1. Introduction

Definition 1.1. Suppose G is a group. A G-set is a pair (X, ρ) where X is a set and $\rho: G \rightarrow$ $A(X)$ is a group homomorphism.
1.2. Suppose (X, ρ) is a G-set. If $g \in G$ and $x \in X$, then we write $g x$ for $\rho(g)(x)$. Note that, for $g, h \in G,(g h) x=\rho(g h)(x)=\rho(g)(\rho(h)(x))=g(h x)$. Since we can use the notation $g x$ instead of $\rho(g)(x)$, we do not always need to explicitly name the group homomorphism ρ. So, we often refer to a G-set simply as X instead of as the pair (X, ρ). If (X, ρ) is a G-set, then the map

$$
\begin{aligned}
a: G \times X & \rightarrow X \text { given by } \\
(g, x) & \mapsto g x
\end{aligned}
$$

is called the action map. Note that the action map determines ρ because $\rho(g)(x)=a(g, x)$ for all $x \in X$.

Note also that $a(g h, x)=\rho(g h)(x)=\rho(g)(\rho(h)(x))=a(g, a(h, x))$, and that $a(e, x)=$ $\rho(e)(x)=\operatorname{id}_{X}(x)=x$ for all $x \in X$.
Proposition 1.3. Suppose X is a set, G is a group, and suppose $a: G \times X \rightarrow X$ is a map satisfying

$$
\begin{align*}
a(g, a(h, x)) & =a(g h, x) ; \tag{1.3.1}\\
a(e, x) & =x \tag{1.3.2}
\end{align*}
$$

for $g, h \in G$ and $x \in X$. For $g \in G$, set $\rho(g)(x)=a(g, x)$. Then (X, ρ) is a G-set with action map a.

Proof. Suppose $g \in G$ and $x \in X$. Then $\rho(g) \rho\left(g^{-1}\right)(x)=a\left(g, a\left(g^{-1}, x\right)\right)=a\left(g g^{-1}, x\right)=$ $a(e, x)=x$. Therefore $\rho(g) \circ \rho\left(g^{-1}\right)=$ id. So $\rho(g) \in A(X)$. We have $\rho(g h)(x)=a(g h, x)=$ $a(g, a(h, x))=\rho(g)(\rho(h)(x))=(\rho(g) \circ \rho(h))(x)$. So $\rho(g h)=\rho(g) \circ \rho(h)$. Therefore, $\rho: G \rightarrow$ $A(X)$ is a group homomorphism.

Definition 1.4. Suppose X is a G-set. A sub- G-set is a subset Y of X such that, for all $y \in Y$ and $g \in G, g y \in Y$.

Proposition 1.5. Suppose X is a G-set and $\left\{Y_{i}\right\}_{i \in I}$ are sub- G-sets. Then $\cap_{i \in I} Y_{i}$ is a sub- G set.

Proof. Suppose $y \in \cap_{i \in I} Y_{i}$ and $g \in G$. Then, for each $g \in G, g y \in Y_{i}$. So $g y \in \cap_{i \in I} Y_{i}$.
Definition 1.6. Suppose X is a G-set and $x \in X$. The stabilizer of x is $G_{x}:=\{g \in G: g x=$ $x\}$. The orbit of x is the set $G x:=\{g x: g \in G\}$.
Proposition 1.7. Suppose X is a G-set and $x \in X$.
(1) $G_{x} \leq G$;
(2) The orbit of x is a the intersection of all sub- G-sets of X containing x.

Proof. (1): Clearly, $e \in G_{x}$, since $e x=x$. Suppose $g, h \in G_{x}$. Then $g h^{-1} x=g h^{-1} h x=$ $g x=x$. So $g h^{-1} \in G_{x}$. Therefore $G_{x} \leq G$.
(2): First we show that $G x$ is a sub- G-set. To see this, suppose $g x \in G x$ with $g \in G$ and $x \in X$. Then, if $h \in G, h(g x)=(h g) x \in G x$. So $G x$ is a sub- G-set and clearly $G x$ contains x. On the other hand, suppose Y is a sub- G-set of X containing x. Then, for any $g \in G$, $g x \in Y$. So Y contains $G x$. (2) follows.

Lemma 1.8. Suppose X is a G set. Let R be the set of all pairs $(x, y) \in X \times X$ such that $x=$ gy for some $g \in G$. Then
(1) R is an equivalence relation on X.
(2) If $x \in X$, then the equivalence class $[x]$ of x is the orbit $G x$.

Proof. (1): Write $x \sim y$ if $(x, y) \in R$. Then, for $x \in X, x \sim x$ since $x=e x$. If $x \sim y$, then $x=g y$ so $y=g^{-1} x$. So $y \sim x$. Similarly, if $x \sim y$ and $y \sim z$, then $x=g y$ and $y=h z$ for some $g, h \in G$. So $x=g(h z)=(g h) z$. So $x \sim z$.
(2): We have $y \in[x]$ if and only if $y=g x$ for some $g \in G$. By definition, this holds if and only if $y \in G x$.
Corollary 1.9. Suppose X is a G-set. Then the set $\{G x: x \in X\}$ of G-orbits of X is a partition of X.

Proof. Follows directly from Lemma 1.8.
Definition 1.10. Suppose X is a G-set. We write $G \backslash X$ for the set of G-orbits of X. By Lemma 1.8, this is the same as X / R (where R is the equivalence relation of Lemma 1.8). We say that X is a transitive G-set if X has exactly one orbit.

Example 1.11. Suppose $G=\mathbf{O}(2)$ and $X=\mathbb{R}^{2}$. Then G actions on X by multiplication. If $\mathbf{v}=(x, y) \in \mathbb{R}^{2}$, then the G-orbit of \mathbf{v} is the circle of radius $|\mathbf{v}|$ centered at the origin. We have $G_{0}=G$. On the other hand, if $\mathbf{v} \neq 0$, then the stabilizer $G_{\mathbf{v}}$ is the group K of order 2 generated by the reflection in the line from the origin though \mathbf{v}.

Definition 1.12. Suppose G is a group and H is a subgroup. Define maps $L: H \rightarrow E(G)$, $R: H \rightarrow E(G)$ and $I: H \rightarrow E(G)$ as follows:
(1) $L(h)(g)=h g$;
(2) $R(h)(g)=g h^{-1}$;
(3) $I(h)(g)=h g h^{-1}$.

Proposition 1.13. Suppose H is a subgroup of a group G. The maps L, R and I defined above are all group homomorphisms from H to $A(G)$. Consequently, each defines an action of H on G. The action defined by L is called the left action, the action defined by R is called the right action and the action defined by I is called the inner action.
Proof. We have $L(h k)(g)=h k g=L(h)(L(k) g)$. So $L(h k)=L(h) \circ L(k)$. So $L\left(h h^{-1}\right)=$ $L(e)=\mathrm{id}_{G}$. Thus $L(h)^{-1}=L(h)^{-1}$. So $L: G \rightarrow A(G)$, and L is a group homomorphism.

We have $R(h k)(g)=g(h k)^{-1}=g k^{-1} h^{-1}=R(h)(R(k) g)=(R(h) \circ R(k))(g)$. So $R(h k)=$ $R(h) \circ R(k)$. Since $R(e)=\operatorname{id}_{G}$, this shows that $R(G) \subset A(G)$ and that $R: G \rightarrow A(G)$ is a group homomorphism.

The proof for I is similar.
Remark 1.14. Suppose $H \leq G$ and $g \in G$. The H-orbit of g under the action L is the right coset $H g$. The H-orbit of g under the action R is the right coset $g H$. If $H=G$, then the H-orbit of g under the action I is the conjugacy class of G.
Definition 1.15. Suppose G is a group and X and Y are G-sets. A morphism of G-sets is a map $f: X \rightarrow Y$ such that, for $g \in G$ and $x \in X, f(g x)=g f(x)$.
Proposition 1.16. Suppose G is a group and X, Y and Z are G-sets.
(1) If $\alpha: X \rightarrow Y$ and $\beta: Y \rightarrow Z$ are morphisms of G-sets, then so is $\beta \circ \alpha$.
(2) If $\alpha: X \rightarrow Y$ is a morphism of G-sets which is one-one and onto then $\alpha^{-1}: Y \rightarrow X$ is also a morphism of G-sets.

Proof. (1): For $x \in X$ and $g \in G$, we have $(\beta \circ \alpha)(g x)=\beta(\alpha(g x))=\beta(g \alpha(x))=g \beta(\alpha(x))=$ $g(\beta \circ \alpha)(x)$.
(2): Set $\beta=\alpha^{-1}$. Pick $y \in Y$ and set $x=\beta(y)$. Then $\beta(g y)=\beta(g \alpha(x))=\beta(\alpha(g x))=$ $g x=g \beta(y)$.
1.17. Suppose X and Y are two G-sets. An isomorphism of G-sets from X to Y is a morphism $\alpha: X \rightarrow Y$ of G-sets which is one-one and onto. By Proposition 1.16, if $\alpha: X \rightarrow Y$ is an isomorphism of G-sets, then so is $\alpha^{-1}: Y \rightarrow X$. We say that two G-sets X and Y are isomorphic and write $X \cong Y$ if there exists an isomorphism of G-sets from X to Y. Clearly, $X \cong X$, and, by Proposition 1.16, if $X \cong Y$ and $Y \cong Z$, then $X \cong Z$.
1.18. Suppose G is a group and $H \leq G$. Then for $x, y \in G$, we have $x(y H)=(x y) H$. So we can define a map

$$
\begin{aligned}
a: G \times G / H & \rightarrow G / H \text { given by } \\
(x, y H) & \mapsto x(y Y) .
\end{aligned}
$$

It is very easy to see that this map satisfies the conditions of Proposition 1.3. So it defines an action of G on G / H. This is the only action we will consider on G / H (unless otherwise specified). Clearly G / H is a transitive G-set with this action.
Theorem 1.19 (Orbit-Stabilizer Theorem). Suppose X is a transitive G-set and $x \in X$. Then there is a map $\varphi: G / G_{x} \rightarrow X$ satisfying $\varphi\left(g G_{x}\right)=g x$. Moreover, φ is an isomorphism of G-sets.

Proof. Suppose $g_{1}, g_{2} \in G$ and that $g_{1} G_{x}=g_{2} G_{x}$. Then $g_{1}=g_{2} h$ for some $h \in G_{x}$. So $g_{1} x=\left(g_{2} h\right) x=g_{2}(h x)=g_{2} x$. Therefore, we can define a $\operatorname{map} \varphi: G / G_{x} \rightarrow X$ by setting $\varphi\left(g G_{x}\right)=g x$.

The map φ is surjective because X is transitive. So, if $y \in X$, there exists $g \in G$ such that $\varphi\left(g G_{x}\right)=g x=y$.

To see that φ is a morphism of G-sets, suppose $a, b \in G$. Then $\varphi\left(a\left(b G_{x}\right)\right)=\varphi\left((a b) G_{x}\right)=$ $a b x=a(b x)=a \varphi\left(b G_{x}\right)$.

Finally, to show that φ is one-one, suppose $\varphi\left(a G_{x}\right)=\varphi\left(b G_{x}\right)$. Then $a x=b x$. So $x=a^{-1} b x$. So $a^{-1} b \in G_{x}$. Therefore, $b \in a G_{x}$. So $a G_{x}=b G_{x}$.

