HW3, due Wednesday, February 19
 Math 403, Spring 2014
 Patrick Brosnan, Instructor

1. Suppose G is a group and $g \in G$. The centralizer of $g \in G$ is the subset $C(g)=$ $\{h \in G: g h=h g\}$. If S is a subset of G, then the centralizer of S is the subset $C(S)=\cap_{g \in S} C(g)$.
(1) Show that $C(g) \leq G$ for every $g \in G$.
(2) Show that $C(S) \leq G$ for every subset S of G.
(3) Suppose $G=\mathbf{G L}_{2}(\mathbb{R})$. What is the centralizer of the matrix

$$
g=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) ?
$$

(4) $\operatorname{In} \mathbf{G L}_{2}(\mathbb{R})$, what is the centralizer of

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) ?
$$

(5) Again in $\mathbf{G L}_{2}(\mathbf{R})$, what is the centralizer of

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) ?
$$

2. Suppose G is a group. The center of G is the subset $Z(G)=\cap_{g \in G} C(g)$. Show that the center is a subgroup of G. Is the center abelian?
3. Suppose G is a group and $g \in G$. Is $C(g)$ always abelian?
4. Suppose G is a group and S is a subset of G. We say that S is a set of commuting elements of G if, for all $x, y \in S, x y=y x$. Show that if S is a set of commuting elements then the subgroup $\langle S\rangle$ is abelian.
