HW5, due Monday, April 13 Math 404, Spring 2015 Patrick Brosnan, Instructor

1. Suppose f is a separable polynomial over a field F. Suppose E/F and Ω/F are splitting field of f. Explain why the groups $\operatorname{Gal}(E/F)$ and $\operatorname{Gal}(\Omega/F)$ are isomorphic. We call the group $\operatorname{Gal}(E/F)$ (taken up to isomorphism) the Galois group of the polynomial f.

2. Let $f(x) = x^4 - 2$, and set $L = \mathbb{Q}[i]/\mathbb{Q}$ and set $M = \mathbb{Q}(\zeta)$ with $\zeta = 2^{1/4}$. View *L* as a subfield of \mathbb{C} and *M* as a subfield of \mathbb{R} .

- (a) Show that E := LM is splitting field of f.
- (b) Show that $H := \operatorname{Gal}(E/M)$ is isomorphic to $\mathbb{Z}/2$.
- (c) Show that there is a unique element $\tau \in N := \operatorname{Gal}(E/L)$ with the property that $\tau(\zeta) = i\zeta$.
- (d) Show that *N* is the cyclic group of order 4 generated by τ .
- (e) Show that $\sigma \tau \sigma^{-1} = \tau^{-1}$.
- (f) Conclude that $\operatorname{Gal}(E/\mathbb{Q})$ is isomorphic to the dihedral group with 8 elements.

3 (Bonus 25 points). Do problem 3-3 on page 46 of Milne's Field Theory book.