
1. Introduction

In this chapter, I explain sets and sets of numbers.

2. Notation

The expression “A := B” means that I am defining A to be equal to B. I occasionally use
the logical symbol ∀ to mean “for all,” and the logical symbol ∃ to mean “there exists.”

I sometimes use the abbreviation “s.t.” for “such that.” For example, I might write, “let
n be an integer s.t. n2 + 7n + 5 is even.”

If P and Q are mathematical statements, then I use the notation “P ⇒ Q” to mean that
P implies Q.

3. Sets

Most (if not all) of mathematics can be described in terms of sets. Set theory is an
interesting and important part of mathematics, and it would take a whole book to explain
set theory in any depth. Fortunately, set theory is also very natural, and an intuitive under-
standing of set theory is sufficient for a good deal of mathematics.

Sets are basic objects of mathematics, so they cannot be defined in terms of other ob-
jects. However, there is some notation that goes along with sets that I would like to review.
For example, sets are defined in terms of their elements. We write x ∈ S to mean that x is
an element of S , and x < S means that x is not an element of S . If a set is finite we can
give it just by listing its elements. For example, S := {1, 2, 3, 4} is the set whose elements
are the numbers 1, 2, 3 and 4. So, 4 ∈ S but 5 is not an element of S .

Note that, when giving a set as a list of elements, the order of the elements doesn’t
matter. So {1, 2, 3, 4} is the same set as {2, 4, 1, 3}. It is also convenient in proofs and
definition to allow ourselves to list the same element twice. So {1, 2, 3, 1, 4} is the same
thing as {1, 2, 3, 4}.

We say that a set T is a subset of a set S if every element of T is an element of S . In
this case, we write T ⊂ S . If S is a set and P is a property that element of S may or may
not have, then {x ∈ S : P(x)} denotes the set of all elements of S having the property P.
For example, if S = {1, 2, 3, 4} then {2, 4} = {x ∈ S : x is even}.

There is one set which has no elements. This set is called the empty set and written
∅. Since a set is determined by its elements, the empty set is the unique set with no ele-
ments. A set S is called a singleton if it has exactly one element. So, for example, {3} and
{{1, 2, 3, 4}} are singletons, but ∅ and {1, 2} are not.

4. Sets of Numbers

We use the following notation for various sets of numbers.
(1) The set of natural numbers is N := {0, 1, 2, 3, . . .}.
(2) The set of integers is Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
(3) The set of positive integers is Z+ = {1, 2, 3, . . .}.
(4) The set of real numbers is R.
(5) The set of rational numbers is Q = {a/b ∈ R : a, b ∈ Z, b , 0}.
(6) If a, b ∈ R, then

[a, b] := {x ∈ R : a ≤ x ≤ b}, (a, b) := {x ∈ R : a < x < b},
[a, b) := {x ∈ R : a ≤ x < b}, (a, b] := {x ∈ R : a < x ≤ b},
[a,∞) := {x ∈ R : a ≤ x}, (a,∞) := {x ∈ R : a < x},
(−∞, a] := {x ∈ R : x ≤ a}, (−∞, a) := {x ∈ R : x < a}.
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(7) The set of complex number is C = {x + iy : x, y ∈ R}. Addition in C is defined by
(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2), (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) +

i(x1y2 + x2y1).

5. Arithmetic

Definition 5.1. Suppose a and b are in Z. We say that a divides b and write a | b if there
exists c ∈ Z such that ac = b. If a does not divide b we write a - b. If a | b then a
is said to be a divisor of b. A positive integer n is said to be prime if it has exactly two
positive divisors. A positive integer n is composite if there exists integers a, b such that
1 < a ≤ b < n and ab = n.

Remark 5.2. If a , 0, then a | b ⇔ b/a ∈ Z. If a = 0, then a | b implies that b = 0.
Obviously 1 is a divisor of every integer b, since b = (b)(1).

Lemma 5.3. Suppose n is a positive integer. Then exactly one of the following hold.

(1) n = 1;
(2) n is prime;
(3) n is composite.

Proof. If n = 1, then n has exactly one divisor, so n is not prime. Clearly n is not composite.
If n is composite, then n = ab with 1 < a ≤ b < n. So n has at least three positive divisors.
Therefore n is not prime.

Suppose n is an integer greater than 1. If n is not prime, then there exists a positive
divisor d of n satisfying 1 < d < n. Setting a = min(d, n/d), b = max(d, n/d), we see that
n is composite. �

Much of arithmetics comes from the following axiom.

Axiom 5.4 (Well-ordered property of the natural numbers). Suppose S is a non-empty
subset of N. Then S has a smallest element. In other words, there is an element n ∈ S such
that, for all m ∈ S , n ≤ m.

Theorem 5.5 (Fundamental Theorem of Arithmetic). Suppose n is an integer strictly
greater than 1. Then there exists a unique positive integer r and prime numbers p1, . . . , pr

satisfying p1 < p2 < · · · < pr and

n = p1 p2 · · · pr.

In other words, every integer n > 1 can be factored uniquely as a product of primes.

Proof. We first prove the existence of a prime factorization, then we prove the uniqueness
(which is, in fact, the more subtle part).

Suppose, to get a contradiction, that there exists an integer strictly greater than 1 which
cannot be factored as a product of primes. Then, by Axiom 5.3, there exists a smallest such
integer n. If n = ab for integers a, b satisfying 1 < a ≤ b < n, then, by our assumption on
n, a and b can be written as products of primes. But then obviously so can n. So we cannot
write n = ab with 1 < a ≤ b < n. It follows that 1 and n are the only positive divisors of n.
So n is itself prime. But this contradicts are assumption on n. So, it completes the proof of
existence.

To prove the uniqueness of prime factorization, we assume, to get a contradiction, that
there exists an integer strictly greater than 1 with two distinct prime factorizations. Again,
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by Axiom 5.3, there exists a smallest such integer n. Suppose then that

n = p1 · · · pr

= q1 · · · qs

are two distinct factorizations with p1 ≤ p2 ≤ · · · ≤ pr and q1 ≤ q2 ≤ · · · ≤ qs. It is easy to
see that r and s must both be strictly greater than 1. Moreover, we can assume that p1 ≤ q1.

Assume first that p1 = q1. In this case, p2 · · · pr = q1 · · · qs. So, since p2 · · · pr < n, it
follows that r = s and pi = qi for 1 < i ≤ r. In other words, the two factorizations are the
same, which contradicts our assumption on n.

So assume that p1 < q1, and set m = (q1 − p1)q2 · · · qs. Then m < n. So m must
have a unique prime factorization. Factor q1 − p1 = r1 · · · rt with ri prime. Then m =

r1 · · · rtq2 · · · qs is a factorization of m into primes. Note that p1 does not divide any of the
ri since p1 does not divide q1 − p1. (If it did, it would have to divide q1 which contradicts
our assumption that p1 < q1). On the other hand, m = n − p1q2 · · · qs = p1 p2 · · · pr −

p1q2 · · · qs = p1(p2 · · · pr − q2 · · · qs). So, by factoring, p2 · · · pr − q2 · · · qs into primes, we
get a factorization of m where p1 appears. So we have two distinct prime factorizations
of m. This contradicts our assumption that n was the smallest positive integer with two
distinct prime factorizations. So, it completes the proof.

�

6. Interesection and Union

Suppose A and B are sets. The union of A and B is the set A ∪ B with the property that
x ∈ A ∪ B if and only if x ∈ A or x ∈ B. The intersection of A and B is the set A ∩ B with
the property that x ∈ A ∩ B if and only if x ∈ A and x ∈ B.

More generally, suppose that I is a set and, for each i ∈ I, Ai is a set. Then the union of
the Ai is the set ∪i∈I Ai with the property that x ∈ ∪i∈I Ai if and only if x ∈ Ai for some i ∈ I.
The intersection of the Ai is the set ∩i∈I Ai with the property that x ∈ ∩i∈I Ai if and only if,
for all i ∈ I, x ∈ Ai.

Example 6.1. Let I = (0, 1) and for each i ∈ I, set Fi = [0, i]. Then ∪i∈I Fi = [0, 1),
∩i∈I Fi = {0}.

7. Power Sets

Suppose X is a set. The power set of X is the set P(X) of all subsets of X. Explicitly, we
have x ∈ P(X) if and only if x ⊂ X.

If X is a finite set with n elements, then P(X) has 2n elements.

Example 7.1. For each n ∈ N, write S n := {x ∈ N : x < n}. Then
(1) S 0 = ∅, and P(S 0) = {∅},
(2) S 1 = {1}, and P(S 1) = {∅, {1}},
(3) S 2 = {1, 2}, and P(S 2) = {∅, {1}, {2}, {1, 2}.

Remark 7.2. In some situtation power sets can be a little confusing. I have two pieces of
advice regarding this. Firstly, in most mathematical situations, what the elements of a set
actually are as sets, doesn’t really matter. So, for example, the most importatn thing about
S is usually that it has 4 elements, not that its elements are ∅, {1}, {2} and {1, 2}. On the
other hand, there are of course some situations in which what the elements are really does
matter. In these rare situations, my advice is to think carefully about what each element
really is. There is really nothing that complicated about elementary set theory: it just
requires careful thought.
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8. Ordered Pairs and Cartesian Products

Suppose X and Y are sets. Then the Cartsesian product of X and Y is the set X × Y of
all ordered pairs (x, y) where x ∈ X and y ∈ Y . More generally, if X1, . . . , Xn are sets, then
X1 × X2 · · · × Xn is the set of ordered n-tuples (x1, x2, . . . , xn) with xi ∈ Xi for all i. If n is a
positive integer and X is a set then Xn is the set of all ordered n-tuples (x1, x2, . . . , xn) with
xi ∈ X for all i.

Example 8.1. The set of ordered pairs of real numbers is R2, the set of ordered triples is
R3. The set [0, 1] × [0, 2] is a rectangle in R2 with width 1 and height 2.

Remark 8.2. In mathematics, everything is supposed to be a set. So we should be able to
say what an ordered pair is. Here’s the standard definition: Suppose x and y are sets. Then

(x, y) := {{x}, {x, y}}

To see that the definition makes sense, we have to check that, for sets x, y, z,w, (x, y) =

(z,w) only if x = z and y = w. To see this, first note that, if x = y then (x, y) has one
element. Otherwise (x, y) has two elements. So, if x = y then we must have z = w
and {x} = {z}. This implies that x = z since a set is determined by its elements. So
(x, y) = (x, x) = (z, z) = (z,w). On the other hand, if x , y, then {x} is the only element of
(x, y) with one element. Similarly, {z} is the only element of (z,w) with one element. So
{x} = {z}. Therefore, x = z. Therefore, {x, y} = {z,w} = {x,w}. This implies that z = w.

9. Relations and Functions

Definition 9.1. Suppose X and Y are sets. A relation from X to Y is a subset R ⊂ X × Y .
We write Rel(X,Y) for the set of all relations from X to Y . If R ∈ Rel(X,Y) and S ⊂ X,
then we set

R[S ] := {y ∈ Y : there exists x ∈ S : (x, y) ∈ R}.
We write Rop for the relation from Y to X given by

Rop := {(y, x) ∈ Y × X : (x, y) ∈ R}.

There are two types of relations which are especially useful: functions and equivalence
relation.

Definition 9.2. Suppose X and Y are sets. A relation f ∈ Rel(X,Y) is a function if, for
each x ∈ X, there is a unique y ∈ Y such that (x, y) ∈ f . In this case, we write f (x) := y. We
write F(X,Y) for the set of all functions from X to Y , and we write f : X → Y to indicate
that f is a function from X to Y .

Remark 9.3. With our defintions, if f : X → Y is a function and x ∈ X, then f [{x}] =

{ f (x)}. Note that, if f : X → Y is a function then f = ∪x∈X{(x, f (x))}. In particular, if f
and g are functions from X to Y and f (x) = g(x) for every x ∈ X, then f = g.

Remark 9.4. We usually write down a function f : X → Y by specifying a rule for com-
puting an element f (x) ∈ Y given an element x ∈ X. Sometimes this rule is given in the
form x 7→ f (x). For example, we can define a function f : R → R by saying that f is the
function given by x 7→ x3 + 3x + 5.

Definition 9.5. Suppose f : X → Y and g : Y → Z are functions. Then the composition of
g with f is the function g ◦ f : X → Z given by (g ◦ f )(x) = g( f (x)) for x ∈ X.

Definition 9.6. Suppose Y is a set. The identity function on Y is the function idY : Y → Y
given by y 7→ y.
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Proposition 9.7. Suppose X,Y, Z and U are sets. Let f : X → Y, g : Y → Z and
h : Z → U be functions. Then

(1) idZ ◦ g = g = g ◦ idY ;
(2) h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

Proof. (1): Suppose y ∈ Y . Then (idZ ◦ g)(y) = idZ(g(y)) = g(y) = g(idY (y)) = (g ◦ idY )(y).
(2): Suppose x ∈ X. Then (h ◦ (g ◦ f ))(x) = h((g ◦ f )(x)) = h(g( f (x))) = (h ◦ g)( f (x)) =

((h ◦ g) ◦ f )(x). �

Definition 9.8. A function f : X → Y is said to be
(1) one-one if, for every x1, x2 ∈ X, f (x1) = f (x2) only if x1 = x2;
(2) onto if, for every y ∈ Y , there exists an x ∈ X such that f (x) = y.

We say that f is an isomorphism of sets if it is one-one and onto.

Remark 9.9. Suppose f : X → Y is a function. If f is one-one we also say that f is
injective. If f is onto we also say that f is surjective. If S ⊂ X, then the subset f [S ] ⊂ Y
is called the image of S under S . The image of f is f [X]. Note that f is onto if and
only if f [X] = Y . It is common to abuse notation and write f (S ) for f [S ] and I will do
that as long as it doesn’t lead to confusion. Similary, if T ⊂ Y , then the subset f op[T ]
of X is called the inverse image of T . It is common to abuse notation and write f −1(T )
instead of f op[T ]. The relation f op is an element of Rel( f (X), X). Explicitly, for T ⊂ Y ,
f −1(T ) = {x ∈ X : f (x) ∈ T }.

Proposition 9.10. Suppose f : X → Y and g : Y → Z are functions. Prove the following:
(1) If f and g are one-one, then so is g ◦ f .
(2) If f and g are onto, so is g ◦ f .
(3) If g ◦ f is one-one, then so is f .
(4) If g ◦ f is onto, then so is g.

Proof. (1): Suppose x1, x2 ∈ X. Then (g ◦ f )(x1) = (g ◦ f )(x2) ⇔ g( f (x1)) = g( f (x2)).
Since g is one-one, this implies f (x1) = f (x2). Since f is one-one, this implies x1 = x2.

(2): Suppose z ∈ Z. Since g is onto, there exists y ∈ Y such that g(y) = z. Since f is
onto, there exists x ∈ X such that f (x) = y. So z = g( f (x)) = (g ◦ f )(x).

(3): Suppose f (x1) = f (x2) for x1 , x2 in X. Then g( f (x1)) = g( f (x2)). So if f is not
one-one, neither is g ◦ f .

(4): Suppose g ◦ f is onto. Pick z ∈ Z. Then there exists x ∈ X such that g( f (x)) = z.
Setting y = f (x), we see that g(y) = z. So g is onto as well. �

Proposition 9.11. Suppose f : X → Y is a function. Then the following are equivalent.
(1) The function f is a an isomorphism of sets from X to Y;
(2) The relation h := f op in Rel(Y, X) is in F(Y, X). Moreover, f ◦ h = idY and h ◦ f =

idX .
(3) There exists a function g ∈ F(Y, X) such that f ◦ g = idY and g ◦ f = idX .

Moreover if (1)-(3) hold, f op = g.

Proof. (1)⇒ (2): Suppose f : X → Y is a an isomorphism from X to Y . Then, for every
y ∈ Y , there is a unique x ∈ X such that y = f (x). In other words, for each y ∈ Y , there is
a unique x ∈ X such that (x, y) ∈ f . Therefore, for each y ∈ Y , there is a uniqe x ∈ X such
that (y, x) ∈ f op. Therefore, by definition, f op ∈ F(Y, X).

Suppose x ∈ X and y = f (x). By definition, (y, x) ∈ h. So x = h(y). In other words,
h( f (x)) = x So h ◦ f = idX . Therefore f op ◦ f = idX . Since f = hop is a fucntion from X to
Y , it follows that f ◦ h = hop ◦ h = idY .
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(2)⇒ (3): Obvious.
(3)⇒ (1): Suppose x1, x2 ∈ X. Then f (x1) = f (x2) ⇒ x1 = g( f (x1)) = g( f (x2)) = x2.

So f is one-one. Suppose y ∈ Y . Then y = f (g(y)). So f is onto.
Finally, suppose g ∈ F(Y, X) is a function such that f ◦ g = idY and g ◦ f = idX . Then

g = g ◦ idY = g ◦ ( f ◦ h) = (g ◦ f ) ◦ h = h. �

Definition 9.12. Suppose f : Y → Z is a function and X and W are sets. I write f∗ :
F(X,Y) → F(X,Z) for the function which sends g ∈ F(X,Y) to f ◦ g ∈ F(X,Z). I write
f ∗ : F(Z,W)→ F(Y,W) for the funciton which sends h ∈ F(Z,W) to h ◦ f ∈ F(Y,W).

Proposition 9.13. Suppose f : Y → Z is a function. Then

(1) The function f is injective if and only if, for every set X, the map f∗ : F(X,Y) →
F(X,Z) is injective.

(2) the function f is surjective if and only if, for every set W, the map f ∗ : F(Z,W)→
F(Y,W) is injecitive.

Proof. (1): ⇒: Suppose f : Y → Z is injective, and suppose g1, g2 : X → Y are two
functions such that f ◦ g1 = f ◦ g2. Then, if x ∈ X, we have f (g1(x)) = f (g2(x)). So
g1(x) = g2(x). Since this holds for any x ∈ X, it follows that g1 = g2.
⇐: Set X = {0}. Then the map F(X,Y) → Y given by g 7→ g(0) is an isomorphism of

sets. It follows easily that, if f∗ : F(X,Y)→ F(X,Z) is injective, so is f : Y → Z.
(2): ⇒: Suppose f : Y → Z is surjective, and suppose h1, h2 : Z → W are two functions

such that h1 ◦ f = h2 ◦ f . Pick z ∈ Z. Since f is surjective, we can find a y ∈ Y such
that f (y) = z. Then h1(z) = h1( f (y)) = h2( f (y)) = h2(z). Since this holds for any z ∈ Z, it
follows that h1 = h2.
⇐: Suppose the map f : Y → Z is not surjective. Pick ζ ∈ Z \ f (Y). Set W = {0, 1}.

Define a function h0 : Z → W by setting h0(z) = 0 for all z ∈ Z, define a function
h1 : Z → W by

h1(z) =

0, z , ζ;
1, z = ζ.

Then h0 ◦ f = h1 ◦ f because h0( f (y)) = h1( f (y)) = 0 for all y ∈ Y . But h0 , h1. So
f ∗ : F(Z,W)→ F(Y,W) is not injective. �

10. Equivalence Relations, Partitions, Quotients and Kernels

Definition 10.1. Let X be a set. A relation on X is a relation R ⊂ X × X. If R is a relation
on X, we write x ∼R y to mean that (x, y) ∈ R. When the relation R is obvious, we simply
write x ∼ y for x ∼R y.

Definition 10.2. A relation R on X is called an equivalence relation if it satisfies the fol-
lowing three axioms:

(R) For all x ∈ X, (x, x) ∈ R.
(S) If (x, y) ∈ R then (y, x) in R.
(T) If (x, y) and (y, z) are in R, then (x, z) is in R.

Remark 10.3. In Definition 10.2, R stands for “reflexive,” S stands for “symmetric” and T
stands for “transitive.”

Example 10.4. For any set X, let ∆X = {(x, x) ∈ X × X}. This set is called the diagonal in
X × X. It is obviously an equivalence relation and we have x ∼ y⇔ x = y.
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Definition 10.5. Suppose f : X → Y is a function. The difference kernel of f is the set
K f = {(x1, x2) ∈ X × X : f (x1) = f (x2)}. We also occasionally write X ×Y X.

Proposition 10.6. Suppose f : X → Y is a function. Then K f is an equivalence relation
on X.

Proof. Write x1 ∼ x2 to mean that (x1, x2) ∈ K f . Clearly, x1 = x2 ⇒ f (x1) = f (x2)⇒ x1 ∼

x2. So the reflexive property holds. Suppose x1 ∼ x2. Then f (x1) = f (x2). So x2 ∼ x1. So
the symmetric property holds. Finally, if x1 ∼ x2 and x2 ∼ x3, then f (x1) = f (x2) = f (x3).
So x1 ∼ x3, and this proves transitivity. �

Lemma 10.7. Suppose f : X → Y and g : Y → Z are functions. Set h = g ◦ f . Then
K f ⊂ Kh.

Proof. Suppose (x1, x2) ∈ K f . Then, by definition, f (x1) = f (x2). Therefore h(x1) =

g( f (x1)) = g( f (x2)) = h(x2). So (x1, x2) ∈ Kh. �

Theorem 10.8. Suppose f : X → Y is a surjective function and Z is a set. Suppose
g ∈ F(X,Z). Then g ∈ f ∗(F(Y,Z)) if and only if g(x1) = g(x2) for all x1, x2 ∈ X such that
f (x1) = f (x2).

Proof. ⇒: Suppose g ∈ f ∗(F(Y,Z)). Then g = h ◦ f for some function h : Y → Z. Then
f (x1) = f (x2)⇒ g(x1) = h( f (x1)) = h( f (x2)) = g(x2).
⇐: Suppose g(x1) = g(x2) for all x1, x2 ∈ X such that f (x1) = f (x2). Let h = {(y, z) ∈

Y × Z : ∃x ∈ X y = f (x), z = g(x)}. Since f is surjective, for every y ∈ Y , there is an
x1 ∈ X such that y = f (x1). So (y, g(x1)) ∈ h. Suppose (y, z) ∈ h. Then, by definition,
z = g(x2) for some x2 ∈ X such that f (x2) = y. Then f (x1) = f (x2), so z = g(x2) = g(x1).
It follows that h ∈ F(Y,Z). Moreover, for x ∈ X, we have (h ◦ f )(x) = h( f (x)) = g(x). So
f ∗(h) = h ◦ f = g. �

Corollary 10.9. Suppose f : X → Y is a surjective function and h : X → Z is function
such that K f ⊂ Kh. Then there exists a unique function g : Y → Z such that h = g ◦ f .
Moreover,

(1) If K f = Kh, then g is injective.
(2) If h is surjective, then so is g.
(3) If K f = Kg and h is a surjective, then g is an isomorphism of sets.

Proof. Since K f ⊂ Kh, h(x1) = h(x2) for every (x1, x2) ∈ K f . By Theorem 10.8, h ∈
f ∗(F(Y,Z)), so h = g ◦ f for some g : Y → Z. Since f is surjective, g is unique by
Proposition 9.13.

(1): Suppose g(y1) = g(y2) for y1, y2 ∈ Y . Since f is surjective, we can find x1, x2 ∈ X
such that yi = f (xi) for i = 1, 2. Then h(x1) = h(x2), so (x1, x2) ∈ Kh. Therefore,
(x1, x2) ∈ K f . So y1 = f (x1) = f (x2) = y2.

(2): This follows from Proposition 9.10 (4).
(3): This follows from (1) and (2). �

Definition 10.10. Supppose X is a set. A partition of X is a set P of non-empty subset of
X such that

(1) X = ∪S∈PS ,
(2) For S ,T ∈ P, S , T ⇒ S ∩ T = ∅.

Given a set X with a partition P, we define a map πP : X → P sending x ∈ X to the unique
S ∈ P such that x ∈ S .
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Remark 10.11. By Definition 10.10 2, the map πP : X → P is surjective.

Example 10.12. Suppose X = {0, 1, 2}. The set P = {{0, 1}, {2}} is a partition of X. The
map πP : X → P is given by πP(0) = πP(1) = {0, 1} and πP(2) = {2}.

Definition 10.13. Suppose X is a set, R is an equivalence relation on X and x ∈ X. The
equivalence class of x is the subset [x] of X given by

[x] = {y ∈ X : (x, y) ∈ R}.

We write X/R for the set of equivalence relations of X.

Proposition 10.14. Suppose X is a set and R is an equivalence relation on X. Then
(1) For x, y ∈ X, x ∈ [y]⇔ [y] = [x].
(2) X/R is a partition of X.
(3) For x, y ∈ X, we have x ∼R y⇔ [x] = [y].
(4) The map πX/R : X → X/R sends x ∈ X to [x]. The difference kernel of πX/R is R.
(5) Suppose f : X → Y is any function such that R ⊂ K f , then there is a unique

g : X/R→ Y such that f = g ◦ πX/R.

Proof. (1): Since x ∈ [x], [y] = [x] ⇒ x ∈ [y]. To prove the converse, we first prove that
x ∈ [y] ⇒ [y] ⊂ [x]. To see this, suppose x, z ∈ [y]. Then y ∼ z and y ∼ x. So z ∼ y.
Therefore z ∼ x and, thus, x ∼ z. So z ∈ [x]. This shows that [y] ⊂ [x].

Now note that y ∈ [y] ⊂ [x]. Therefore [x] ⊂ [y]. So [x] = [y].
(2): Since x ∈ [x], ∪[x]∈X/R[x] = X. This proves that Definition 10.10.(1) holds. Sup-

pose z ∈ [x] ∩ [y], for x, y, z ∈ X. Then, by (1), [x] = [z] = [y]. This proves that
Definition 10.10.(2) holds.

(3): We have x ∼R y⇔ y ∈ [x]⇔ [y] = [x].
(4): This is just a restatment of (3).
(5): This follows from (4) and from Corollary 10.9. �

Remark 10.15. If X is a set and R is an equivalence relation, we abuse notation and write
πR or just π for the map πX/R : X → X/R.

11. Exercises

Exercise 11.1. Suppose f : X → Y is a function. Show that the relation f −1 is in
Rel( f [X], X), and that f is one-one if and only if f −1 ∈ F( f [X], X).

Exercise 11.2. Suppose X, Y , Z and W are sets, and suppose P ∈ Rel(X,Y), Q ∈ Rel(Y,Z)
and R ∈ Rel(Z,W) are relations. Define a relation Q ◦ R ∈ Rel(X,Z) by setting

Q ◦ R = {(x, z) ∈ X × Z : there exists y ∈ Y such that (x, y) ∈ R, (y, z) ∈ Q}.

(1) Show that if Q and R are functions, then the composition defined above is the same
as that defined in Definition 9.5.

(2) Show that (P ◦ Q) ◦ R = P ◦ (Q ◦ R).


