m ∈ M such that m is invertible.

Note that, by Proposition 6.10, if m is invertible then m has a unique inverse. If M is a
commutative and the binary operaiton is written as (m, n) 7→ m + n, then it is traditional
to denote let −m denote the inverse of m. Otherwise it is traditional to write m−1 for the
inverse.

Proposition 6.12. Suppose M is a monoid. Then
(1) If x, y ∈ M×, then xy ∈ M× with (xy)−1 = y−1x−1;
(2) M× is a submonoid of M;
(3) if m ∈ M× then (m−1)−1 = m. Moreover, (M×)× = M×, and
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(4) (M×)× = M×.

Proof. �

Definition 6.13. A monoid M is a group if M = M×.

From Exercise 6.12, it follows that, if M is a monoid, M× is a group.

Example 6.14. Here are the prototypical examples of monoids and groups. Let X be a set.
Write E(X) for the set of all functions f : X → X. Equip E(X) with the binary operation
( f , g) 7→ f ◦ g. Then E(X) is a monoid because composition of functions is associative and
idX ◦ f = f ◦ idX = f for all f ∈ End X. Write A(X) for E(X)×. Then A(X) is called the
automorphism group of X or the group of permutations of X.

Definition 6.15. Let M be a magma. Define a map L : M → End M by setting L(x)(y) = xy
for x, y ∈ M. Similarly define a map R : M → End M by setting R(x)(y) = yx for x, y ∈ M.
The map L is called the left multiplication map and R is called the right multiplication map.

Proposition 6.16. A magma M is associative if and only if L : M → End M is a magma
homomorphism.

Proof. Suppose x, y, z ∈ M. Then (xy)z = x(yz) ⇔ L(xy)(z) = L(x)(yz) ⇔ L(xy)(z) =

L(x)L(y)(z). So M is associative iff, for all x, y ∈ M, L(xy) = L(x)L(y). �

Definition 6.17. If H and G are groups, then a group homomorphism f : H → G is a
homomorphims of monoids. We write HomGps(H,G) for the set of all group homomor-
phisms. A homomorphism of groups is an isomorphism of groups if it is one-to-one and
onto.

Proposition 6.18. Let f : G → M be a monoid homomorphism with G a group. Then, if
g ∈ G, f (g) ∈ M× and f (g−1) = f (g)−1.

Proof. We have f (g−1) f (g) = f (g−1g) = f (1) = 1. �

Proposition 6.19. Let M be a monoid and let G be a group. Then

HomMagma(M,G) = HomMonoid(M,G).

Proof. It suffices to show that, for f ∈ HomMagma(M,G), f (1) = 1. To see this, note that
f (1) = f (1) f (1) f (1)−1 = f (1 · 1) f (1)−1 = f (1) f (1)−1 = 1. �

A group G is called abelian if G is commutative as a magma. (Sometimes we also call
G commutative.)

Exercises.

Exercise 6.1. Let S = {0, 1}, the set with 2 elements. Of the 16 binary operations on S ,
how many are associative? How many are commutative? How many are monoids? How
many are groups?

Exercise 6.2. Show that (M2(R), ◦) is a monoid. That is, show that it is an associative
magma with an identity element. Make sure you say what the identity element is.

Exercise 6.3. Show that M2(R)× = {

(
a b
c d

)
∈ M2(R) : ad − bc , 0.}. This group is called

the general linear group of 2 × 2 matrices. It is written GL2(R).
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Exercise 6.4. Let M be a magma. Suppose N is a subset of M which is closed under
multiplication and contains 1. Show that N with the binary operation induced from M is
a monoid and the inclusion i : N → M is a homomorphism of monoids. Thus N (with
the binary operation induced from M) is a submonoid. Conversely show that, if N is a
submonoid of M, then N is closed under the binary operation of M and contains 1. (This
should simpy be a matter of expanding out definitions.)

Exercise 6.5. Let G be a group. Show that the map G → Gop given by g 7→ g−1 is an
isomorphism of groups.

Exercise 6.6. Let M be an associative magma. Let M+ = M ∪ {e} where e < M. Then
define a binary operation on M+ by setting

xy =


xy, x, y ∈ M;
x, y = e;
y, otherwise.

Show that M+ is a monoid. Show that the obvious inclusion map i : M → M+ is a magma
homomorphism. Moreover, show that, if N is a monoid and f : M → N is a magma
homomorphism, there exists a unique monoid homomorphsm g : M+ → N such that
g ◦ i = f .

7. Subroups

Recall the following definition.

Definition 7.1. Suppose G is a group with identity e. A subset H of G is a subgroup if
(1) e ∈ H;
(2) for all x, y ∈ H, xy ∈ H;
(3) for all x ∈ H, x−1 ∈ H.

A subgroup H of G is a proper subgroup if H , G. If H is a subgroup (resp. proper
subgroup) of G, we write H ≤ G (resp. H < G).

Proposition 7.2. A subset H of a group G is a subgroup⇔ if H is nonempty and, for every
x, y ∈ H, xy−1 ∈ H.

Proof. (⇒) is clear. To see the converse, we need to show that H contains 1, is closed
under multiplication and also that every element of H is invertible in H. Since H is non-
empty, we can find h ∈ H. Then 1 = hh−1 ∈ H so H contains 1. It follows that, for
every x ∈ H, x−1 = 1x−1 ∈ H. Finally, suppose x, y ∈ H. Then y−1 ∈ H. Therefore
xy = x(y−1)−1 ∈ H. �

Remark 7.3. If H is a subgroup of G then, clearly, H with the operation (x, y) 7→ xy is a
group.

Proposition 7.4. Suppose G is a group and (Hi, i ∈ I) is a family of subgroups of G. Then
H := ∩i∈I Hi is a subgroup of G.

Proof. Since Hi ≤ G for each i, e ∈ Hi for each i. Therefore, e ∈ H. Suppose x, y ∈ H.
Then xy−1 ∈ Hi for all i. Therefore xy−1 ∈ H. �

Definition 7.5. Suppose G is a group and S is a subset of G. The subgroup 〈S 〉 of G
generated by S is the intersection of all subgroups of G containing S .
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If S = {g1, . . . , gk}, we abuse notation and write 〈g1, . . . , gk〉 for 〈S 〉, which is said to be
generated by the elements g1, . . . gk. A subgroup of G is called cyclic if it can be generated
by a single element.

Proposition 7.6. Suppose S is a subgroup of a group G. Let H denote the subset of G
consisting of all elements of the form

(7.6.1) g = g1g2 . . . gk

where k is a positive integer and, for each i, one of the following holds
(1) gi ∈ S ,
(2) g−1

i ∈ S ,
(3) gi = e. Then H = 〈S 〉.

Proof. First, let’s show that H is a subgroup of G. Clearly, e ∈ H. Suppose x = g1 . . . gr

and y = h1 . . . hs are in H where the expressions for x and y are as in (7.6.1). Then
xy−1 = g1 . . . grh−1

s h−1
s−1 . . . h

−1
1 is of the same form as (7.6.1). It follows that H ≤ G.

Clearly, S ⊂ H. So, since 〈S 〉 is the intersection of all subgroups of G containing S ,
〈S 〉 ≤ H.

Suppose K is a subgroup of G containing S . Then any element g as in (7.6.1) is in K.
Therefore any such element is in 〈S 〉. So H ≤ 〈S 〉. Therefore H = 〈S 〉. �

Definition 7.7. Suppose G is a group, g ∈ G and n ∈ Z. If n = 0, we define g0 = e. If
n = 1, we define gn = g. Then for n > 1, we define gn = ggn−1 inductively. Finally, if
n < 0, we define gn = (g−1)n.

Proposition 7.8. Suppose G is a group, g ∈ G and n,m ∈ Z. Then gn+m = gngm.

Proof. First suppose n,m ≥ 0 and argue by induction on n. If n = 0, the result is obvious.
If n = 1, we have ggm = gm+1 by definition. So suppose n > 1 and the result holds as long
as the first exponent is less than n. Then, gngm = ggn−1gm = ggn+m−1 = gn+m. So the result
holds as long as n,m ≥ 0.

Now, suppose n ≥ 0. I claim that g−ngn = e. Again, we prove this by induction on n. It
is clear if n = 0 or 1. If n > 1, then g−ngn = g−1(g−1)n−1gn−1g = g−1g = e by induction.
Therefore, g−ngn = e for all n ≥ 0. So g−n = (gn)−1.

Suppose then that n,m ≥ 0. If m ≥ n, we have g−ngm = (g−1)ngngm−n = gm−n. If n ≥ m,
we have g−ngm = (g−1)n−m(g−1)mgm = (g−1)n−m = gm−n.

�

8. The orthogonal and dihedral groups

In this section, I write introduce a couple of examples of groups, pointing out their
subgroups.

Definition 8.1. Suppose v = (v1, v2) and w = (w1,w2) are elements of R2. I v · w =

v1w1 + v2w2 for the dot product of v with w, and |v| :=
√

v · v for norm or length of v.

Recall that, for a vector v ∈ R2, v = 0⇔ |v| = 0.

Lemma 8.2. With v and w as above, we have

v · w =
|v + w|2 − |v|2 − |w|2

2
.

Proof. Expand it out. �
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Recall that GL2(R) denotes the subset of M2(R) consisting of 2 × 2-matrices with real
entries and non-zero determinant. Moreover, GL2(R) is a group under the operation of
matrix multiplication. Given

T =

(
a b
c d

)
∈ M2(R),

Tv = (av1 + bv2, cv1 + dv2).

Definition 8.3. Write O2(R) for the subset of M2(R) consisting of matrices T such that,
for all v ∈ R, |Tv| = |v|.

In other words, O2(R) is the subset of matrices which preserve the norms of vectors.

Lemma 8.4. The subset O2(R) is a subgroup of GL2(R).

Proof. Suppose T is a matrix in M2(R) which is not in GL2(R). Then there is a non-zero
vector v ∈ R2 such that Tv = 0. Since v , 0, |v| , 0. Therefore |Tv| , |v|. So T < O2(R). It
follows that O2(R) ⊂ GL2(R).

Clearly, the identity matrix id is in O2(R). Suppose S ,T ∈ O2(R), and suppose v ∈ R2.
Then |S T−1(v)| = |T−1(v)| = |TT−1(v)| = |v|. So S T−1 ∈ O2(R). It follows that O2(R) ≤
GL2(R). �

The subgroup O2(R) is called the second orthogonal group.

Definition 8.5. Suppose θ ∈ R, we write

R(θ) :=
(
cos θ − sin θ
sin θ cos θ

)
.

The matrix R(θ) is called a rotation in the plane through the angle θ. We write

H :=
(
1 0
0 −1

)
.

The matrix H is called the reflection in the x-axis.

Lemma 8.6. For any θ, R(θ) ∈ O2(R). Moreover, H ∈ O2(R).

Lemma 8.7. Suppose v = (v1, v2). Then R(θ)(v) = (cos θv1 − sin θv2, sin θv1 + cos θv2). So

|R(θ)(v)|2 = cos2 θv2
1 − 2 cos θ sin θv1v2 + sin2 θv2

2

+ sin2 θv2
1 + 2 cos θ sin θv1v2 + cos2 θv2

2

= v2
1 + v2

2 = |v|2.

So R(θ) ∈ O2(R).
On the other hand, |H(v)|2 = |(v1,−v2)|2 = v2

1 + v2
2 = |v|2.

Lemma 8.8. Suppose θ, η ∈ R. Then the following relations hold

(1) R(θ)R(η) = R(θ + η);
(2) R(θ)−1 = R(−θ);
(3) H−1 = H;
(4) HiR(θ)Hi = R((−1)iθ) for i ∈ Z.

Moreover det R(θ) = 1 and det H = −1.
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Proof. (1) We have

R(θ)R(η) =

(
cos θ − sin θ
sin θ cos θ

) (
cos η − sin η
sin η cos η

)
=

(
cos θ cos η − sin θ sin η − cos θ sin η − sin θ cos η
cos θ sin η + sin θ cos η cos θ cos η − sin θ sin η

)
=

(
cos(θ + η) − sin(θ + η)
sin(θ + η) cos(θ + η)

)
= R(θ + η)

(2): By (1), R(θ)R(−θ) = R(0) = id. So R(θ)−1 = R(−θ).
(3): It’s easy to see that H2 = id.
(4): We have

HiR(θ)Hi =

(
1 0
0 (−1)i

) (
cos θ − sin θ
sin θ cos θ

) (
1 0
0 (−1)i

)
=

(
cos θ − sin θ

(−1)i sin θ (−1)i cos θ

) (
1 0
0 (−1)i

)
=

(
cos θ −(−1)i sin θ

(−1)i sin θ cos θ

)
=

(
cos θ − sin((−1)iθ)

sin((−1)iθ) cos θ

)
= R(−θ)

It is obvious that det H = 1. On the other hand, det R(θ) = cos2 θ + sin2 θ = 1. �

Lemma 8.9. Suppose T ∈ O2(R) and v,w ∈ R2. Then Tv · Tw = v · w.

Proof. We have

Tv · Tw =
|Tv + Tw|2 − |Tv|2 − |Tw|2

2

=
|T (v + w)|2 − |Tv|2 − |Tw|2

2

=
|v + w|2 − |v|2 − |w|2

2
= v · w.

�

Proposition 8.10. Every element T of O2(R) can be written uniquely as T = R(θ)Hi for
0 ≤ θ < 2π and i ∈ {0, 1}.

Proof. Write e1 = (1, 0) and e2 = (0, 1). Suppose Te1 = (a, b), Te2 = (c, d). Since
e1 · e2 = 0, ac + bd = Te1 · Te2 = 0. It follows that (c, d) = α(−b, aa) for some α ∈ R. On
the other hand, a2 + b2 = |Te1|

2 = |e1|
2 = 1. So a2 + b2 = 1, and, similarly, c2 + d2 = 1. So

1 = α2|(−b, a)|2. Thus α = ±1.
Since a2 + b2 = 1, we can find θ ∈ R such that (a, b) = (cos θ, sin θ). Now,

T =

(
a c
b d

)
.

So, if α = 1, we have T = R(θ). If α = −1, T = R(θ)H.
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Finally, suppose T = R(θ)Hi = R(η)H j with θ, η ∈ [0, 2π) and i, j ∈ {0, 1}. Then, since
det T = (−1)i = (−1) j, i = j. Therefore R(θ) = R(η). So R(−θ)R(η) = R(η − θ) = id. Since
|η − θ| < 2π, it follows from the formula for R(θ) that η = θ. �

Corollary 8.11. For each θ ∈ R, set v(θ) = (cos θ, sin θ) ∈ R2. Suppose T ∈ On(R). Then
T = R(θ)Hi where

(1) θ is the unique element of [0, 2π) such that Rv(0) = v(θ).
(2) i = 0 if det T = 1 and i = 1 if det T = −1.

Write T = R(θ)Hi with 0 ≤ θ < 2p and i ∈ {0, 1}. Then det T = i and T (v(0)) = RH(v(0)) =

R(v(0)) = v(θ).

Corollary 8.12. Let SO2(R) denote the subset of O2(R) consisting of matrices with deter-
minant 1. Then SO2(R) consists of the set of all rotations in O2(R). Moreover, SO2(R) ≤
O2(R). It is called the second special orthogonal group.

Corollary 8.13. We have the following multiplication table for O2(R).

R(θ)HiR(η)H j = R(θ + (−1)iη)Hi+ j.

Proof. Using Lemma 8.8, R(θ)HiR(η)H j = R(θ)HiR(η)H−iHiH j = R(θ)HiR(η)HiHi+ j =

R(θ)R((−1)iη)Hi+ j = R(θ + (−1)iη)Hi+ j. �

Definition 8.14. For each positive integer set θn = 2π/n, and Pn = {(cos kθn, sin kθn) : k ∈
Z} ⊂ R2. Let Dn = {g ∈ O2(R) : g(Pn) = Pn}.

Proposition 8.15. For each integer n ≥ 2, Dn ≤ O2(R).

Proof. Clearly, id ∈ Dn. Suppose g, h ∈ Dn. Then gh−1(Pn) = gh−1(h(Pn)) = g(Pn) =

Pn. �

Proposition 8.16. Let n ≥ 2 be an integer. Set R = R(θn). Then Dn = 〈R,H〉. Moreover,
every element of Dn can be written uniquely as RiH j where i and j are integers satisfying
0 ≤ i < n, 0 ≤ j ≤ 1. In particular, |Dn| = 2n.

Proof. For each integer k, set vn = (cos kθn, sin kθn). Then Pn = {vk : k ∈ Z} and R(vn) =

vn+1,R−1(vn) = vn−1. It follows that R(Pn) = Pn so R ∈ Dn. On the other hand, H(vn) = v−n.
So H ∈ Dn as well. Therefore, E := 〈R,H〉 ≤ Dn.

Now suppose T ∈ Dn. Since T ⊂ O2(R), we have T = R(θ)H j with θ ∈ [0, 2π) and
j ∈ {0, 1}. Then T (v(0)) = v(θ) ∈ Pn. So θ = 2πi/n for a unique integer i such that
0 ≤ i < n. Therefore T = RiH j. The uniqueness of i and j is an easy exercise. �

Corollary 8.17. The multiplication table of Dn is

RaHbRcHd = Ra+(−1)bcHb+d.

Proof. This follows directly from the multiplication table of O2(R). �

Definition 8.18. Suppose n is an integer greater than or equal to 2. Set Cn = 〈R〉 =

〈R(2π/n)〉 ≤ Dn. Clearly, Cn = {e,R,R2, . . . ,Rn−1} and Rn = e. So Cn is a cyclic group of
order n
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9. Cosets

Definition 9.1. Suppose G is a group (written multiplicatively) and A, B are subset of G.
We write AB := {ab : a ∈ A, b ∈ B}. If g ∈ G, we write gA = {ga : a ∈ A} and
Ag = {ag : a ∈ A}.

Remark 9.2. If G is written additively, then we write A + B = {a + b : a ∈ A, b ∈ A},
g + A = {g + a : a ∈ A}.

Proposition 9.3. Suppose G is a group and A, B,C are subsets. Then it is easy to see that
(AB)C = A(BC) = {abc : a ∈ A, b ∈ B, c ∈ C}.

Proof. This is very easy and left as an exercise. �

Recall the following definition.

Definition 9.4. If X is a set, then a partition of X is a set P of pairwise disjoint non-empty
subsets of X such that X = ∪S∈PS .

Example 9.5. P = {{1, 2}, {3}} is a partition of X = {1, 2, 3}.

If P is a finite partition of X and all of the elements of P are finite subsets of X, then
|X| =

∑
S∈P |S |.

Definition 9.6. Suppose G is a group and H ≤ G. A left coset of H is a subset of G of the
form gH for g ∈ G. A right coset of H is a subset of the form Hg. We write G/H for the
set of left cosets of H. So G/H = {gH : g ∈ G}. We write H\G fo the set of right cosets of
H. So H\G = {Hg : g ∈ G}.

Example 9.7. Set G = D3 and set K = 〈H〉 = {e,H}. Then we have

eK = HK = {e,H},

RK = RHK = {R,RH},

R2K = R2H = {R2,R2H}.

So G/K has three elements: K,RK,R2K.
On the other hand, we have

Ke = KH = {e,H},

KR = {R,HR} = {R,R2H} = KR2H,

KR2 = {R2,HR2} = {R2,RH} = KRH.

Notice that the left cosets and the right cosets are different.

Example 9.8. Suppose n is an integer. Set nZ = {nk : k ∈ Z}. Clearly nZ is a subgroup of
Z (viewed as a group under addition). Also clearly nZ = (−n)Z. So we always can assume
that n ≥ 0. The left and right cosets of nZ are obviously the same, and, since the binary
operation on Z is denoted by the symbol +, we write a + nZ for the coset of a. Assuming
n ≥ 0, the cosets are then

nZ, 1 + nZ, . . . , (n − 1) + nZ.
It’s not hard to see that (n + a) + nZ = a + nZ for a ∈ Z. It follows that Z/nZ has |n|
elements.

To give an even more specific example, suppose n = 2. Then 2Z is the set of all even
numbers, and 1 + 2Z is the set of all odd numbers. So Z/2Z = {evens, odds}.
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Proposition 9.9. Suppose G is a group and H ≤ G. Let x, y ∈ G.
(1) x ∈ yH ⇔ y−1x ∈ H.
(2) x ∈ Hy⇔ xy−1 ∈ H.

Proof. I prove (1) and leave (2) as an exercise.
(⇒): Suppose x ∈ yH. Then x = yh for some h ∈ H. So y−1x = h ∈ H.
(⇐): Suppose y−1x = h ∈ H. Then x = yh. So x ∈ H. �

Lemma 9.10. Suppose G is a group and H ≤ G. Let x, y ∈ G. Then
(1) x ∈ yH ⇒ yH ⊂ xH.
(2) x ∈ Hy⇒ Hy ⊂ Hx.

Proof. I prove (1) and leave (2) as an exercise.
Suppose x ∈ yH. Then y−1x ∈ H, and, therefore, x−1y = (y−1x)−1 ∈ H. So, suppose

z ∈ yH. Then z = yh with h ∈ H. So z = xx−1yh = x(x−1y)h ∈ xH. �

Lemma 9.11. Suppose G is a group, H ≤ G and x, y ∈ G. We have x ∈ yH ⇔ xH = yH.
Similarly, we have x ∈ Hy⇔ Hx = Hy.

Proof. I prove the lemma for left cosets and leave the proof for right cosets as an exercise.
Suppose x ∈ yH. Then yH ⊂ xH. Since y ∈ yH, y ∈ xH. Therefore, xH ⊂ yH. So

xH = yH. �

Proposition 9.12. Suppose G is a group and H ≤ G. Then the left (resp. right) cosets of
H form a partition of G.

Proof. I will prove that the left cosets form a partition and leave the proof for the right
cosests as an exercise.

Since g ∈ gH, the left cosets are non-empty, and the union of the left cosets is G.
Suppose x, y ∈ G. If z ∈ xH ∩ yH, then xH = zH = yH. This shows that the left cosets are
a partition of G. �

Proposition 9.13. Suppose G is a group, H ≤ G and g ∈ G. Then the map Lg : H → gH
given by h 7→ gH is an isomorphism of sets. Similarly, the map Rg : H → Hg given by
h 7→ hg is an isomorphism of sets.

Proof. Again I prove this just for left cosets. Clearly Lg : H → gH is onto. On the other
hand, if Lgh = Lgk for h, k ∈ H, then gh = gk. So, multiplying on the left by g−1, we see
that h = k. �

Corollary 9.14. Suppose G is a group and G/H and H are finite. Then

|G| = |H||G/H|.

Similarly, |G| = |H||H\G|.

Proof. The left cosets form a partition of G. There are |G/H| of them, and each of them
has cardinality |H|. Therefore, the order of G is |H||G/H|. The proof of H\G is the same
and is left as an exercise. �

Corollary 9.15 (Lagrange’s Theorem). If G is a finite group and H ≤ G, then |H| divides
|G|.

If G is a group and H and K are subgroups. Then the product HK is sometimes a
subgroup and sometimes not. Here’s an easy proposition.

Proposition 9.16. If G is an abelian group and H,K ≤ G, then HK ≤ G.
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Proof. Clearly, e = ee ∈ HK. Suppose hi ∈ H and ki ∈ K for i = 1, 2. Then h1k1(h2k2)−1 =

h1k1k−1
2 h−1

2 = h1h−1
2 k1k−1

2 ∈ HK. So HK ≤ G. �

Example 9.17. Let G = D3 and let L = 〈H〉, M = 〈RH〉. Then LM = {e,H,RH,HRH} =

{e,H,RH,R2}. So |LM| = 4. Since 4 does not divide 6 = |D3|, LM is not a subgroup of D3.

Proposition 9.18. Suppose G is a group and H,K ≤ G. Then

|HK| =
|H||K|
|H ∩ K|

.

(This holds whether or not HK is a subgroup of G.)

Proof. Consider the map m : H × K → HK given by (h, k) 7→ hk. This map is clearly
surjective, so |H||K| = |H × K| =

∑
g∈HK |m−1(g)|.

Suppose h ∈ H and k ∈ K, define a map fh,k : H ∩ K → H × K by fh,k(x) = (hx, x−1k).
Since hxx−1k = hk, fh,k(H ∩ K) ⊂ m−1(hk). I claim that, fh,k : H ∩ K → m−1(hk)
is an isomorphism of sets. To see that it is surjective, suppose h′k′ ∈ m−1(hk). Then
h′k′ = hk. So x := h−1h′ = k(k′)−1 ∈ H ∩ K, and h′ = hx, k′ = k′k−1k = x−1k. Therefore,
(h′, k′) = fh,k(x). To see that fh,k is injective, suppose fh,k(x) = fh,k(y) for x, y ∈ H ∩ K.
Then hx = hy. So, canceling h, we see that x = y.

It follows that |m−1(g)| = |H ∩ K| for every g ∈ HK. So |H||K| = |HK||H ∩ K|. �

10. The Index of a Subgroup

Proposition 10.1. Suppose G is a group and K is a subgroup. Suppose x, y ∈ G. Then
xK = yK ⇔ Kx−1 = Ky−1.

Proof. (⇒): Suppose xK = yK. Then there exists k ∈ K such that x = yk. So Kx−1 =

Kk−1y−1 = Ky−1.
(⇐): Follows by the same argument. �

Proposition 10.2. Define a map ϕ : G/K → K\G by xK 7→ Kx−1. (This is well-defined by
Proposition 10.1.) Then ϕ is an isomorphism of sets with inverse ψ : KKx 7→ x−1K.

Proof. The map ψ is well-defined by Proposition 10.1. We have ψ(ϕ(xK)) = ψ(Kx−1) =

xK, and ϕ(ψ(Kx)) = ϕ(x−1K) = Kx. So ϕ and ψ are inverse. �

Definition 10.3. Suppose G is a group and K ≤ G. Then the index of K in G is [G : K] =

|G/K|. By Proposition 10.2 [G : K] = |K\G| as well.

11. Cyclic Groups

Definition 11.1. Let G be a group with idenity e and g ∈ G. Set Eg := {n ∈ Z : gn = e}
and E+

g := Eg ∩ Z+. If E+
g = ∅ then we say that g has infinite order. If E+

g is non-empty,
then we say that the order of g is the smallest element of E+

g . We write |g| or o(g) for the
order of g.

Proposition 11.2. Suppose G = 〈g〉 is a cyclic group and i, j ∈ Z.
(1) If |g| = d < ∞ then gi = g j ⇔ i = j.
(2) If |g| = ∞ then gi = g j ⇔ d|i − j.

Proof. (1): If |g| = d, then gd = e. So if i− j = kd, then gi = gi− jg j = gkdg j = (gd)kg j = g j.
On the other hand, suppose gi = g j. Write i − j = kd + r with k, r ∈ Z and 0 ≤ r < d. Then
e = gig− j = gi− j = gkd+r = (gd)kgr = gr. Since r < d, gr is not equal to e unless r = 0 So
d|i − j.

(2): Suppose gi = g j with i > j. Then gi− j = e. So g has finite order. �
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Corollary 11.3. For d ∈ Z, set dZ : {dn : n ∈ Z}. If |g| = d < ∞, then Eg = dZ. If |g| = ∞,
then Eg = {0}.

Proof. Set j = 0 in Proposition 11.2. �

Corollary 11.4. Suppose G is a cyclic group generated by g ∈ G. Then |G| = |g|.

Proof. If |g| = d, then the elements of e, g, . . . , gd−1 are distinct. If gn is an element of G,
then we can write n = dk + r where r is an integer satisfying 0 ≤ r < d. So gn = gdkgr = gr.
So gn ∈ {e, g, . . . , gd−1}. Therefore G = {e, g, . . . , gd−1} has d elements.

If |g| = ∞, then gi = g j only for i = j. So clearly G has infinitely many elements. �

Theorem 11.5. Every subgroup of a cyclic group is cyclic.

Proof. Suppose G = 〈g〉 and let H ≤ G. If H = {e}, then clearly H is cyclic. So suppose
H , G. Then there exists a non-zero integer i such that gi ∈ H. Since gi ∈ H ⇔ g−i ∈ H,
there is, in fact, a positive integer i such that gi ∈ H. By the well-ordered property, there,
there therefore, exists a smallest positive integer i such that gi ∈ H.

Set h = gi. I claim that H = 〈h〉. Since h ∈ H, 〈h〉 ≤ H. Suppose k ∈ H. Then k = gn

for some integer n. Using the division algorithm, we can write n = ai + r where a, r ∈ Z
and 0 ≤ r < i. So gr = gng−ai = k(gi)−a = kh−a ∈ H. Since i was the smallest positive
integer such that gi ∈ H, it follows that r = 0. So n = ai. Therefore k = ha ∈ 〈h〉. The
result follows. �

11.6. Suppose a is an integer. Then aZ := {an : n ∈ Z} is easily seen to be thee subgroup
of Z generated by a. Since every subgroup of Z is cyclic, every subgroup of Z is of the
form aZ for some a ∈ Z. If a, b ∈ Z, then aZ + bZ = {an + bm : n,m ∈ Z} is a subgroup of
Z.

Theorem 11.7. Suppose a, b ∈ Z with a and b not both 0. Then

aZ + bZ = (a, b)Z.

Moreover, if d is any integer dividing both a and b, then d|(a, b).

Proof. Since any subgroup of a cyclic group is cyclic, aZ+ bZ = cZ for some c ∈ Z. Since
not both a and b are 0, c , 0. Since cZ = (−c)Z, we can assume c > 0. Since a ∈ aZ ≤ cZ,
c|a. Similarly, c|b.

Suppose d|a and d|b. Since c ∈ cZ = aZ+bZ, we can find x, y ∈ Z such that c = ax+by.
So d|c. Therefore d ≤ c. So c = (a, b), the greatest common divisor of c, and we have
shown that d|a and d|b implies that d|c �

Definition 11.8. We say that two integers a, b ∈ Z are relatively prime if (a, b) = 1. In this
case, aZ + bZ = 1Z = Z. So there exists x, y ∈ Z such that ax + by = 1.

Lemma 11.9. Suppose a and b are two integers which are not both 0. Let d = (a, b). Then
a/d and b/d are relatively prime.

Proof. Suppose c|(a/d) and c|(b/d). Then cd|a and cd|b. So cd|(a, b). So cd|d. It follows
that c = ±1. So (a/d, b/d) = 1. �

Lemma 11.10. Suppose a, b, c ∈ Z. Suppose further that a , 0 and (a, b) = 1. Then
a|bc⇔ a|c.

Proof. Suppose a|bc. Set d = bc/a. Pick x, y ∈ Z such that ax + by = 1. Then c =

(ax + by)c = axc + byc = axc + ady = a(xc + dy). So a|c. �
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Theorem 11.11. Suppose G = 〈g〉 is a cyclic group of order n < ∞. Then, for x ∈ Z \ {0},
|gx| = n/(x, n).

Proof. Suppose k ∈ Z. We have (gx)k = e if and only if n|kx. And this happens if and only
if n/(x, n) divides kx/(x, n). Since n/(x, n) and x/(x, n) are relatively prime, this happens if
and only if n/(x, n) divides k. So o(gx) = n/(x, n). �

12. Homomorphisms

Definition 12.1. Suppose G and H are groups. A group homomorphism from G to H
is a homomorphism of magmas f : G → H. We write HomGps(G,H) for the set of
group homomorphisms from G to H. If it is clear from the context, we simply write
Hom(G,H) for the set of group homomorphisms. A group homomorphism f : G → H is
an isomorphism of groups if it is one-one and onto.

Proposition 12.2. Suppose f : G → H is a group homomorphism. Write eG (resp. eH) for
the identity element of G (resp. H). Then

(1) f (eG) = eH;
(2) For g ∈ G, f (g)−1 = f (g−1).

Proof. (1) We have eH = f (eG) f (eG)−1 = f (eGeG) f (eG)−1 = f (eG) f (eG) f (eG)−1 = f (eG).
(2) We have f (g)−1 = f (g)−1eH = f (g)−1 f (eG) = f (g)−1 f (gg−1) = f (g)−1 f (g) f (g−1) =

f (g−1). �

Definition 12.3. Suppose G is a group and g ∈ G. Define a map ψg : G → G by ψg(h) =

ghg−1. Then ψg ∈ Auto G.

Definition 12.4. Suppose f : G → H is a group homomorphism. The kernel of f is the
set

ker f := {g ∈ G : f (g) = e}.
In other words, ker f = f −1({e}).

Proposition 12.5. Suppose f : G → H is a group homomorphism. Let A ≤ G and B ≤ H
be subgroups.

(1) f −1B ≤ G. In particular, ker f ≤ G.
(2) f (A) ≤ H.

Proof. (1) By Proposition 12.2, e ∈ f −1(B). Suppose x, y ∈ f −1(B). Then f (xy−1) =

f (x) f (y−1) = f (x) f (y)−1 ∈ B since f (x), f (y) ∈ B.
(2) We have e ∈ f (A) by Proposition 12.2. Suppose u, v ∈ f (A). Pick x, y ∈ A such

that f (x) = u, f (y) = v. Then xy−1 ∈ A and f (xy−1) = uv−1. So uv−1 ∈ f (A). Therefore
f (A) ≤ H. �

Proposition 12.6. A group homomorphism f : G → H is one-one if and only if ker f = {e}.

Proof. (⇒): Obvious.
(⇐): Suppose g1, g2 ∈ G. Then f (g1) = f (g2) ⇔ f (g1) f (g2)−1 = e ⇔ f (g1g−1

2 ) = e ⇔
g1g−1

2 ∈ ker f . So, if ker f = e, then f (g1) = f (g2)⇔ g1g−1
2 = e⇔ g1 = g2. �

Definition 12.7. Suppose G is a group. A subgroup N ≤ G is normal if, for every g ∈ G,
gNg−1 = N. We write N E G to indicate that N is normal in G.

Proposition 12.8. Suppose N ≤ G. Then the following are equivalent:
(1) For every g ∈ G, gNg−1 ⊂ N;



18

(2) N ≤ G;
(3) For every g ∈ G, gN = Ng;
(4) Every left coset of N in G is a right coset.

Proof. (1)⇒(2): Suppose g ∈ G. Then, assuming (1), N = gg−1Ng−1g ⊂ gNg−1 ⊂ N. So
N ≤ G.

(2)⇒ (3): Suppose N ≤ G and g ∈ G. Then gNg−1 = N. Multipying both sides on the
right by g, we see that gN = Ng

(3)⇒ (4): Obvious.
(4)⇒ (1): Suppose every left coset is a right coset. Pick g ∈ G. Then gN = Nh for some

h ∈ G. So g ∈ gN ⊂ Nh. Therefore, Ng = Nh. So gN = Nh. Therefore gN = Ng. So,
multpliplying on the left by g−1, we see that gNg−1 = N. �

Corollary 12.9. Suppose G is a group. Then {e} and G itself are both normal in G.

Proof. Obvious. �

Proposition 12.10. Suppose G and H are two groups and f : G → H is a group homo-
morphism. If N E H, then f −1(N) E G. In particular, ker f E G.

Proof. Suppose x ∈ f −1N and g ∈ G. Then f (gxg−1) = f (g) f (x) f (g)−1 ∈ N since N E H.
So gxg−1 ∈ f −1N. It follows that f −1N E G. �

Theorem 12.11. Suppose φ : G → H is a group homomorphism with kernel K and N E G.
Write π : G → G/N for the group homomorphism given by π(x) = xN. If N ⊆ K, then there
a unique map ψ : G/N → H such that φ = ψ ◦ π. Moreover, ψ is a group homomorphism.

Proof. Suppose xN = yN. Then x−1y ∈ N. So, since N ⊂ K, φ(x−1y) = e. Therefore,
φ(x) = φ(y). We can therefore define a map ψ : G/N → H by setting ψ(xN) = φ(x).

In fact, if ψ′ : G/N → H is a map satisfying φ = ψ ◦ π, then ψ′(xN) = φ(π(x)) = ψ(xN).
So the map ψ is unique.

To see that ψ is a group homomorphism, let xN, yN be two elements of G/N. Then
ψ(xNyN) = ψ(π(x)π(y)) = ψ(π(xy)) = φ(xy) = φ(x)φ(y) = ψ(xN)ψ(yN). �

Lemma 12.12. Suppose φ : G → H is a group homomorphism with kernel K and suppose
N is a normal subgroup of G contained in K. Then the kernel of the homomorphism
ψ : G/N → H given by the theorem is π(K) = K/N.

Proof. For x ∈ G, we have ψ(π(x)) = e⇔ φ(x) = e. �

Corollary 12.13. Suppose φ : G → H is a group homomorphism with kernel K. Write
π : G → G/K for the group homomorphism given by x 7→ xK. Then there is a unique map
ψ : G/K → H. Moreover, ψ is one-one. If φ : G → H is onto, then ψ is an isomorphism of
groups.

Proof. The map ψ : G/K → H coming from the theorem has kernel π(K) = K/K = {e}.
Therefore, ψ is one-one. Since φ = ψ◦π, if φ is onto then so is ψ. So, if φ is onto with kernel
K, then ψ : G/K → H is one-one and onto. Therefore ψ is a group isomorphism. �

Lemma 12.14. Suppose π : G → Q is a surjective group homomorphism. If N E G, then
π(N) E Q.

Proof. Suppose q ∈ Q and v ∈ π(N). Since π : G → Q is surjective, q = π(g) for some g ∈
G. Similarly, v = π(n) for some n ∈ N. Therefore, since N E G, qvq−1 = π(gng−1) ∈ π(N).
So π(N) E Q. �
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Theorem 12.15. Suppose π : G → Q is a surjective group homomorphism with kernel K.
Write

(1) S Q for the set of all subgroups of Q;
(2) S G,K for the set of all subgroup of G containing N;
(3) NQ for the set of all normal subgroups of Q;
(4) NG,K for the set of all normal subgroups of G containing K.

Then for H ∈ S Q, π−1(H) ∈ S G,K and, for H ∈ NQ, π−1(H) ∈ NG,K . Moreover, the maps
π−1 : S Q → S G,K and π−1 : NQ → NG,K are isomorphisms of sets with inverses given by
H 7→ π(H).

Proof. Suppose H ∈ S Q. Then {e} ⊂ H, so K = π−1(e) ≤ π−1(H). Therefore π−1(H) ∈
S G,K . If H ∈ NQ, then π−1(H) is normal so π−1(H) ∈ NG,K .

Now suppose H ∈ S Q. Then π(π−1H) ≤ H by the definition of π−1. On the other hand,
if h ∈ H, then, since π : G → Q is onto, there exists g ∈ π−1(H) such that π(g) = h. So
h ∈ π(π−1H). This shows that π(π−1(H)) = H. Similarly, if J ∈ S G,K , then by definition
J ≤ π−1(π(J)). And, if g ∈ π−1(π(J)), then π(g) = π( j) for some j ∈ J. So π(g j−1) = e.
Therefore, g j−1 ∈ K. Since K ≤ J, this implies that g = (g j−1) j ∈ J. So, π−1(π(J)) = J.
This shows that the map π−1 : S Q → S G,K is an isomorphism with inverse π.

Now, if H ∈ NG,K , then, by the lemma, π(H) ∈ NQ. The rest of the theorem is now
easy. �

Corollary 12.16. Suppose φ : G → Q is a surjective group homomorphism with kernel
K and N E G is a normal subgroup contained in K. Then the induced homomorphism
ψ : G/N → Q is surjective with kernel π(K).

13. Products

Definition 13.1. Suppose I is a set and, for each i ∈ I, Mi is a magma. Set M =
∏

i∈I Mi.
The product binary operation on M is the operation taking

(mi)(m′i) = (mim′i).

For example, suppose I = {1, 2}. Then M = M1 × M2 and the operation is

(m1,m2)(m′1,m
′
2) = (m1m′1,m2m′2).

Proposition 13.2. Suppose I is a set and, for each i ∈ I, Gi is a group. Set G =
∏

i∈I Gi.
Then G is a group with the product binary operation. If ei is the identity in Gi, then (ei)i∈I

is the identity in G. If (mi) is an element of G, then the inverse of (mi) is m−1
i .

Proof. Obvious. �

13.3. The group G =
∏

i∈I Gi is sometimes called the external direct product of the Gi.
Note that, for every j ∈ I, we have an injective group homomorphism ϕ j : G j → G
sending g ∈ G j to the element (gi) of the product with gi = ei for i , j and gi = g. For
example, if i = 1, 2, we have G = G1 × G2 and we have homomorphisms ϕ1 : G1 → G
given by g 7→ (g, e) and ϕ2 : G2 → G given by g 7→ (e, g). Since ϕ j is injective, the map
G j → ϕ j(G j) is an isomorphism from G j onto a subgroup of G. Moreover, it is easy to see
that ϕ j(G j) E G.

Definition 13.4. Suppose G is a group and h, k ∈ G. The commutator of h and k is
[h, k] := hkh−1k−1. Note that [h, k] = e if and only if hk = kh. In other words, the
commutator of h and k is the identity element if and only if h and k commute.
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Theorem 13.5. Suppose G is a group and H and K are normal subgroups of G such that
H ∩ K = {e}. Then the map ρ : H × K → G given by ρ(h, k) = hk is an injective group
homomorphism.

Proof. Suppose h ∈ H and k ∈ K. Since K is normal in G, hkh−1 ∈ K. Therefore,
[h, k] = hkh−1k−1 ∈ K. Similarly, [h, k] ∈ H. So, since H ∩ K = {e}, [h, k] = e. It follows
that every element h of H commutes with every element k of K. So, suppose (h, k), (h′, k′) ∈
H × K. Then ρ(h, k)ρ(h′, k′) = hkh′k′ = hh′kk′ = ρ(hh′, kk′) = rho((h, k)(h′, k′). So ρ is
a group homomorphism. Suppose ρ(h, k) = e. Then hk = e, so, h ∈ K and k ∈ H. So
(h, k) = (e, e) = e. It follows that ker ρ = {e}. So ρ is injective. �

Definition 13.6. Suppose G is a group and H and K are two subgroups of G. We say that
G is the internal direct product of H and K if

(1) H and K are normal in G,
(2) H ∩ K = {e}, and
(3) HK = G.

Corollary 13.7. A group G is an internal direct product of H and K if and only if the map
ρ : H × K → G given by (h, k) 7→ hk is an isomorphism.

Proof. (⇒): Suppose G is an internal direct product. It follows from Theorem 13.5 that
ρ : H × K → G is an injective group homomorphism. Since HK = G, ρ is also surjective.
So ρ is an isomorphism.

(⇐): Suppose ρ : H × K → G is an isomorphism. Then, since H × {e} and {e} × K are
normal in H × K, H and K are normal in G. The rest is obvious. �

Example 13.8. Suppose G = D2. Set A = 〈R〉 and B = 〈H〉. Then A and B are both cyclic
groups of order 2, so they are both isomorphic to Z/2Z. We have HRH−1 = R−1 = R. So
H and R commute. Thus A and B are both normal. Clearly A ∩ B = {e} and AB = G. So G
is the internal direct product of A and B. It follows that G � Z/2 × Z/2.

We can generalize the notion of internal direct product to more th

Definition 13.9. Suppose G is a group, n is a positive integer, and H1, . . . ,Hn are subgroups
of G. We say G is the internal direct product of the Hi if

(1) for each i, Hi E G;
(2) for each i > 1, Hi ∩ (H1H2 · · ·Hi−1) = {e};
(3) G = H1H2 · · ·Hn.

Proposition 13.10. Suppose G is a group and H and K are subgroups of G. If H normal-
izes K then HK is a subgroup of G.

Proof. Clearly e ∈ HK. Suppose h1, h2 ∈ H and k1, k2 ∈ K. To use the one step sub-
gropus test, we need to show that h1k1(h2k2)−1 ∈ HK. Now h1k1(h2k2)−1 = h1k1k−1

2 h−1
2 =

(h1h−1
2 )(h2k1k−1

2 h−1
2 ). Since H normalizes K, h2k1k−1

2 h−1
2 ∈ K. Therefore HK ≤ G. �

Theorem 13.11. Suppose G is a group, n is a positive integer, and H1, . . . ,Hn are sub-
groups of G. Then G is the internal direct product of the Hi if and only if the map
ρ : H1 × H2 × · · ·Hn → G given by ρ(h1, . . . , hn) = h1h2 . . . hn is an isomorphism.

Proof. The result is obvious for n = 1 and it it follows for n = 2 by what we have already
done. So suppose n > 2 and induct on n. Since each Hi is normal in G, K := H1H2 · · ·Hn−1
is a subgroup of G. By induction, we see that K � H1×· · ·×Hn−1. Then by our hypotheses,
we see that G � K × Hn. It follows that G � H1 × H2 × · · · × Hn. �
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Theorem 13.12. Suppose H and K are groups. Set G = H × K. Suppose g = (h, k) ∈ G.
Then |g| = [|h|, |k|]. (If either |h| or |k| is infinite, then we define the lcm to be infinite.)

Proof. We have gn = e ↔ hn = e and kn = e. This happens if and only if |h||n and |k||n.
And this happens if and only if [|h|, |k|]|n. So |g| = [|h|, |k|]. �

Corollary 13.13 (Chinese Remainder Theorem). Suppose n and m are relatively prime
integers. Then Cn ×Cm � Cnm.

Proof. Let h denote a generator of Cn and k a generator of Cm. Set g = (h, k). Then
|g| = nm = |Cn ×Cm|. So Cn ×Cm = 〈g〉 � Cnm. �

Lemma 13.14. Suppose G is a group and K is a subgroup of G of index 2. Then K is
normal.

Proof. Since K has index 2, G/K has two elements. Thus G = {K, gK} for some g ∈ G. �

14. Groups of Low Order

Recall that we defined Cn as the cyclic subgroup of Dn generated by R.

Lemma 14.1. Every cyclic group of order n is isomorphic to Cn.

Proof. Suppose G = 〈g〉 where g has order n. Then there is a surjective group homomor-
phism ϕ : Z → G such that ϕ(1) = g and kerϕ = nZ. So G is isomorphic to Z/nZ. Since
Cn is cyclic of order n, Cn is isomorphic to Z/nZ as well. So G � Cn. �

Lemma 14.2. Suppose G is a group and, for every g ∈ G, g2 = e. Then G is abelian.

Proof. Suppose h, k ∈ G. Then hk = hk(kh)2 = hkkhkh = hhkh = kh. �

Proposition 14.3. Suppose G is a group of order 4. If G has an element of order 4 then
G � C4. Otherwise G � C2 ×C2.

Proof. If G has an element of order 4, then clearly G is cyclic of order 4. So G � C4.
Otherwise, every element of G has order either 1 or 2. Since e is the only element of order
4, there are three elements of order 2. So let h and k be two distinct elements of order 2.
Set H = 〈h〉 and K = 〈k〉. Then H ∩ K = {e}. So |HK| = 4. Since the order of every
element divides 2, G is abelian. So H and K are normal in G. Therefore, G is the internal
direct sum of H and K. Therefore, G � C2 ×C2. �

Lemma 14.4. Suppose G is a group and K is a subgroup of index 2. Then K E G.

Proof. Since K has index 2, G/K = {K, gK} for some g ∈ G. Since G/K is a partition of
G, it follows that gK = G \ K. So G/K = {K,G \ K}. By Proposition 10.2, |K\G| = 2 as
well. So, by the same reasoning, K\G = {K,G \ K} as well. Therefore every left coset of
K is a right coset. So K is normal. �

Proposition 14.5. Suppose G is a group of order 6. Then G is isomorphic to either C6 or
D3.

Proof. Suppose G has an element of order 6. Then G � C6. Now, suppose that G has no
element of order 6. Then all elements of G have order 1, 2 or 3.

I claim that G has at least one element of order 3. Suppose the contrary to get a contra-
diction. Then G has 1 element of order 1 and 5 of order 2. Moreover, G is abelian. Picking
two elements h and k of order 2 and setting H = 〈h〉,K = 〈k〉 we see that HK ≤ G and
|HK| = 4. This contradicts Lagrange’s theorem since 4 - 6.
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It follows that G has at least one element a of order 3. Set A = 〈a〉. Then a2 ∈ A also
has order 3. If G has another element g of order 3, then A∩〈g〉 = {e}. So |A〈g〉 = 9. This is
a contraction. So we conclude that G has 2 elements of order 3, 3 of order 2 and 1 of order
1.

Let b denote one of the elements of order 2, and set B = 〈b〉. Clearly, A ∩ B = {e}. So
|AB| = 6. Therefore G = AB. Since [G : A] = 2, A E G. Therefore, either bab−1 = a or
bab−1 = a−1. In the first case, ba = ab so G � A×B � C3×C2 � C6. This is a contradiction
to our assumption that G has no element of order 6. So we conclude that bab−1 = a−1.

Now, since G = AB, every element of G can be written uniquely in the form aib j with
i, j with 0 ≤ i ≤ 1 and 0 ≤ j ≤ 1. Define a map ϕ : G → D3 by ϕ(aib j) = RiH j. Clearly, ϕ
is an isomorphism of sets. Suppose that x = aib j and y = akbl. Then

xy = aib jakbl = aib jakb− jb jbk

= aia(−1) jkb j+k = ai+(−1) jkb j+k.

It follows that

ϕ(xy) = Ri+(−1) jkH j+k

= (RiH j)(RkHl) = ϕ(x)ϕ(y).

So ϕ is an isomorphism. �

15. Rings

Definition 15.1. A ring is triple (R, ·,+) constisting of a set R and two binary operations ·
and + satisfying the following:

(1) (R,+) is an abelian group;
(2) (R, ·) is a monoid;
(3) for all r, a, b ∈ R, r(a + b) = ra + rb and (a + b)r = ar + br.

The third part of the definition is called the distributive law. We usually abuse notation
and say that R is a ring rather than writing out (R, ·,+). If R is a ring, then we write R× for
the group of units in the monoid (R, ·). These are called the units in the ring. If (R, ·) is a
commutative monoid then R is said to be commutative. It is traditional to write 0 for the
unit of (R,+) and 1 for the unit in (R, ·). Usually “+” is called the addition in the ring and
“·” is called the multiplication. The group (R,+) is called the underlying abelian group of
R and the monoid (R, ·) is called the underlying multiplicative monoid.

Definition 15.2. If A and B are rings, then a map f : A → B is a ring homomorphism
if f is a homomorphism of abelian groups from (A,+) to (B,+) and a homomorphism of
monoids from (A, ·) to (B, ·). Explicitly, this means the following:

(1) For all x, y ∈ A, f (x + y) = f (x) + f (y);
(2) for all x, y ∈ A, f (xy) = f (x) f (y);
(3) f (1) = 1.

Example 15.3. The set Z of integers forms a ring with the standard addition and multi-
plication. In fact, it might be fair to say that the concept of a ring is an abstraction of the
addition and multiplication in Z.

Example 15.4. Let H be an abelian group. Set EndGps H = HomGps(H,H) and, for brevity,
set R = EndGps H. Define an operation

+ : R × R→ R,
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by ( f + g)(h) = f (h) + g(h). Define an operation

· : R × R→ R,

by ( f g)(h) = ( f ◦ g)(h). Then R is a ring.

Example 15.5. Let (R, ·,+) be a ring. Define a binary operation ∗ on R by a ∗ b = b · a.
Thus, (R, ∗) is the opposite monoid of (R, ·). Then (R, ∗,+) is a ring. We write Rop of this
ring and call it the opposite ring of R.

Proposition 15.6. Let R be a ring. Then, for any r ∈ R, 0r = r0 = 0.

Proof. Suppose r ∈ R. Then r0 = r0 + r0− r0 = r(0 + 0)− r0 = r0− r0 = 0. To show that
0r = 0 either use the opposite reasoning or use the fact the r0 = 0 in Rop. �

If we set R = {0} with the only possible addition and multiplication, then R forms a ring.
This is called the zero ring. Clearly 0 = 1 in the zero ring. The next proposition show that
any ring with 0 = 1 consists of a single element.

Proposition 15.7. Let R be a ring be a ring with more than 1 element. Then 1 ∈ R× but
0 < R×. In particular, 1 , 0.

Proof. Clearly 1 ∈ R× because 1 · 1 = 1. To see that 0 is not in R×, suppose x is an element
of R which is not equal to 0 and assume, to get a contradiction that 0 ∈ R×. �

Definition 15.8. A field is a commuative ring F such that F× = F \ {0}. If F and L are
fields, then a homomorphims σ : L→ F is a ring homomorphism.

Note that the definition implies that a field F is not equal to the 0 ring because, for R a
ring, R× is never empty. (It contains 1).

Proposition 15.9. Let σ : F → L be a field homomorphism. Then σ is one-to-one.

Proof. Suppose σ(a) = σ(b) for a, b ∈ F. If a , b, then a − b , 0. Therefore we can find
x ∈ L such that x(a−b) = 1. But then 1 = σ(x)σ(a−b) = σ(x)(σ(a)−σ(b)) = σ(x) ·0 = 0.
This contradicts the assumption that L is field. �

Exercise 15.1. A division algebra is a a ring D in which D× = D \ {0}. Suppose D is a
division algebra and R is a ring. Show that any homomorphism σ : D→ R is one-to-one.

Exercise 15.2. Let M be a monoid. Suppose m, n ∈ M. Then m is a left inverse of n if
mn = 1. In this case, we also say that n is a right inverse of m. Suppose m ∈ M has both a
left and a right inverse. Show that m is invertible and any left (resp. right) inverse of m is
equal to m−1.

Solution. Suppose lm = 1 = mr. Then r = (lm)r = l(mr) = l.

Exercise 15.3. Let S be a set with two elements. Of the 16 possible magmas of the form
(S ,m), how many are associative? How many are monoids? How many are groups?

16. Introduction to Categories

In the last section, I introduced several algebraic structures of increasing complexity:
magmas, monoids, groups, rings and fields. For each structure, I also introduced a notion
of homomorphisms between the structures. In algebra, this pattern is repeated so often that
it is convenient to have a language in which to express it. The language that mathematicians
have adopted is the language of categories.
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16.1. Set theoretical considerations. In defining categories, I will use the notion of a
class from Gödel-Bernays style set theory. In Gödel-Bernays, we extend the standard set
theory by adding objects called classes. Every set is a class, but not every class is a set. For
example, there is a class Sets consisting of all sets. However, this class is not a set. (If it
were, this would lead to a paradox as discovered by B. Russell.) A class x is a set iff there
is a class S such that x ∈ S . See the appendix on set theory for more on classes.

16.2. Categories. A category C consists of a class obC called the objects of C and a class
morC called the morphisms of C together with two functions s, t : morC → obC × obC
called respectively source and target and one function id : obC → morC called the identity.

17. UFDs

Definition 17.1. Suppose A is a commutative ring, and a, b ∈ A. We say a|b if there exists
c ∈ A such that b = ac.

Proposition 17.2. Suppose A is a commutative ring, and a, b ∈ A. Then a|b⇔ bA ⊂ aA.

Proof. Suppose b = ac and x ∈ bA. Then x = by for some y ∈ A. So x = acy. So
x ∈ aA. �

Lemma 17.3. Suppose A is an integral domain, and let a be a non-zero element of A. Then
ab = ac⇒ b = c.

Proof. ab = ac⇒ a(b − c) = 0⇒ b − c = 0⇒ b = c. �

Definition 17.4. Suppose A is a ring. Two elements a, b ∈ A are similar, written a ∼ b if
there exists u ∈ A× such that a = ub.

Lemma 17.5. Suppose A is an integral domain and a, b ∈ A. Then the following are
equivalent

(1) a|b and b|a;
(2) a ∼ b;
(3) aA = bA.

Proof. (i)⇒ (ii): If a|b and b|a then b = ax and a = by for some x, y ∈ A. Therefore
a = axy. So xy = 1. Therefore x, y ∈ A×. So a ∼ b.

(ii)⇒ (i): If b = au for u ∈ A× then a = bu−1, so b|a and a|b.
(i)⇔ (iii): We have a|b⇔ bA ⊂ aA, and b|a⇔ aA ⊂ bA.

�

Corollary 17.6. Similarity is an equivalence relation on A.

Proof. Obvious. �

Example 17.7. In Z, a ∼ b⇔ |a| = |b|.

Lemma 17.8. Suppose A is a commutative ring. Then A\A× is closed under multiplication.

Proof. Suppose ab = u ∈ A×. Then a(bu−1) = 1. So a is a unit. �

Lemma 17.9. Suppose A is an integral domain. Then the set of non-zero, non-unit ele-
ments of A is closed under multiplication.

Proof. The non-zero elements are closed under multiplication by the definition of an inte-
gral domain, and the non-unit elements of A are closed under multiplication by Lemma 17.8.
So the non-zero, non-unit elements are closed under multiplication. �
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Definition 17.10. Suppose A is an integral domain. A non-zero, non-unit element a of A
is said to be irreducible if the following condition holds:

a = bc⇒ b ∈ A× or c ∈ A×.

Lemma 17.11. Suppose A is a commutative ring, and a ∈ A is irreducible. Then

(1) If a ∼ b then b is irreducible.
(2) if b is irreducible and a|b then a ∼ b.

Proof. (i): Suppose b = au for u ∈ A×. Then b = xy⇒ a = u−1xy⇒ u−1x ∈ A× or y ∈ A×.
But this implies that either x or y is a unit.

(ii): If b = ax with a, b irreducible, then x must be a unit. So a ∼ b. �

Definition 17.12. Suppose A is an integral domain. We say that A is a unique factorization
domain (UFD) if

(1) For every non-zero, non-unit a ∈ A there exist irreducible elements p1, . . . , pn such
that

a = p1 p2 · · · pn.

(2) If a is non-zero, non-unit satisfying

a = p1 · · · pn = q1 · · · qm

a, b ∈ A are irreducible. Then where the pi and qi are all irreducible, then, n = m
and, after permuting that qi, we have pi ∼ qi for all i = 1, · · · , n.

If a satisfies (i) we say that a admits a factorization into irreducibles. If a satisfies (i) and
(ii), we say that a admits an essentially unique factorization into irreducibles.

Example 17.13. The integers are a UFD. If F is a field, then F is a UDF because there are
no non-zero, non-unit elements.

Definition 17.14. Suppose A is a commutative ring. An ascending sequence of ideals is a
sequence {Ik}

∞
k=1 such that

I1 ⊂ I2 ⊂ I3 ⊂ · · · .

Proposition 17.15. Suppose A is a commutative ring and {Ik}
∞
k=1 is an ascending sequence

of ideals. Then I := ∪∞k=1Ik is an ideal in A.

Proof. Clearly 0 ∈ I since 0 = I1. Take Take x ∈ A, y, z ∈ I. Then there exists k, j such that
y ∈ Ik, z ∈ I j. So, setting l = max(k, j), we have y, z ∈ Il. It follows that y − z and xy are in
Il. So y − z and xy are in I. �

Theorem 17.16. Suppose A is a PID and {Ik} is an ascending sequence of ideals. Then
there exists N ∈ Z+ such that IK = IN for all k ≥ N.

Proof. We have I = ∪∞k=1Ik = aA for some a ∈ A. Since a ∈ I, we must have a ∈ IN for
some N ∈ Z+. But then aA ⊂ IN ⊂ Ik ⊂ I = aA for all k ≥ N. �

Remark 17.17. If {Ik} is an ascending sequence of ideals, we say that {Ik} stabilizes if there
exists, N ∈ Z+ such that Ik = IN for k ≥ N. So the Theorem says that any ascending
sequence of ideals stabilizes.

Theorem 17.18. Suppose A is a PID. Then A is a UFD.
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Proof. For the purposes of the proof, let G denote the set of all non-zero, non-unit elements
of A admitting a factorization into irreducibles. Let B denote the complement of G in the
set of non-zero, non-unit elements of A. If x, y ∈ G, then clearly xy ∈ G. So, if a ∈ B and
a = xy with x, y non-units, then either x ∈ B or y ∈ B. Note that if a ∈ B then a must not be
irreducible. So we can always find non-zero‘, non-units x, y ∈ A such that a = xy. Without
loss of generality, we can then assume that x ∈ B. So we have aA ( xA.

We want to show that B = ∅. To get a contradiction, suppose x0 ∈ B. Then x0 = x1y1
for some x1, y1 with x1 ∈ B. So x0A ( x1A. Since x1 ∈ B, we can continue to find x2 ∈ B
such that �

18. Permutation Groups

Suppose X is a set. Recall that the group A(X) of automorphisms of the set X is the
group of all maps f : X → X which are one-one and onto. The group A(X) is also
sometimes called the group of permuations of X and an element σ ∈ A(X) is sometimes
called a permutation.

Definition 18.1. Suppose σ ∈ A(X). We write Xσ := {x ∈ X : σ(x) = x}. An element
x ∈ X is said to be fixed by σ if x ∈ Xσ. A subset S ⊂ X is said to be invariant under σ if
σ(S ) = S . The set suppσ := X \ Xσ is called the support of σ. If σ, τ ∈ A(X) we say that
σ and τ are disjoint if suppσ ∩ supp τ = ∅.

Lemma 18.2. Suppose σ ∈ A(X), and S is invariant under σ. Then X \ S is also invariant
under σ.

Proof. Since σ is one-one and σ(S ) ⊂ S , σ(X \ S ) ⊂ X \ S . Similarly, since σ is onto,
σ : X \ S → X \ S is surjective. �

Corollary 18.3. If σ ∈ A(X), then both Xσ and suppσ are invariant under σ.

Proof. It is obvious that Xσ is invariant and suppσ is its complement. �

Proposition 18.4. Suppose σ, τ ∈ A(X) are disjoint permuations. Then στ = τσ. In other
words, σ and τ commute.

Proof. Suppose x ∈ X. Since σ and τ are disjoint, one of the following must hold:
(1) x ∈ supp τ, x ∈ Xσ;
(2) x ∈ suppσ, x ∈ Xτ;
(3) x ∈ Xσ ∩ Xτ;

In case (1), we τ(x) ∈ supp τ as well since supp τ is invariant under τ. So τ(x) ∈ Xσ.
Therefore σ(τ(x)) = τ(x) = τ(σ(x)).

Similarly, in case (2), σ(τ(x)) = τ(σ(x)). And in case (3), obviously, σ(τ(x)) = x =

τ(σ(x)).
It follows that στ = τσ. �

Proposition 18.5. Suppose S ⊂ X. Write AS (X) := {σ ∈ A(X) : σ(S ) = S }. Then
AS (X) ≤ A(X). Moreover, if S is finite, then AS (X) = {σ ∈ A(X) : σ(S ) ⊂ S }

Proof. Clearly e ∈ AS (X). Suppose σ, τ ∈ AS (X). Then στ−1(S ) = στ−1τ(S ) = σ(S ) = S .
This shows that AS (X) ≤ A(X).

For the last statement, suppose S is finite and σ(S ) ⊂ S . Then the map σ : S → σ(S )
is one-one. So |σ(S )| = |S |. Since S is finite and σ(S ) ⊂ S , this implies σ(S ) = S . �

Proposition 18.6. Suppose σ ∈ Xσ. Then
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(1) σ(Xσ) = Xσ;
(2) Xσ = Xσ−1

;
(3) σ(suppσ) = supp(σ);
(4) suppσ = suppσ−1.

Proof. (1): Obvious.
(2): We have x ∈ Xσ ⇔ σ(x) = x⇔ x = σ−1σ(x) = σ−1(x)⇔ x ∈ Xσ−1

.
(3):

�

19. Modules over a principal ideal domain

Here we deduce the structure of modules over a principal ideal domain essentially fol-
lowing the treatment in Bourbaki.

Lemma 19.1. a, b ∈ A are irreducible. Then Let R be a ring and let M be an R-module. Let
λ : M → R be a surjective homomorphism. Let n ∈ M be an element such that λ(n) = 1.
Set M⊥ = {m ∈ M : λ(m) = 0}. Then

(1) the restriction of λ to Rm induces an isomorphism of Rm with R;
(2) M = M⊥ ⊕ Rm.

Proof. The restriction of λ to Rm is an isomorphism because, for r ∈ R, λ(rm) = rλ(m) = r.
This proves the first assertion.

To prove the second, suppose n ∈ M. Then n = (n−λ(n)m)+λ(n)m. Since λ(n−λ(n)m) =

0 this proves that M = M⊥ + Rm. But the sum is clearly direct by the first assertion. �

Definition 19.2. Let F be a free module over a PID R and let x ∈ F. The content of x is
gcd of all the coordinates of x.

Theorem 19.3. Let R be a PID, let F be a free module over R and let M be a submodule.
Then M is free.


