HW5, due Wednesday, March 25 Math 404, Spring 2015 Patrick Brosnan, Instructor

1. Show that the splitting field *E* of the polynomial $x^4 + 1$ in $\mathbb{Q}[x]$ has degree 4.

2. Let *E* be the splitting field of the polynomial $x^3 - 2 \in \mathbb{Q}[x]$. How many embeddings are there of *E* in itself?

- **3.** Let *p* be a prime and let *F* be a field of characteristic *p*. Let $f(x) = x^p x 1$.
 - (1) Show that f(x) = f(x+1).
 - (2) Suppose α is a root of f in a field extension E/F. Show that $\alpha + 1$ is also a root of f.
 - (3) Suppose $g \in F[x]$ is an irreducible factor of f. Show that every other irreducible factor of f is of the form g(x+a) for some $a \in \mathbb{F}_p$.
 - (4) Show that either f is irreducible in F[x] or f splits in F.

4. Using Problem 3, show that, for each prime p, the polynomial $x^p - x - 1$ is irreducible over \mathbb{Q} .

- **5.** Let $\alpha = e^{2\pi i/5}$ and let $\beta = e^{2\pi i/25}$.
 - (a) What is $[\mathbb{Q}(\alpha) : \mathbb{Q}]$?
 - (c) Show that β is a root of the polynomial $f(x) = x^{20} + x^{15} + x^{10} + x^5 + 1$.
 - (d) Show that *f* is irreducible in $\mathbb{Q}[x]$, and conclude that $[\mathbb{Q}(\beta) : \mathbb{Q}] = 20$.