1. INTRODUCTION

Definition 1.1. Suppose *G* is a group. A *G*-set is a pair (X, ρ) where *X* is a set and $\rho : G \to A(X)$ is a group homomorphism.

1.2. Suppose (X, ρ) is a *G*-set. If $g \in G$ and $x \in X$, then we write gx for $\rho(g)(x)$. Note that, for $g, h \in G$, $(gh)x = \rho(gh)(x) = \rho(g)(\rho(h)(x)) = g(hx)$. Since we can use the notation gx instead of $\rho(g)(x)$, we do not always need to explicitly name the group homomorphism ρ . So, we often refer to a *G*-set simply as *X* instead of as the pair (X, ρ) . If (X, ρ) is a *G*-set, then the map

$$a: G \times X \to X$$
 given by
 $(g, x) \mapsto gx$

is called the *action map*. Note that the action map determines ρ because $\rho(g)(x) = a(g, x)$ for all $x \in X$.

Note also that $a(gh, x) = \rho(gh)(x) = \rho(g)(\rho(h)(x)) = a(g, a(h, x))$, and that $a(e, x) = \rho(e)(x) = id_X(x) = x$ for all $x \in X$.

Proposition 1.3. Suppose X is a set, G is a group, and suppose $a : G \times X \to X$ is a map satisfying

(1.3.1)
$$a(g, a(h, x)) = a(gh, x);$$

(1.3.2)
$$a(e, x) = x$$

for $g, h \in G$ and $x \in X$. For $g \in G$, set $\rho(g)(x) = a(g, x)$. Then (X, ρ) is a G-set with action map a.

Proof. Suppose $g \in G$ and $x \in X$. Then $\rho(g)\rho(g^{-1})(x) = a(g, a(g^{-1}, x)) = a(gg^{-1}, x) = a(e, x) = x$. Therefore $\rho(g) \circ \rho(g^{-1}) = id$. So $\rho(g) \in A(X)$. We have $\rho(gh)(x) = a(gh, x) = a(g, a(h, x)) = \rho(g)(\rho(h)(x)) = (\rho(g) \circ \rho(h))(x)$. So $\rho(gh) = \rho(g) \circ \rho(h)$. Therefore, $\rho : G \to A(X)$ is a group homomorphism.

Definition 1.4. Suppose *X* is a *G*-set. A sub-*G*-set is a subset *Y* of *X* such that, for all $y \in Y$ and $g \in G$, $gy \in Y$.

Proposition 1.5. Suppose X is a G-set and $\{Y_i\}_{i \in I}$ are sub-G-sets. Then $\bigcap_{i \in I} Y_i$ is a sub-G-set.

Proof. Suppose $y \in \bigcap_{i \in I} Y_i$ and $g \in G$. Then, for each $g \in G$, $gy \in Y_i$. So $gy \in \bigcap_{i \in I} Y_i$. \Box

Definition 1.6. Suppose X is a G-set and $x \in X$. The *stabilizer* of x is $G_x := \{g \in G : gx = x\}$. The *orbit* of x is the set $Gx := \{gx : g \in G\}$.

Proposition 1.7. Suppose X is a G-set and $x \in X$.

- (1) $G_x \leq G$;
- (2) The orbit of x is a the intersection of all sub-G-sets of X containing x.

Proof. (1): Clearly, $e \in G_x$, since ex = x. Suppose $g, h \in G_x$. Then $gh^{-1}x = gh^{-1}hx = gx = x$. So $gh^{-1} \in G_x$. Therefore $G_x \leq G$.

(2): First we show that Gx is a sub-*G*-set. To see this, suppose $gx \in Gx$ with $g \in G$ and $x \in X$. Then, if $h \in G$, $h(gx) = (hg)x \in Gx$. So Gx is a sub-*G*-set and clearly Gx contains *x*. On the other hand, suppose *Y* is a sub-*G*-set of *X* containing *x*. Then, for any $g \in G$, $gx \in Y$. So *Y* contains Gx. (2) follows.

Lemma 1.8. Suppose X is a G set. Let R be the set of all pairs $(x, y) \in X \times X$ such that x = gy for some $g \in G$. Then

- (1) *R* is an equivalence relation on *X*.
- (2) If $x \in X$, then the equivalence class [x] of x is the orbit Gx.

Proof. (1): Write $x \sim y$ if $(x, y) \in R$. Then, for $x \in X$, $x \sim x$ since x = ex. If $x \sim y$, then x = gy so $y = g^{-1}x$. So $y \sim x$. Similarly, if $x \sim y$ and $y \sim z$, then x = gy and y = hz for some $g, h \in G$. So x = g(hz) = (gh)z. So $x \sim z$.

(2): We have $y \in [x]$ if and only if y = gx for some $g \in G$. By definition, this holds if and only if $y \in Gx$.

Corollary 1.9. Suppose X is a G-set. Then the set $\{Gx : x \in X\}$ of G-orbits of X is a partition of X.

Proof. Follows directly from Lemma 1.8.

Definition 1.10. Suppose *X* is a *G*-set. We write $G \setminus X$ for the set of *G*-orbits of *X*. By Lemma 1.8, this is the same as X/R (where *R* is the equivalence relation of Lemma 1.8). We say that *X* is a *transitive G*-set if *X* has exactly one orbit.

Example 1.11. Suppose $G = \mathbf{O}(2)$ and $X = \mathbb{R}^2$. Then *G* actions on *X* by multiplication. If $\mathbf{v} = (x, y) \in \mathbb{R}^2$, then the *G*-orbit of \mathbf{v} is the circle of radius $|\mathbf{v}|$ centered at the origin. We have $G_0 = G$. On the other hand, if $\mathbf{v} \neq 0$, then the stabilizer $G_{\mathbf{v}}$ is the group *K* of order 2 generated by the reflection in the line from the origin though \mathbf{v} .

Definition 1.12. Suppose *G* is a group and *H* is a subgroup. Define maps $L : H \to E(G)$, $R : H \to E(G)$ and $I : H \to E(G)$ as follows:

- (1) L(h)(g) = hg;
- (2) $R(h)(g) = gh^{-1}$;
- (3) $I(h)(g) = hgh^{-1}$.

Proposition 1.13. Suppose H is a subgroup of a group G. The maps L, R and I defined above are all group homomorphisms from H to A(G). Consequently, each defines an action of H on G. The action defined by L is called the left action, the action defined by R is called the right action and the action defined by I is called the inner action.

Proof. We have L(hk)(g) = hkg = L(h)(L(k)g). So $L(hk) = L(h) \circ L(k)$. So $L(hh^{-1}) = L(e) = id_G$. Thus $L(h)^{-1} = L(h)^{-1}$. So $L : G \to A(G)$, and L is a group homomorphism.

We have $R(hk)(g) = g(hk)^{-1} = gk^{-1}h^{-1} = R(h)(R(k)g) = (R(h) \circ R(k))(g)$. So $R(hk) = R(h) \circ R(k)$. Since $R(e) = id_G$, this shows that $R(G) \subset A(G)$ and that $R : G \to A(G)$ is a group homomorphism.

The proof for *I* is similar.

Remark 1.14. Suppose $H \le G$ and $g \in G$. The *H*-orbit of *g* under the action *L* is the right coset *Hg*. The *H*-orbit of *g* under the action *R* is the right coset *gH*. If H = G, then the *H*-orbit of *g* under the action *I* is the conjugacy class of *G*.

Definition 1.15. Suppose *G* is a group and *X* and *Y* are *G*-sets. A morphism of *G*-sets is a map $f : X \to Y$ such that, for $g \in G$ and $x \in X$, f(gx) = gf(x).

Proposition 1.16. Suppose G is a group and X, Y and Z are G-sets.

- (1) If $\alpha : X \to Y$ and $\beta : Y \to Z$ are morphisms of G-sets, then so is $\beta \circ \alpha$.
- (2) If $\alpha : X \to Y$ is a morphism of *G*-sets which is one-one and onto then $\alpha^{-1} : Y \to X$ is also a morphism of *G*-sets.

Proof. (1): For $x \in X$ and $g \in G$, we have $(\beta \circ \alpha)(gx) = \beta(\alpha(gx)) = \beta(g\alpha(x)) = g\beta(\alpha(x)) = g(\beta \circ \alpha)(x)$.

(2): Set $\beta = \alpha^{-1}$. Pick $y \in Y$ and set $x = \beta(y)$. Then $\beta(gy) = \beta(g\alpha(x)) = \beta(\alpha(gx)) = gx = g\beta(y)$.

1.17. Suppose *X* and *Y* are two *G*-sets. An *isomorphism* of *G*-sets from *X* to *Y* is a morphism $\alpha : X \to Y$ of *G*-sets which is one-one and onto. By Proposition 1.16, if $\alpha : X \to Y$ is an isomorphism of *G*-sets, then so is $\alpha^{-1} : Y \to X$. We say that two *G*-sets *X* and *Y* are *isomorphic* and write $X \cong Y$ if there exists an isomorphism of *G*-sets from *X* to *Y*. Clearly, $X \cong X$, and, by Proposition 1.16, if $X \cong Y$ and $Y \cong Z$, then $X \cong Z$.

1.18. Suppose *G* is a group and $H \le G$. Then for $x, y \in G$, we have x(yH) = (xy)H. So we can define a map

$$a: G \times G/H \to G/H$$
 given by
 $(x, yH) \mapsto x(yY).$

It is very easy to see that this map satisfies the conditions of Proposition 1.3. So it defines an action of G on G/H. This is the only action we will consider on G/H (unless otherwise specified). Clearly G/H is a transitive G-set with this action.

Theorem 1.19 (Orbit-Stabilizer Theorem). Suppose X is a transitive G-set and $x \in X$. Then there is a map $\varphi : G/G_x \to X$ satisfying $\varphi(gG_x) = gx$. Moreover, φ is an isomorphism of G-sets.

Proof. Suppose $g_1, g_2 \in G$ and that $g_1G_x = g_2G_x$. Then $g_1 = g_2h$ for some $h \in G_x$. So $g_1x = (g_2h)x = g_2(hx) = g_2x$. Therefore, we can define a map $\varphi : G/G_x \to X$ by setting $\varphi(gG_x) = gx$.

The map φ is surjective because X is transitive. So, if $y \in X$, there exists $g \in G$ such that $\varphi(gG_x) = gx = y$.

To see that φ is a morphism of *G*-sets, suppose $a, b \in G$. Then $\varphi(a(bG_x)) = \varphi((ab)G_x) = abx = a(bx) = a\varphi(bG_x)$.

Finally, to show that φ is one-one, suppose $\varphi(aG_x) = \varphi(bG_x)$. Then ax = bx. So $x = a^{-1}bx$. So $a^{-1}b \in G_x$. Therefore, $b \in aG_x$. So $aG_x = bG_x$.