HW6, due Wednesday, April 2 Math 403, Spring 2014 Patrick Brosnan, Instructor

1. Suppose *G* is a an abelian group of order 8. Suppose $g^2 = e$ for every element of *G*. Show that $G \cong C_2 \times C_2 \times C_2$.

2. Suppose *G* is a non-cyclic abelian group of order 8, and suppose that *G* contains an element *x* of order 4. Set $H = \langle x \rangle$.

- (1) Show that $g^2 \in H$ for all $g \in G$. (**Hint:** *H* is normal and *G*/*H* has order 2.)
- (2) Show that, if g is as above, then g^2 is either e or x^2 .
- (3) Show that there exists a $y \in G$ such that $y \notin H$ and $y^2 = e$.
- (4) Set $K = \langle y \rangle$ with y as above. Show that G is the internal direct product of H and K, and conclude that $G \cong C_4 \times C_2$.

3. Suppose that *G* is an abelian group or order 8. Show that *G* is isomorphic to exactly one of the following: $C_8, C_4 \times C_2, C_2 \times C_2 \times C_2$.

4. Suppose *G* is a non-abelian group of order 8 and suppose *G* has at least 2 elements of order 2.

- (1) Show that G has an element x of order 4 and an element y of order 2 such that $y \notin \langle x \rangle$.
- (2) Show that, with *x* and *y* as above, $yxy = x^{-1}$.
- (3) (**Bonus:** 5 points) Show that $G \cong D_4$.