HW1, due Wednesday, February 18

Math 404, Spring 2014

Patrick Brosnan, Instructor

1. Let p be a prime number. Recall that $\mathbb{N}=\{0,1,2, \ldots\}$. For each non-zero integer a, let $v(a):=\max \left\{n \in \mathbb{N}: p^{n} \mid a\right\}$. For each non-zero rational number a / b, set $v(a / b)=v(a)-v(b)$. For a rational number x, define

$$
|x|_{p}= \begin{cases}p^{-v_{p}(x)}, & x \neq 0 \\ 0, & \text { else } .\end{cases}
$$

(a) Show that v is well-defined. In other words, show that, if $a / b=a^{\prime} / b^{\prime}$ for integers $a, a^{\prime}, b, b^{\prime}$, then $v(a / b)=v\left(a^{\prime} / b^{\prime}\right)$.
(b) Show that, for $x, y \in \mathbb{Q}^{\times}, v(x y)=v(x)+v(y)$. Conclude that $|x y|_{p}=|x|_{p}|y|_{p}$ for all $x, y \in \mathbb{Q}$.
(c) Suppose $|x|_{p} \leq 1$ for some rational number x. Show that $|1+x|_{p} \leq 1$ as well.
(d) Show that, for $x, y \in \mathbb{Q},|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}$.
2. Let R denote the set of all a / b in \mathbb{Q} where a and b are integers and b is not divisible by p.
(a) Show that $R=\left\{x \in \mathbb{Q}:|x|_{p} \leq 1\right\}$.
(b) Show that R is a subring of \mathbb{Q}. (Hint: You can do this by hand, but it's easier to use (b) and (d) from the last problem.)
(c) Show that $R^{\times}=\left\{x \in R:|x|_{p}=1\right\}$.
(d) Show that every non-zero element of x of R is of the form $p^{n} u$ for some $u \in R^{\times}$and $n \in \mathbb{N}$.
(e) Show that R is a Euclidean domain with Euclidean norm v.
(f) Show that every ideal in R is either 0 or equal to $p^{n} R$ for some nonnegative integer n.
3. Let \mathbb{F}_{3} denote the field $\mathbb{Z} / 3 \mathbb{Z}$ with 3 elements. Show that the polynomial $f=x^{3}-x+1$ is irreducible.
4. Let $K=\mathbb{F}_{3}[x] /\left(x^{3}-x+1\right)$. Explain why the previous problem shows that K is a field. Then set $\alpha=1+x^{2}$. What is α^{-1} ? Write it in the form

$$
\alpha^{-1}=a+b x+c x^{2}
$$

where $a, b, c \in \mathbb{F}_{3}$.

