HW1, due Wednesday, February 18 Math 404, Spring 2014 Patrick Brosnan, Instructor

1. Identify \mathbb{R}^2 with the field \mathbb{C} of complex numbers via the map $(x, y) \mapsto x + iy$. Let *S* be a subset of \mathbb{C} containing 0 and 1, and let C(S) denote the set of elements of \mathbb{R}^2 constructible from *S* by straight-edge and compass. Show that C(S), regarded as a subset of \mathbb{C} , is actually a subfield of \mathbb{C} .

2. Again suppose that *S* is a subset of \mathbb{C} containing 0 and 1. Suppose $z \in C(S)$. Show that $\pm \sqrt{z}$ are in C(S) as well.

3. Set $E = \mathbb{Q}(\sqrt{3}, \sqrt{5}) \subset \mathbb{R}$. Compute $[E : \mathbb{Q}]$.

4. Suppose *F* is a field and $f \in F[x]$ is an irreducible polynomial of degree *n*. Suppose E/F is a finite field extension with [E:F] = m and gcd(m,n) = 1. Show that *f* is also irreducible when regarded as a polynomial in E[x].