HW3, due Wednesday, February 19 Math 403, Spring 2014 Patrick Brosnan, Instructor

1. Suppose *G* is a group and $g \in G$. The *centralizer* of $g \in G$ is the subset $C(g) = \{h \in G : gh = hg\}$. If *S* is a subset of *G*, then the centralizer of *S* is the subset $C(S) = \bigcap_{g \in S} C(g)$.

- (1) Show that $C(g) \leq G$ for every $g \in G$.
- (2) Show that $C(S) \leq G$ for every subset *S* of *G*.
- (3) Suppose $G = \mathbf{GL}_2(\mathbb{R})$. What is the centralizer of the matrix

$$g = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}?$$

(4) In $GL_2(\mathbb{R})$, what is the centralizer of

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}?$$

(5) Again in $GL_2(\mathbf{R})$, what is the centralizer of

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}?$$

2. Suppose *G* is a group. The center of *G* is the subset $Z(G) = \bigcap_{g \in G} C(g)$. Show that the center is a subgroup of *G*. Is the center abelian?

3. Suppose *G* is a group and $g \in G$. Is C(g) always abelian?

4. Suppose *G* is a group and *S* is a subset of *G*. We say that *S* is a set of commuting elements of *G* if, for all $x, y \in S$, xy = yx. Show that if *S* is a set of commuting elements then the subgroup $\langle S \rangle$ is abelian.