HW1, due Wednesday, April 30

Math 403, Spring 2014
Patrick Brosnan, Instructor

1. Suppose R is a commutative ring. Let $M_{2}(R)$ denote the set of 2×2 matrices with coordinates in R. Define operations of addition and multiplication on $M_{2}(R)$ in the usual way:

$$
\begin{aligned}
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)+\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) & =\left(\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right), \\
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) & =\left(\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right) .
\end{aligned}
$$

Show that with the above operations $M_{2}(R)$ is a ring.
2. Suppose p is a prime number, then I write \mathbb{F}_{p} for the field $\mathbb{Z} / p \mathbb{Z}$. Let G denote the group of units $M_{2}\left(\mathbb{F}_{2}\right)^{\times}$of the ring $M_{2}\left(\mathbb{F}_{2}\right)$. Show that G is isomorphic to the dihedral group \mathbf{D}_{3}.
3. Suppose R is a ring, and $r \in R$. We say that r is
(a) idempotent if $r^{2}=r$;
(b) nilpotent if $r^{k}=0$ for positive integer k.

Show that, in an integral domain 1 and 0 are the only idempotents and 0 is the only nilpotent element.
4. Suppose R is a commutative ring and $r \in R$. Set $\operatorname{Ann}(r)=\{x \in R: x r=0\}$.
(1) Show $\operatorname{Ann}(r)$ is an ideal in R.
(2) In $R=\mathbb{Z} / 6$ what is $\operatorname{Ann}(2)$?
5. Set

$$
\mathbb{F}_{4}:=\left\{\left(\begin{array}{cc}
a & b \\
b & a+b
\end{array}\right) \in M_{2}\left(\mathbb{F}_{2}\right): a, b \in \mathbb{F}_{2}\right\} .
$$

Show that \mathbb{F}_{4} is a field with 4 elements.
6 (20 point Bonus). Suppose that R is a finite ring. For each element $x \in R$ write $o(x)$ of the order of x in the group $(R,+)$.
(1) Suppose $x, y \in R$. Show that $o(x y) \mid(o(x), o(y))$.
(2) Use (1) and Cauchy's theorem to show that a finite integral domain has order p^{n} for some prime p.

