HW1, due Wednesday, February 25
Math 404, Spring 2014
Patrick Brosnan, Instructor

1. Is the polynomial $f(x)=x^{5}+x+1$ in $\mathbb{Q}[x]$ irreducible? If so, prove it. If not, write it as a product of monic irreducible elements of $\mathbb{Q}[x]$.
2. Suppose L / F is a field extension and p and q are two non-zero elements of $F[x]$. Let d be the monic greatest common denominator of p and q in $F[x]$. Let d^{\prime} be the monic greatest common denominator of p and q regarded as polynomials in $L[x]$. Show that, in fact, $d=d^{\prime}$.
3. Show that the polynomial $p(x)=x^{5}+x^{2}+1 \in \mathbb{F}_{2}[x]$ is irreducible.
4. Let $L=\mathbb{F}_{2}[x] /(p)$ where $p=x^{5}+x^{2}+1$ is the polynomial in Problem 3. Write α for the class of x in L. Answer the following questions about L.
(1) What is $[L: F]$?
(2) How many elements does L have?
(3) What is the multiplicative inverse of $\alpha^{2}+1$ in L ?
(4) Are there any field extensions E of \mathbb{F}_{2} contained in L besides L itself and \mathbb{F}_{2} ?
