HW2, due Wednesday, February 12 Math 403, Spring 2014 Patrick Brosnan, Instructor

1. Let $M_2(\mathbb{R})$ denote the set of 2×2 -matrices with coefficients in the real numbers, and let

 $*: M_2(\mathbb{R}) \times M_2(\mathbb{R})$

denote the binary operation X * Y = XY - YX where *XY* denotes the matrix multiplication of *X* and *Y*. Show that * is not associative. The operation * is known as the *Lie bracket* operation. Usually X * Y is written as [X, Y].

2. Suppose G is a group with identity element e. If $g^2 = e$ for all $g \in G$, show that G is abelian.

3. Suppose *M* is a monoid with binary operation * and identity element *e*. We say that an element $m \in M$ is *central* if, for all $n \in M$, m * n = n * m. The center of *M* is the set Z(M) of all central elements of *M*. Show that Z(M) is a submonoid of *M*. That is, show that $e \in Z(M)$ and that, if $m, n \in Z(M)$ then $m * n \in Z(M)$.

4. Let *M* denote the monoid $M_2(\mathbb{R})$. What is Z(M)? Prove your answer.