HW8, due Wednesday, April 29 Math 404, Spring 2015 Patrick Brosnan, Instructor

1. Let $G = \mathbf{GL}_2(\mathbb{R})$ denote the group of invertible real 2×2 matrices, and let $X = \mathbb{R}^2$. Let G act on X by matrix multiplication.

- (a) What are the orbits of *G* acting on *X*?
- (b) For each orbit *Y*, pick $v \in Y$ and say what the stabilizer is.

2. Suppose *Y* is a *G*-set and *X* is a transitive *G* set. Let $x \in X$ be a point with stabilizer subgroup *H* so that *X* is isomorphic as a *G*-set to G/H. Set $Y^H := \{y \in Y : H \leq G_y\}$.

- (1) Suppose $f: X \to Y$ is a morphism of *G*-sets. Show that $f(x) \in Y^H$.
- (2) Conversely, show that, for every $y \in Y^H$, there exists exactly one morphism $f: X \to Y$ of *G*-sets such that f(x) = y.

3. Suppose E/F is a finite Galois extension with Galois group *G*, and let *L* be another field extension of *F*. Let $X := \text{Hom}_F(L, E)$ denotes the set of all *F*-linear embeddings of *L* into *E*.

- (a) For each $\sigma \in X$ and $g \in G$, show that $g \circ \sigma$ is also in *X*.
- (b) Show that the map $G \times X \to X$ given by $(g, \sigma) \mapsto g \circ \sigma$ defines an action of G on X.
- (c) Suppose X is non-empty, so that there exists an *F*-linear embedding $\sigma: L \to E$. Set $H = \text{Gal}(E/\sigma(L))$. Show that X is transitive and that the stabilizer of σ is *H*.

4. Suppose E/F is a finite Galois extension with Galois group *G*, and let *L* and *M* denote two other extensions of *F*. Set $X = \text{Hom}_F(L, E)$ and $Y = \text{Hom}_F(M, E)$. View these as *G*-sets as in Problem 2.

- (a) Suppose $\varphi : L \to M$ is an *F*-linear embedding. Show that the map $\varphi^* : Y \to X$ given by $\sigma \mapsto \sigma \circ \varphi$ is a morphism of *G*-sets.
- (b) (10 point Bonus) Suppose $f: Y \to X$ is a morphism of *G*-sets and that *Y* is non-empty, so that there is an *F*-linear embedding $\sigma: M \to E$. Show that there is an embedding of field $\varphi: L \to M$ such that $f = \varphi^*$.

5. Suppose E/F is a Galois extension with Galois group G and L is an intermediate field with H = Gal(E/L). Let N denote the normalizer of H in G. Show that the group $\text{Aut}_F L$ of F-linear automorphisms of L is isomorphic to N/H.