HW5, due Wednesday, April 1 Math 404, Spring 2015 Patrick Brosnan, Instructor

1. We say that an angle θ is constructible if, starting from the points $\{(0,0), (1,0)\}$, it is possible to construct two lines intersecting at the origin and making the angle θ . Give an example of an angle θ such that θ is constructible but $\theta/5$ is not. (**Hint:** Howework 5 might be useful for this.)

2. The purpose of this problem and the next is to give a detailed proof of some results on field automorphisms which I went over in class (while I was answering a question).

Suppose *F* is a field and $f \in F[x]$ is a non-zero polynomial. Let E/F be a field extension generated by the set $S := \{\alpha_1, \ldots, \alpha_s\}$ of roots of *f* in *E*. Let $\tau : F \to \Omega$ be an embedding of *F* in a field Ω , and let $T = \{\beta_1, \ldots, \beta_t\}$ denote the set of roots of *f* in Ω . Recall that $\operatorname{Hom}_{\tau}(E, \Omega)$ denote the set of all extensions $\sigma : E \to \Omega$ of τ to *E*. Prove the following.

- (1) For every $\sigma \in \operatorname{Hom}_{\tau}(E, \Omega)$, $\sigma(S) \subset T$.
- (2) If $\sigma, \sigma' \in \operatorname{Hom}_{\tau}(E, \Omega)$ and $\sigma(\alpha_i) = \sigma'(\alpha_i)$ for all *i*, then $\sigma = \sigma'$.

3. Suppose *F* is a field and $f \in F[x]$ is a non-zero polynomial. As in the previous problem, let E/F be a field extension generated by the set $S = \{\alpha_1, \ldots, \alpha_s\}$ of roots of *f* in *E*. Let Aut_{*F*} *E* denote the set of all *F*-linear field automorphisms of *E*, and let Aut*S* denote the set of all automorphism of the set *S*. Both Aut_{*F*} *E* and Aut*S* are groups with composition as the group operation. For each $\sigma \in \text{Aut}_F E$, let $\rho(\sigma) = \sigma_{|S|}$ denote the restriction of σ to *S*. Prove the following:

- (1) For each $\sigma \in \operatorname{Aut}_F E$, $\rho(\sigma) \in \operatorname{Aut} S$.
- (2) The map ρ : Aut_F $E \rightarrow$ Aut_S is a group homomorphism.
- (3) The kernel of ρ is trivial.

4. Let $f = x^3 - 2 \in \mathbb{Q}[x]$, and let *E* denote the splitting field of *f*. Let $L = \mathbb{Q}(2^{1/3}) \subset E$ and let $M = \mathbb{Q}(e^{2\pi i/3}) \subset E$. Say what the following groups are up to isomorphism.

- (1) Aut_{$\bigcirc E$}.
- (2) Aut_{\bigcirc} *L*.
- (3) Aut_{\bigcirc} *M*.
- (4) Aut_LE.
- (5) Aut_M E.

5. Do Problem 2-1 on page 33 of Milne's Field Theory book.