HW1, due Wednesday, February 5
 Math 403, Spring 2014
 Patrick Brosnan, Instructor

1. Use the principle of mathematical induction to show that $1+2+\cdots+n=$ $n(n+1) / 2$ for any positive integer n.
2. Suppose n is an integer strictly greater than 1. Using the Fundamental Theorem of Arithmetic write

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}
$$

where the p_{i} are distinct primes and the a_{i} are positive integers. For each prime number p define $v_{p}(n)$ to be a_{i} if $p=p_{i}$ for some i. Define $v_{p}(n)=0$ otherwise.

Suppose m is another integer strictly greater than 1. Show that, for all primes p, we have

$$
v_{p}(n m)=v_{p}(n)+v_{p}(m)
$$

3. For each prime p, set $v_{p}(1)=0$. If n is a negative integer, set $v_{p}(n)=v_{p}(-n)$. Suppose a and b are non-zero integers. Show that $a \mid b$ if and only, for all primes $p, v_{p}(a) \leq v_{p}(b)$.
4. Suppose n and m are two positive integers and let $S=\left\{p_{1}, \ldots, p_{k}\right\}$ be a finite set of primes containing all of the prime factors of n and all the prime factors of m. Using the Fundamental Theorem of Arithmetic write

$$
\begin{aligned}
n & =\prod_{i=1}^{k} p_{i}^{a_{i}} \\
m & =\prod_{i=1}^{k} p_{i}^{b_{i}}
\end{aligned}
$$

Set

$$
\begin{aligned}
& (n, m)=\prod_{i=1}^{k} p_{i}^{\min \left(a_{i}, b_{i}\right)} \\
& {[n, m]=\prod_{i=1}^{k} p_{i}^{\max \left(a_{i}, b_{i}\right)}}
\end{aligned}
$$

(1) Suppose that x is an integer such that $x \mid n$ and $x \mid m$. Show that $x \mid(n, m)$.
(2) Suppose y is an integer such that $n \mid y$ and $m \mid y$. Show that $[n, m] \mid y$.
(3) Show that $(n, m)[n, m]=n m$.
5. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions. Prove the following:
(1) If f and g are one-one, then so is $g \circ f$.
(2) If f and g are onto, so is $g \circ f$.
(3) If $g \circ f$ is one-one, then so is f.
(4) If $g \circ f$ is onto, then so is g.

