HW4, due Wednesday, March 5

Math 403, Spring 2014
Patrick Brosnan, Instructor

1. Let $\mathbf{O}_{2}=\mathbf{O}_{2}(\mathbb{R})$ denote the second orthogonal group. Suppose $T \in \mathbf{O}_{2}$ and $\operatorname{det} T=-1$.
(1) Show that $T^{2}=\mathrm{id}$.
(2) Recall that $v(\theta):=(\cos \theta, \sin \theta) \in \mathbb{R}^{2}$. Show that there exists a unique $\theta \in[0, \pi)$ such that $T v(\theta)=v(\theta)$.
(3) Suppose $S \in \mathbf{O}_{2}$ is an element such that $\operatorname{det} S=-1$ and $\operatorname{Sv}(\theta)=v(\theta)$. Show that $S=T$.
We call the element T such that $\operatorname{det} T=-1$ and $T v(\theta)=v(\theta)$ the reflection through the line spanned by $v(\theta)$. By (3), this reflection is unique so we write it as $H(\theta)$. Write $H(\theta)$ in the form $R(\eta) H^{i}$ for some $\eta \in[0,2 \pi), i \in\{0,1\}$.
2. Suppose $z \in \mathbb{R}$. The floor of z is the greatest integer $\lfloor z\rfloor$ which is less than or equal to z. Another way to say this is to say that $\lfloor z\rfloor$ is the unique integer such that

$$
\lfloor z\rfloor \leq z<\lfloor z\rfloor+1
$$

For example, $\lfloor 3.1\rfloor=\lfloor 3\rfloor=3$, while $\lfloor-3.1\rfloor=\lfloor-4\rfloor=-4$. Suppose $x, y \in \mathbb{R}$ and $y>0$. Show that

$$
0 \leq x-\left\lfloor\frac{x}{y}\right\rfloor y<y
$$

3. Suppose G is a finite subgroup of $\mathbf{S O}_{2}$ with $|G|=n$. Show that G is cyclic. In fact, show that $G=\langle R(2 \pi / n)\rangle$.

Hint: If $|G|>1$, show that there is a smallest $\theta \in(0,2 \pi)$ such that $R(\theta) \in G$. Use the previous problem to show that $G=\langle R(\theta)\rangle$.
4. Suppose G is a group and $x, y \in G$. We say that x is conjugate to y if there exists $g \in G$ such that $g x g^{-1}=y$. The conjugacy class of x is the set $\operatorname{cl}(x)=\{z \in$ $G: z$ is conjugate to $x\}$.
(1) Suppose x and y are conjugate. Show that the order of x is equal to the order of y.
(2) Show that $P=\{\operatorname{cl}(x): x \in G\}$ is a partition of G.

5 (20 points). For each non-negative integer n, write $X_{n}:=\{x \in \mathbb{N}: x<n\}=$ $\{0,1, \cdots, n-1\}$. Let p_{n} denote the number of partitions of X_{n}. Show that $p_{0}=$ $p_{1}=1$ and, for $n \geq 1$,

$$
p_{n+1}=\sum_{k=0}^{n}\binom{n}{k} p_{k} .
$$

Use the formula to compute p_{n} for $n \leq 5$.
Hint: Remember that $\binom{n}{k}$ is the number of k-element subsets of X_{n}.

