HW5, due Wednesday, March 25

Math 404, Spring 2015
Patrick Brosnan, Instructor

1. Show that the splitting field E of the polynomial $x^{4}+1$ in $\mathbb{Q}[x]$ has degree 4 .
2. Let E be the splitting field of the polynomial $x^{3}-2 \in \mathbb{Q}[x]$. How many embeddings are there of E in itself?
3. Let p be a prime and let F be a field of characteristic p. Let $f(x)=x^{p}-x-1$.
(1) Show that $f(x)=f(x+1)$.
(2) Suppose α is a root of f in a field extension E / F. Show that $\alpha+1$ is also a root of f.
(3) Suppose $g \in F[x]$ is an irreducible factor of f. Show that every other irreducible factor of f is of the form $g(x+a)$ for some $a \in \mathbb{F}_{p}$.
(4) Show that either f is irreducible in $F[x]$ or f splits in F.
4. Using Problem 3, show that, for each prime p, the polynomial $x^{p}-x-1$ is irreducible over \mathbb{Q}.
5. Let $\alpha=e^{2 \pi i / 5}$ and let $\beta=e^{2 \pi i / 25}$.
(a) What is $[\mathbb{Q}(\alpha): \mathbb{Q}]$?
(c) Show that β is a root of the polynomial $f(x)=x^{20}+x^{15}+x^{10}+x^{5}+1$.
(d) Show that f is irreducible in $\mathbb{Q}[x]$, and conclude that $[\mathbb{Q}(\beta): \mathbb{Q}]=20$.
