HW4, due Wednesday, March 5 Math 403, Spring 2014 Patrick Brosnan, Instructor

1. Let $O_2 = O_2(\mathbb{R})$ denote the second orthogonal group. Suppose $T \in O_2$ and det T = -1.

- (1) Show that $T^2 = id$.
- (2) Recall that $v(\theta) := (\cos \theta, \sin \theta) \in \mathbb{R}^2$. Show that there exists a unique $\theta \in [0, \pi)$ such that $Tv(\theta) = v(\theta)$.
- (3) Suppose $S \in O_2$ is an element such that det S = -1 and $Sv(\theta) = v(\theta)$. Show that S = T.

We call the element T such that det T = -1 and $Tv(\theta) = v(\theta)$ the *reflection* through the line spanned by $v(\theta)$. By (3), this reflection is unique so we write it as $H(\theta)$. Write $H(\theta)$ in the form $R(\eta)H^i$ for some $\eta \in [0, 2\pi), i \in \{0, 1\}$.

2. Suppose $z \in \mathbb{R}$. The *floor* of z is the greatest integer $\lfloor z \rfloor$ which is less than or equal to z. Another way to say this is to say that $\lfloor z \rfloor$ is the unique integer such that

 $\lfloor z \rfloor \le z < \lfloor z \rfloor + 1$. For example, $\lfloor 3.1 \rfloor = \lfloor 3 \rfloor = 3$, while $\lfloor -3.1 \rfloor = \lfloor -4 \rfloor = -4$. Suppose $x, y \in \mathbb{R}$ and y > 0. Show that

$$0 \le x - \lfloor \frac{x}{y} \rfloor y < y.$$

3. Suppose *G* is a finite subgroup of **SO**₂ with |G| = n. Show that *G* is cyclic. In fact, show that $G = \langle R(2\pi/n) \rangle$.

Hint: If |G| > 1, show that there is a smallest $\theta \in (0, 2\pi)$ such that $R(\theta) \in G$. Use the previous problem to show that $G = \langle R(\theta) \rangle$.

4. Suppose G is a group and $x, y \in G$. We say that x is *conjugate to* y if there exists $g \in G$ such that $gxg^{-1} = y$. The *conjugacy class* of x is the set $cl(x) = \{z \in G : z \text{ is conjugate to } x\}$.

- (1) Suppose *x* and *y* are conjugate. Show that the order of *x* is equal to the order of *y*.
- (2) Show that $P = {cl(x) : x \in G}$ is a partition of *G*.

5 (20 points). For each non-negative integer *n*, write $X_n := \{x \in \mathbb{N} : x < n\} = \{0, 1, \dots, n-1\}$. Let p_n denote the number of partitions of X_n . Show that $p_0 = p_1 = 1$ and, for $n \ge 1$,

$$p_{n+1} = \sum_{k=0}^n \binom{n}{k} p_k.$$

Use the formula to compute p_n for $n \le 5$.

Hint: Remember that $\binom{n}{k}$ is the number of *k*-element subsets of X_n .