HW1, due Wednesday, April 9

Math 403, Spring 2014

Patrick Brosnan, Instructor

Recall from class that an action of a group G on a set X is group homomorphism $\rho: G \rightarrow A(X)$. A pair (X, ρ) where X is a group and $\rho: G \rightarrow A(X)$ is a group homomorphism is called a G-set. If (X, ρ) is a G-set and if $g \in G, x \in X$, then we write $g x$ for $\rho(g)(x)$. The stabilizer of an element $x \in X$ is the subgroup $G_{x}=\{g \in G: g x=x\}$ and the orbit of x is $G x$. A G-set is said to be transitive if it has exactly one orbit.

Suppose G is a group. One example of a group action is the action of $G \times G$ on G given by $\rho(x, y)(g)=x g y^{-1}$.

1. Suppose G is a group and $\rho: G \times G \rightarrow A(G)$ is the group action defined above. Show that the stabilizer of an element $g \in G$ is the set

$$
\left\{\left(g h g^{-1}, h\right): h \in G\right\} .
$$

2. Suppose $\rho: G \rightarrow \mathbb{Z} / 10 \mathbb{Z}$ is a surjective group homomorphism Show that G has normal subgroups of index 2,5 and 10 .
3. Let \mathbb{C} denote the complex numbers. So $\mathbb{C}=\{x+i y: x, y \in \mathbb{R}\}$ where i denotes the imaginary number $\sqrt{-1}$. Let $G=\mathbf{G L}_{2}(\mathbb{C})$ denote the set of 2×2 matrices with entries in \mathbb{C}. It is easy to see that G is a group under matrixmultiplication. Let Q denote the subgroup of G generated by the matrices

$$
\begin{aligned}
X & =\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) ; \\
Y & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

Write Id for the identity matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

(1) Show that $X^{2}=Y^{2}=(X Y)^{2}=-\mathrm{Id}$.
(2) Show $X Y=-Y X$.
(3) Set $Z=X Y$, and show that $Q=\{ \pm \mathrm{Id}, \pm X, \pm Y, \pm Z\}$ so that Q has 8 elements.
(4) Show that Q is non-abelian and that Q is not isomorphic to \mathbf{D}_{4}.
4. Suppose G is a group. Recall that the commutator of two elements $x, y \in G$ is the element $[x, y]=x y x^{-1} y^{-1}$ of G. The commutator of G is the subgroup $[G, G]$ of G generated by all commutators $[x, y]$ with $x, y \in G$.
(1) Show that $[G, G] \unlhd G$.
(2) Suppose $\rho: G \rightarrow H$ is a group homomorphism and H is an abelian group. Show that $[G, G] \leq \operatorname{ker} \rho$.
(3) Define $G_{\mathrm{ab}}:=G /[G, G]$. Show that G_{ab} is abelian. G_{ab} is called the abelianization of G.
(4) Suppose $G=\mathbf{D}_{n}$ is the dihedral group and $n>2$. Show that $G_{\mathrm{ab}} \cong \mathbf{C}_{2}$ for n odd and $G_{\text {ab }} \cong \mathbf{C}_{2} \times \mathbf{C}_{2}$ for n even.
5. Suppose G is a group and n is a positive integer. Suppose $g \in G$ is the unique element of order n. Show that g is in the center of G. (That is $g \in Z(G)$.)

