HW1, due Wednesday, April 30 Math 403, Spring 2014 Patrick Brosnan, Instructor

1. Suppose *R* is a commutative ring. Let $M_2(R)$ denote the set of 2×2 matrices with coordinates in *R*. Define operations of addition and multiplication on $M_2(R)$ in the usual way:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix},$$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}.$$

Show that with the above operations $M_2(R)$ is a ring.

2. Suppose *p* is a prime number, then I write \mathbb{F}_p for the field $\mathbb{Z}/p\mathbb{Z}$. Let *G* denote the group of units $M_2(\mathbb{F}_2)^{\times}$ of the ring $M_2(\mathbb{F}_2)$. Show that *G* is isomorphic to the dihedral group \mathbf{D}_3 .

- **3.** Suppose *R* is a ring, and $r \in R$. We say that *r* is
 - (a) *idempotent* if $r^2 = r$;
 - (b) *nilpotent* if $r^k = 0$ for positive integer k.

Show that, in an integral domain 1 and 0 are the only idempotents and 0 is the only nilpotent element.

- **4.** Suppose *R* is a commutative ring and $r \in R$. Set $Ann(r) = \{x \in R : xr = 0\}$.
 - (1) Show Ann(r) is an ideal in *R*.
 - (2) In $R = \mathbb{Z}/6$ what is Ann(2)?

5. Set

$$\mathbb{F}_4 := \left\{ egin{pmatrix} a & b \ b & a+b \end{pmatrix} \in M_2(\mathbb{F}_2) : a,b \in \mathbb{F}_2
ight\}.$$

Show that \mathbb{F}_4 is a field with 4 elements.

6 (20 point Bonus). Suppose that *R* is a finite ring. For each element $x \in R$ write o(x) of the order of *x* in the group (R, +).

- (1) Suppose $x, y \in R$. Show that o(xy)|(o(x), o(y)).
- (2) Use (1) and Cauchy's theorem to show that a finite integral domain has order p^n for some prime p.