HW1, due Wednesday, February 18
Math 404, Spring 2014
Patrick Brosnan, Instructor

1. Identify \mathbb{R}^{2} with the field \mathbb{C} of complex numbers via the map $(x, y) \mapsto x+$ iy. Let S be a subset of \mathbb{C} containing 0 and 1 , and let $C(S)$ denote the set of elements of \mathbb{R}^{2} constructible from S by straight-edge and compass. Show that $C(S)$, regarded as a subset of \mathbb{C}, is actually a subfield of \mathbb{C}.
2. Again suppose that S is a subset of \mathbb{C} containing 0 and 1 . Suppose $z \in C(S)$. Show that $\pm \sqrt{z}$ are in $C(S)$ as well.
3. $\operatorname{Set} E=\mathbb{Q}(\sqrt{3}, \sqrt{5}) \subset \mathbb{R}$. Compute $[E: \mathbb{Q}]$.
4. Suppose F is a field and $f \in F[x]$ is an irreducible polynomial of degree n. Suppose E / F is a finite field extension with $[E: F]=m$ and $\operatorname{gcd}(m, n)=1$. Show that f is also irreducible when regarded as a polynomial in $E[x]$.
