HW5, due Wednesday, March 26 Math 403, Spring 2014 Patrick Brosnan, Instructor

1. Suppose $\phi : G \to H$ is a surjective group homomorphism and $|G| < \infty$. Show that the order of *H* divides the order of *G*.

2. Suppose *G* is a finite group and *N* is a normal subgroup. Write $\pi : G \to G/N$ for the map given by $g \mapsto gN$. Show that, for $g \in G$, $|\pi(g)|$ divides |g|.

3. Suppose *G* is a group and $H, K \leq G$. We say that *H* and *K* are *conjugate* in *G* if there exists a $g \in G$ such that $H = gKg^{-1}$. Write $H \sim K$ if *H* and *K* are conjugate.

- (1) Show that $H \sim H$, that $H \sim K$ implies $K \sim H$ and that $H_1 \sim H_2$ and $H_2 \sim H_3$ implies that $H_1 \sim H_3$. In other words, show that \sim is an equivalence relation on the set of subgroups of *G*.
- (2) Show that conjugate subgroups are isomorphic.

4. Suppose G is a finite subgroup of $O_2(\mathbb{R})$. Show that G is conjugate to a subgroup of D_n for some *n*.

5. Suppose G is a finite abelian group and p is a prime dividing the order of G.

- (1) Show that, if *G* is cyclic, then *G* contains an element of order *p*.
- (2) Suppose *H* is a subgroup of *G* and suppose G/H contains an element of order *p*. Show that *G* contains an element of order *p*.
- (3) Using induction on the order of G, show that every finite abelian group of order divisible by p contains an element of order p.