HW1, due Wednesday, February 18 Math 404, Spring 2014 Patrick Brosnan, Instructor

1. Let p be a prime number. Recall that $\mathbb{N} = \{0, 1, 2, ...\}$. For each non-zero integer a, let $v(a) := \max\{n \in \mathbb{N} : p^n | a\}$. For each non-zero rational number a/b, set v(a/b) = v(a) - v(b). For a rational number x, define

$$|x|_p = \begin{cases} p^{-\mathbf{v}_p(x)}, & x \neq 0; \\ 0, & \text{else.} \end{cases}$$

- (a) Show that v is well-defined. In other words, show that, if a/b = a'/b' for integers a, a', b, b', then v(a/b) = v(a'/b').
- (b) Show that, for $x, y \in \mathbb{Q}^{\times}$, v(xy) = v(x) + v(y). Conclude that $|xy|_p = |x|_p |y|_p$ for all $x, y \in \mathbb{Q}$.
- (c) Suppose $|x|_p \le 1$ for some rational number *x*. Show that $|1+x|_p \le 1$ as well.
- (d) Show that, for $x, y \in \mathbb{Q}$, $|x+y|_p \le \max\{|x|_p, |y|_p\}$.

2. Let *R* denote the set of all a/b in \mathbb{Q} where *a* and *b* are integers and *b* is not divisible by *p*.

- (a) Show that $R = \{x \in \mathbb{Q} : |x|_p \le 1\}$.
- (b) Show that *R* is a subring of \mathbb{Q} . (**Hint:** You can do this by hand, but it's easier to use (b) and (d) from the last problem.)
- (c) Show that $R^{\times} = \{x \in R : |x|_p = 1\}.$
- (d) Show that every non-zero element of x of R is of the form $p^n u$ for some $u \in R^{\times}$ and $n \in \mathbb{N}$.
- (e) Show that R is a Euclidean domain with Euclidean norm v.
- (f) Show that every ideal in R is either 0 or equal to $p^n R$ for some non-negative integer n.

3. Let \mathbb{F}_3 denote the field $\mathbb{Z}/3\mathbb{Z}$ with 3 elements. Show that the polynomial $f = x^3 - x + 1$ is irreducible.

4. Let $K = \mathbb{F}_3[x]/(x^3 - x + 1)$. Explain why the previous problem shows that K is a field. Then set $\alpha = 1 + x^2$. What is α^{-1} ? Write it in the form

$$\alpha^{-1} = a + bx + cx^2$$

where $a, b, c \in \mathbb{F}_3$.