HW1, due Wednesday, February 5 Math 403, Spring 2014 Patrick Brosnan, Instructor

1. Use the principle of mathematical induction to show that $1+2+\cdots+n = n(n+1)/2$ for any positive integer *n*.

2. Suppose n is an integer strictly greater than 1. Using the Fundamental Theorem of Arithmetic write

$$n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$

where the p_i are distinct primes and the a_i are positive integers. For each prime number p define $v_p(n)$ to be a_i if $p = p_i$ for some i. Define $v_p(n) = 0$ otherwise.

Suppose m is another integer strictly greater than 1. Show that, for all primes p, we have

$$\mathbf{v}_p(nm) = \mathbf{v}_p(n) + \mathbf{v}_p(m).$$

3. For each prime p, set $v_p(1) = 0$. If n is a negative integer, set $v_p(n) = v_p(-n)$. Suppose a and b are non-zero integers. Show that a|b if and only, for all primes p, $v_p(a) \le v_p(b)$.

4. Suppose *n* and *m* are two positive integers and let $S = \{p_1, ..., p_k\}$ be a finite set of primes containing all of the prime factors of *n* and all the prime factors of *m*. Using the Fundamental Theorem of Arithmetic write

$$n = \prod_{i=1}^{k} p_i^{a_i},$$
$$m = \prod_{i=1}^{k} p_i^{b_i}.$$

 \mathbf{Set}

$$(n,m) = \prod_{i=1}^{k} p_i^{\min(a_i,b_i)}$$
$$[n,m] = \prod_{i=1}^{k} p_i^{\max(a_i,b_i)}.$$

- (1) Suppose that *x* is an integer such that x|n and x|m. Show that x|(n,m).
- (2) Suppose *y* is an integer such that n|y and m|y. Show that [n,m]|y.
- (3) Show that (n,m)[n,m] = nm.
- **5.** Suppose $f : X \to Y$ and $g : Y \to Z$ are functions. Prove the following:
 - (1) If f and g are one-one, then so is $g \circ f$.
 - (2) If f and g are onto, so is $g \circ f$.
 - (3) If $g \circ f$ is one-one, then so is f.
 - (4) If $g \circ f$ is onto, then so is g.