RATIONAL CANONICAL AND JORDAN FORMS

PATRICK BROSNAN

1. Introduction

These are some notes about polynomials and rational canonical form for Math 405. They mostly cover the material in Chapers 4, 6 and 7 of Linear Algebra by Hoffman and Kunze. But the proof of the existnce of rational canonical form given here in Theorems 4.8 and 4.10 uses an argument involving duality which seems to make the proof shorter.
1.1. Notation. I write $\mathbb{N}=\{0,1, \ldots\}, \mathbb{P}=\{1,2, \ldots\}$. I write $\chi(T)$ for the characteristic polynomial of a linear operator T on a finite dimensional vector space.
2. Consequences of the Euclidean algorithm for polynomial rings

In this section, F is a field and $F[x]$ is the ring of polynomials. We know that $F[x]$ is a principal ideal domain. In other words, every ideal in $F[x]$ is of the form $p F[x]$ where p is a polynomial.

Definition 2.1. Suppose p_{1}, \ldots, p_{k} are polynomials in $F[x]$ which are not all 0 . Set $I=$ $\left\langle p_{1}, \ldots, p_{k}\right\rangle$. Let d denote the monic generator of I. We call d the greatest common divisor of the p_{i} and write $d=\operatorname{gcd}\left(p_{1}, \ldots, p_{k}\right)$. If $d=1$, we say that the polynomials p_{1}, \ldots, p_{k} is relatively prime. Note that, by definition, there exists polynomials $q_{1}, \ldots, q_{k} \in F[x]$ such that

$$
d=p_{1} q_{1}+\cdots+p_{k} q_{k} .
$$

So, if p_{1}, \ldots, p_{k} are relatively prime, we can find q_{1}, \ldots, q_{k} such that $\sum_{i=1}^{k} p_{i} q_{i}=1$.
Lemma 2.2. Suppose $p, q \in F[x]$ are not both 0 . Set $d=\operatorname{gcd}(p, q)$. If e|p and $e \mid q$, then $e \mid d$.

Proof. Write $d=a p+b q$ with $a, b \in F[x]$. Then it is obvious.
Corollary 2.3. Suppose $p, q \in F[x]$ are not both 0 . Set $d=\operatorname{gcd}(p, q)$. Then $\operatorname{gcd}(p / d, q / d)=$ 1.

Proof. Suppose $e \mid(p / d)$ and $e \mid(q / d)$ for some monic polynomial e. Then $e d \mid p$ and $e d \mid q$. So $e d \mid d$. So $e=1$.

Theorem 2.4. Suppose p, q are relatively prime polynomials in $F[x]$, and $f \in F[x]$. Then $p|q f \Leftrightarrow p| f$.
Proof. (\Leftarrow) is obvious. (\Rightarrow) : Write $1=a p+b q$. Then $p|q f \Rightarrow p|(a p+b q) f=f$.
Corollary 2.5. Suppose p, q are relatively prime polynomials and f is a polynomial which is divisible by both p and q. Then $p q \mid f$.

Proof. Suppose $f=p a$ for some $a \in F[x]$. Then $q|f \Rightarrow q| a$. So $a=q b$ for some $b \in F[x]$. So $f=p q b$.

Definition 2.6. A non-constant polynomial p is reducible if $p=a b$ for a, b non-constant polynomials. Otherwise not-constant polynomial p which is not reducible is called irreducible.

Theorem 2.7. Suppose p is irreducible and $a, b \in F[x]$. Then $p|a b \Rightarrow p| a$ or $p \mid b$.
Proof. We can assume that p is monic. Then $\operatorname{gcd}(p, a)$ is either 1 or p. If $\operatorname{gcd}(p, a)=p$ then $p \mid a$. Otherwise $\operatorname{gcd}(p, a)=1$. So $p \mid b$ by Theorem 2.4.

Theorem 2.8. Suppose f is a non-constant, monic, polynomial. Then there exists irreducible polynomials p_{1}, \ldots, p_{k} such that $f=p_{1} \cdots p_{k}$. These are unique up to reordering.

The expression $f=p_{1} \cdots p_{k}$ is called the factorization of f into irreducibles.
Proof. Suppose there exists a non-constant, monic polynomial which cannot be written as a product of irreducibles. Then let f be a non-constant, monic polynomial of smallest possible degree which cannot be written as such a product. The polynomial f cannot itself be irreducible (obviously). So we must have $f=a b$ with $\operatorname{deg} a, \operatorname{deg} b<\operatorname{deg} f$. But then a and b can be written as products or irreducibles. So so can f.

Supppose there exists a monic, non-constant polynomial with two different factorizations into irreducibles. We can pick one of smallest possible degree. Write $f=p_{1} \cdots p_{n}=$ $q_{1} \cdots q_{m}$ for the two factorizations. If $p_{i}=q_{j}$ for some i, j then we can factor out p_{i} and see that f / p_{i} has two different factorizations. So we can asssume that the sets $\left\{p_{1}, \ldots, p_{n}\right\}$ and $\left\{q_{1}, \ldots, q_{m}\right\}$ are disjoint. But $p_{1} \mid f$. So p_{1} must divide one of the q_{i}. So $p_{1}=q_{i}$ for some i. Contradiction.

Definition 2.9. We say $a \in F$ is a root of a polynomial $f \in F[x]$ if $f(a)=0$. We say F is algebraically closed if every non-constant polynomial has a root in F. For example, \mathbb{C} is algebraically closed.

Proposition 2.10. Suppose $f \in F[x]$ and $a \in F$. Then $f(a)=0 \Leftrightarrow(x-a) \mid f$.
Proof. Write $f=(x-a) g+r$ with r constant. Then $f(a)=r$.
Theorem 2.11. Suppose F is algebraically closed. Then a monic polynomial $p \in F[x]$ is irreducible iff $p=x-$ a for some $a \in F$.

Proof. Obviously $(x-a)$ is irreducible. Suppose p is monic, irreducible. Let a be a root of p. Then $p=(x-a) q$ for some monic $q \in F[x]$. This is a contradiction unless $q=1$.

3. Annihilators and cyclic subspaces

In this section V is a finite dimensional vector space over a field F and $T \in L(V)$ is a linear operator on V.

Definition 3.1. Write $\operatorname{Ann}(T)=\{f \in F[x]: f(T)=0\}$.
We know that $\operatorname{Ann}(T)$ is a non-zero ideal in $F[x]$. So that leads us to the following definition.

Definition 3.2. Write $\min (T)$ for the monic generator of $\operatorname{Ann}(T)$.
Definition 3.3. A subspace $W \subset V$ is called T-stable if $T W \subset W$.

Example 3.4. Suppose $\alpha \in V$. Then set

$$
F[T] \alpha:=\left\langle\alpha, T \alpha, T^{2} \alpha, \ldots\right\rangle .
$$

This is the cyclic subspace generated by α. It is pretty obvious that $F[T] \alpha$ is a T-stable subspace of V. A subspace W of V is said to be cyclic if $W=F[T] \alpha$ for some $\alpha \in W$.

Lemma 3.5. Suppose A and B are T-stable subspaces of V. Then so are $A+B$ and $A \cap B$. Proof. Easy exercise.

Definition 3.6. Suppose W is a T-stable subspace. We write $T_{\mid W}$ (or occasionally $T \mid W$) for the restriction of T to W. So $T_{\mid W}$ is the linear operator on W sending any $w \in W$ to $T w$. Write $\operatorname{Ann}(T, W)$ for $\operatorname{Ann}\left(T_{\mid W}\right)$ and $\min (T, W)$ for $\min \left(T_{\mid W}\right)$. If $\alpha \in V$, write $\operatorname{Ann}(T, \alpha):=\operatorname{Ann}(T, F[T] \alpha)$ and $\min (T, \alpha):=\min (T, F[T] \alpha)$. If T is fixed, as it often will be for us, we drop it from the notation and just write $\operatorname{Ann}(W), \min (W), \operatorname{Ann}(\alpha)$ and $\min (\alpha)$.

Proposition 3.7. We have $\operatorname{Ann}(T, \alpha)=\{f \in F[x]: f(T) \alpha=0\}$.
Proof. Almost obvious. Just need to realize that $f(T) \alpha=0 \Rightarrow f(T) q(T) \alpha=0$ for any $q \in F[x]$.

Proposition 3.8. Suppose $W \subset V$ is T-stable. Then $\operatorname{Ann}(W) \supset \operatorname{Ann}(V)$. Consequently $\min (W) \mid \min (V)$.

Proof. Obvious. If $f \in \operatorname{Ann}(T, V)$ then $f(T) \alpha=0$ for all $\alpha \in V$. So obviously $f(T) \alpha=0$ for all $\alpha \in W$.

Proposition 3.9. Suppose $V=F[T] \alpha$ is cyclic. Let $f=\min (\alpha)=x^{n}+a_{n-1} x^{n-1}+\cdots a_{0}$. For each $i \in \mathbb{N}$, set $\alpha_{i}:=T^{i} \alpha$. Then
(1) $B=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ is a basis for V;
(2) $\alpha_{n}=-\sum_{i=0}^{n-1} a_{i} \alpha_{i}$.
(3) In the basis B we have

$$
T=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & 0 & \cdots & 0 & -a_{2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right)
$$

Proof. Suppose $\beta \in V$. We can write $\beta=p(T) \alpha$ for some $p \in F[x]$. Write $p=q f+r$ with $q, r \in F[t]$ and $\operatorname{deg} r<\operatorname{deg} f$. Then $p(T)=r(T)$ since $f(T)=0$. So we can write $\beta=r(T) \alpha$ with $\operatorname{deg} r<n$. This shows that B spans. To show that B is a basis, suppose $r(T) \alpha=0$ for some r of degree less than n. Then $f \mid r$. So $r=0$. This proves (1).
(2) is obvious because, by definition, $f(T) \alpha=0$. (3) follows directly from (2).

Definition 3.10. The matrix in Proposition 3.9 (3) is called the companion matrix of $F[T] \alpha$. Note that, if V is cyclic, the companion matrix depends only on the minimal polynomial f of T.

Theorem 3.11. Suppose $V=F[T] \alpha$ is cyclic. Then $\min (T)$ is equal to the characteristic polynomial $\chi(T)$ of T.

Proof. We just need to show that the characteristic polynomial of the companion matrix is equal to the polynomial $f=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ (as in Proposition 3.9 (3)). For this, write $f=x g+a_{0}$ and induct on n. It is obvious when $n=1$; so assume $n>1$. The characteristic polynomial of T is

$$
h:=\left|\begin{array}{cccccc}
x & 0 & 0 & \cdots & 0 & a_{0} \tag{3.11.1}\\
-1 & x & 0 & \cdots & 0 & a_{1} \\
0 & -1 & x & \cdots & 0 & a_{2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & x+a_{n-1}
\end{array}\right|
$$

Let S denote the matrix

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -a_{1} \\
1 & 0 & 0 & \cdots & 0 & -a_{2} \\
0 & 1 & 0 & \cdots & 0 & -a_{3} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right)
$$

By induction, the characteristic polynomial of S is g. Then, expanding out the determinate in (3.11.1) in minors on the first column, we see that $h=x g+(-1)^{n-1}(-1)^{n-1} a_{0}=x g+a_{0}=$ f.

4. Canonical Form

Here again V is a finite dimensional vector space over F and $T \in L(V)$.
Lemma 4.1. Suppose $E_{1}, E_{2} \in L(V)$ satisfy the following
(1) $E_{1}+E_{2}=\mathrm{Id}$;
(2) $E_{1} E_{2}=E_{2} E_{1}=0$.

Then E_{1} and E_{2} are the projectors onto complementary subspaces.
Proof. We just need to show that $E_{i}^{2}=E_{i}$ for $i=1,2$. But we have $E_{1}=E_{1}\left(E_{1}+E_{2}\right)=$ $E_{1}^{2}+E_{1} E_{2}=E_{1}^{2}$.

Theorem 4.2. Suppose $f:=\min (T)=p_{1} p_{2}$ with p_{1}, p_{2} relatively prime. Set $W_{i}=\operatorname{ker} p_{i}$. Then

$$
V=W_{1} \oplus W_{2} .
$$

Moreover both subspaces in the above decomposition are T-stable, and $\min \left(T, W_{i}\right)=p_{i}$.
Proof. It is obvious that $\operatorname{ker} p_{i}(T)$ is T-stable $i=1,2$.
Pick $a_{1}, a_{2} \in F[x]$ such that $a_{1} p_{1}+a_{2} p_{2}=1$. Then set $h_{i}=a_{i} p_{i}, E_{i}=h_{i}(T)$. We have $E_{1} E_{2}=a_{1}(T) a_{2}(T) f(T)=0=E_{2} E_{1}$, and $E_{1}+E_{2}=$ Id. So E_{1} and E_{2} are projections onto complementary subspaces. It follows that $V=\operatorname{ker} E_{1} \oplus \operatorname{ker} E_{2}$.

Now, $E_{i}=a_{i}(T) p_{i}(T)$. So ker $p_{i}(T) \subset \operatorname{ker} E_{i}$. On the other hand, suppose $\alpha \in \operatorname{ker} E_{1}$. Then $p_{1}(T) \alpha=p_{1}(T)\left(E_{1}+E_{2}\right) \alpha=p_{1}(T) E_{2}(T) \alpha=p_{1}(T) a_{2}(T) p_{2}(T) \alpha=a_{2}(T) f(T) \alpha=0$. So $\operatorname{ker} p_{1}(T)=\operatorname{ker} E_{1}$. And similarly $\operatorname{ker} p_{2}(T)=\operatorname{ker} E_{2}$.

It is clear that $p_{1}(T)=0$ on W_{1}. Suppose $g(T)=0$ on W_{1}. Then $g(T) p_{2}(T)=0$. So $f \mid g p_{2}$. So $p_{1} \mid g$.

Lemma 4.3. Suppose W_{1} and W_{2} are T-stable subspaces of V with $\min \left(W_{i}\right)=g_{i}$. Set $W=W_{1}+W_{2}$ and suppose that $\operatorname{gcd}\left(g_{1}, g_{2}\right)=1$. Then
(a) $W_{1} \cap W_{2}=\{0\}$. So $W=W_{1} \oplus W_{2}$.
(b) $\min (W)=g_{1} g_{2}$.

Proof. (a): Suppose $w \in W_{1} \cap W_{2}$. Then $\min (w) \mid g_{1}$ and $\min (w) \mid g_{2}$. So $\min (w) \mid \operatorname{gcd}\left(g_{1}, g_{2}\right)=$ 1. So $\min (w)=1$. So $w=0$.
(b): Suppose $f \in F[x]$. Then $f(T)=0$ iff $f(T)_{\mid W_{1}}=f(T)_{\mid W_{2}}=0$. This happens iff $g_{1} \mid f$ and $g_{2} \mid f$. Since g_{1} and g_{2} are relatively prime, this happens iff $g_{1} g_{2} \mid f$. So $\min (V)=$ $g_{1} g_{2}$.

Lemma 4.4. Suppose $\alpha_{1}, \alpha_{2} \in V$ and set $g_{i}=\min \left(\alpha_{i}\right)$. If $\operatorname{gcd}\left(g_{1}, g_{2}\right)=1$, then $\min \left(\alpha_{1}+\right.$ $\left.\alpha_{2}\right)=g_{1} g_{2}$.

Proof. Set $W_{i}=F[T] \alpha_{i}$. Then $W_{1} \cap W_{2}=\{0\}$ since $\operatorname{gcd}\left(g_{1}, g_{2}\right)=1$. So, if we set $W=W_{1}+W_{2}$, the sum is direct and $W=W_{1} \oplus W_{2}$. Then, set $\alpha=\alpha_{1}+\alpha_{2}$. For $f \in F[x]$, $f(T) \alpha=0 \Leftrightarrow f(T) \alpha_{1}=f(T) \alpha_{2}=0 \Leftrightarrow g_{1} \mid f$ and $g_{2} \mid f$. Since g_{1}, g_{2} are relatively prime, this happens iff $g_{1} g_{2} \mid f$.

Theorem 4.5. Suppose $\min (V)=f$. Then there is an $\alpha \in V$ with $\min (\alpha)=f$.
Proof. If $T=0$ so that $f=1$, then the result is obvious. So assume that T is non-zero. Write $f=\prod_{i=1}^{r} p_{i}^{d_{i}}$ with the p_{i} distinct irreducibles and $d_{i} \in \mathbb{P}$, and induct on r.

If $r=1$, then $f=p_{1}^{d_{1}}$. So, for every $\beta \in V$, we have $\min (\beta)=p_{1}^{e(\beta)}$ for some integer $e(\beta)$ satisfying $0 \leq e \leq d_{1}$. Let e be the maximum value of $e(\beta)$ obtained as β ranges over all elements of V. Then $p_{1}(T)^{e}=0$ on V. So $e=d_{1}$. Therefore $d_{1}=e(\alpha)$ for some $\alpha \in V$ and the result follows.

Now assume $r>1$. Write $f=g p_{r}^{d_{r}}$ with $\operatorname{gcd}\left(g, p_{r}\right)=1$, and write $V=W \oplus W_{r}$ with $W=\operatorname{ker} g(T)$ and $W_{r}=\operatorname{ker} p_{r}^{d_{r}}(T)$. By induction, can find $\beta \in W$ such that $\min (\beta)=$ $\min (W)=g$. And by the proof for $r=1$, we can find $\gamma \in W_{r}$ such that $\min (\gamma)=p_{r}^{d_{r}}$. Set $\alpha=\beta+\gamma$. Then $\min (\alpha)=g p_{r}^{r}=f$.

Lemma 4.6. We have $\operatorname{Ann}\left(T^{*}, V^{*}\right)=\operatorname{Ann}(T, V)$.
Proof. For $X, Y \in L(V)$, we have $(X+Y)^{*}=X^{*}+Y^{*}$ and $(X Y)^{*}=Y^{*} X^{*}$. Moreover, it is easy to see that $X=0 \Leftrightarrow X^{*}=0$. So $p(T)^{*}=p\left(T^{*}\right)$ for $p \in F[x]$. Therefore, $p(T)=0 \Leftrightarrow p(T)^{*}=0 \Leftrightarrow p\left(T^{*}\right)=0$.

Lemma 4.7. Suppose $W \subset V^{*}$ is a T^{*}-stable subspace. Then $W^{\perp} \subset V$ is T-stable.
Proof. Suppose $v \in W^{\perp}$ and $\lambda \in W$. Then $\langle\lambda, T v\rangle=\left\langle T^{*} \lambda, v\right\rangle=0$. So $T v \in W^{\perp}$.
Theorem 4.8. Suppose $\alpha \in V$ is an element with $f=\min (\alpha)=\min (T, V)$. Then there exists a T-stable subspace K such that

$$
V=(F[T] \alpha) \oplus K
$$

Proof. Set $H=F[T] \alpha$. Then $\min \left(T^{*}, H^{*}\right)=\min (T, H)=f$. So there exists a $\bar{\lambda} \in H^{*}$ such that $\min (\bar{\lambda})=f$. Find a $\lambda \in V^{*}$ such that $\lambda_{\mid H}=\bar{\lambda}$. (Exercise 3.5.12 in HoffmanKunze shows that we can do this.) Then $p(T) \lambda=0 \Rightarrow p(T) \bar{\lambda}=0$. So $f \mid \min (\lambda)$. But $\min \left(T^{*}, V^{*}\right)=\min (T, V)=f$. So we have $f=\min (\lambda)$. Now set $K=(F[T] \lambda)^{\perp}$. By Lemma 4.7 K is T-stable.

If $p(T) \alpha \in K$ then $\left\langle q\left(T^{*}\right) \lambda, p(T) \alpha\right\rangle=\left\langle p\left(T^{*}\right) \lambda, q(T) \alpha\right\rangle=0$ for all $q \in F[T]$. So $p\left(T^{*}\right) \bar{\lambda}=0$. So $f \mid p$. So $p(T) \alpha=0$. This shows that $H \cap K=\{0\}$. On the other hand, $\operatorname{dim} F[T] \lambda=\operatorname{deg} f=\operatorname{dim} H$. So $\operatorname{dim} K=\operatorname{dim} V-\operatorname{dim} H$. So, by the Hausdorff dimension formula it follows that $V=H \oplus K$.

Theorem 4.9 (Cayley-Hamilton). Suppose $T \in L(V)$ with $\operatorname{dim} V<\infty$. Then the minimal polynomial of T divides the characteristic polynomial.
Proof. Pick $\alpha \in V$ with $f=\min (\alpha)=\min (T, V)$. Then write $V=H \oplus K$ with $H:=F[T] \alpha$. We have $\chi(T)=\chi\left(T_{\mid H}\right) \chi\left(T_{\mid K}\right)=f \chi\left(T_{\mid K}\right)$.

Theorem 4.10 (Rational canonical form). We can find elements $\alpha_{1}, \ldots, \alpha_{r}$ of V such that
(1) $V=F[T] \alpha_{1} \oplus \cdots \oplus F[T] \alpha_{r}$;
(2) $\min \left(\alpha_{i}\right) \mid \min \left(\alpha_{i-1}\right)$ for $i=2, \ldots, r$.

Moreover, the polynomials $\min \left(\alpha_{i}\right)$ are unique. They are called the elementary divisors of T.

Proof. Apply Theorem 4.8 inductively to prove the existence.
For uniqueness, suppose $V, T \in L(V)$ is a pair where the polynomials associated to the decomposition above are not unique and assume that V has minimal dimension for this property. So we have

$$
\begin{aligned}
V & =F[T] \alpha_{1} \oplus \cdots \oplus F[T] \alpha_{r} \\
& =F[T] \beta_{1} \oplus \cdots \oplus F[T] \beta_{s}
\end{aligned}
$$

with $\min \left(\alpha_{i}\right) \mid \min \left(\alpha_{i-1}\right)$ and $\min \left(\beta_{i}\right) \mid \min \left(\beta_{i-1}\right.$ for $i \geq 2$. Set $f_{i}=\min \left(\alpha_{i}\right), g_{i}=\min \left(\beta_{i}\right)$. Then $f_{1}=\operatorname{Ann}(T, V)=g_{1}$.

Suppose $p_{i}=q_{i}$ for $i=1, \ldots, j-1$, but $p_{j} \neq q_{j}$. By switching the p 's and q 's we can assume that $\operatorname{deg} p_{j} \leq \operatorname{deg} q_{j}$. Then

$$
\begin{aligned}
p_{j}(T) V & =F[T] p_{j}(T) \alpha_{1} \oplus \cdots \oplus F[T] p_{j}(T) \alpha_{j-1} \\
& =\left(F[T] p_{j}(T) \beta_{1} \oplus \cdots \oplus F[T] p_{j}(T) \beta_{j-1}\right) \oplus F[T] p_{j}(T) \beta_{j} \oplus \cdots \oplus p_{j}(T) F[T] \beta_{s}
\end{aligned}
$$

We have $\min \left(p_{j}(T) \alpha_{i}\right)=\min \left(p_{j}(T) \beta_{i}\right)=p_{i} / p_{j}$ for $i<j$. So, for $i<j, \operatorname{dim} F[T] p_{j}(T) \alpha_{i}=$ $\operatorname{dim} F[T] p_{j}(T) \beta_{i}$. Therefore

$$
F[T] p_{j}(T) \beta_{j} \oplus \cdots \oplus p_{j}(T) F[T] \beta_{s}=0
$$

So, since $p_{j}(T) \beta_{j}=0, q_{j} \mid p_{j}$. But this implies that $q_{j}=p_{j}$ since $\operatorname{deg} q_{j} \geq \operatorname{deg} p_{j}$. Contradiction.

Proposition 4.11. The product of the elementary divisors is the characteristic polynomial of T.
Proof. Obvious. Since $\chi\left(T \mid F[T] \alpha_{i}\right)=\min \left(T \mid F[T] \alpha_{i}\right)$.
Definition 4.12. We say T is nilpotent if $T^{k}=0$ for some $k \in \mathbb{N}$. Then $\min (T)=x^{n}$ where n is the smallest positive integer such that $T^{n}=0$. We say that n is the nilpotence index of T.

Proposition 4.13. Suppose T is nilpotent and V is cyclic. Then the companion matrix of T is

$$
T=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

Proof. Obvious.

It follows from the proposition that any nilpotent T is similar to a matrix having blocks of the form in Proposition 4.13 with size less than or equal to the nilpotence index.

5. Jordan form

Here V is a finite dimensional vector space over a field F which we assume to be algebraically closed. We fix $T \in L(V)$, and let $f=\min (T)$. We assume that $T \neq 0$ so that $f \neq 1$. Since F is algebebraically closed we can factor

$$
f=\prod_{i=1}^{r}\left(x-a_{i}\right)^{d_{i}}
$$

where $a_{i} \in F$ and $d_{i}, r \in \mathbb{P}$.
Theorem 5.1. Set $W_{i}=\operatorname{ker}\left(T-a_{i}\right)^{d_{i}}$ for $i=1, \ldots r$. Then

$$
V=W_{1} \oplus \cdots \oplus W_{r} .
$$

Proof. Induct on r. If $r=1$ it is obvious. Otherwise write $f=g\left(x-a_{r}\right)^{d_{r}}$. We get

$$
V=W \oplus W_{r}
$$

where $W=\operatorname{ker} g(T)$, and $\min (T \mid W)=g$. Now apply induction.
Corollary 5.2. We can find a basis for V such that T is a block matrix with $\ell \times \ell$ blocks $T_{i j}, i=1, \ldots, r, j=1, \ldots, m(i)$ for some $m(i) \in \mathbb{P}$, of the following form.

$$
T_{i j}=\left(\begin{array}{cccccc}
a_{i} & 0 & 0 & \cdots & 0 & 0 \\
1 & a_{i} & 0 & \cdots & 0 & 0 \\
0 & 1 & a_{i} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & a_{i}
\end{array}\right) .
$$

Moreover, if the blocks $T_{i j}$ are of size $\lambda_{i j}$, then $\lambda_{i 1}+\cdots+\lambda_{i m(i)}=d_{i}$.
Proof. Set $T_{i}=T_{\mid W_{i}}$. Then set $N_{i}=T_{i}-a_{i} \mathrm{Id}$. Since $\left(T-a_{i}\right)^{d_{i}}=0, N_{i}$ is nilpotent. So we can write N_{i} as a sum of blocks as in Proposition 4.13. Then $T_{i}=a_{i} \mathrm{Id}+N_{i}$, and the result follows. We say a matrix in the above form is in Jordan canonical form.

Example 5.3. Suppose we have

$$
T=\left(\begin{array}{ccc}
3 & 1 & 0 \\
-1 & 1 & 0 \\
3 & 2 & 2
\end{array}\right)
$$

Let's compute the Jordan form of T. The first step is to compute the characteristic polynomial. This is $(x-2)^{3}$. One way to do this is to just multiply it out. There is also a clever way to do it using row and column operations.

Now, set

$$
N=T-2=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & -1 & 0 \\
3 & 2 & 0
\end{array}\right)
$$

We have

$$
N^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right), N^{3}=0
$$

So the minimal polynomial of N is x^{3} and therefore the minimal polynomial of T is $(x-2)^{3}$. It follows that T has Jordan form

$$
J:=\left(\begin{array}{lll}
2 & 0 & 0 \\
1 & 2 & 0 \\
0 & 1 & 2
\end{array}\right) .
$$

Note that we did not have to compute a basis B for which $[T]_{B}$ has this form to do this computation.

But suppose we want such a basis. It's not hard. We just need to find a vector α such that $F[N] \alpha=V$. In other words, we need a vector not in the kernel of N^{2}. So e_{1} will do. Set $B=\left(e_{1}, N e_{1}, N^{2} e_{1}\right)=\left(e_{1}, e_{1}-e_{2}+e_{3}, e_{3}\right)$. Then $[T]_{B}=J$.

Now, let's give the clever way compute χT using row and column operations. Set

$$
S=\left(\begin{array}{ccc}
x-3 & -1 & 0 \\
1 & x-1 & 0 \\
3 & -2 & x-2
\end{array}\right)
$$

The idea is to do row and column operations (including permuting rows and permuting columns) in such a way as to reduce S to a diagonal matrix. Keeping track of the sign of the determinant. Suppose R_{1}, R_{2} and R_{3} are the rows and p is a polynomial. Then the matrix with rows $R_{1}, R_{2}+p R_{1}, R_{3}$ has the same determinant as S. This allows us to reduce the degrees in the the matrix using long division.

So here's the computation:

$$
\begin{aligned}
|S| & =-\left|\begin{array}{ccc}
1 & x-1 & 0 \\
x-3 & -1 & 0 \\
3 & -2 & x-2
\end{array}\right|=-\left|\begin{array}{ccc}
1 & x-1 & 0 \\
0 & -1-(x-1)(x-3) & 0 \\
0 & -2-3(x-1) & x-2
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & x^{2}-4 x+4 & 0 \\
0 & -3 x+1 & x-2
\end{array}\right|=-\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 x+1 & x-2 \\
0 & (x-2)^{2} & 0
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & x-2 & -3 x+1 \\
0 & 0 & x^{2}-4 x+4
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & x-2 & -5 \\
0 & 0 & (x-2)^{2}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 5 & x-2 \\
0 & -(x-2)^{2} & 0
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 5 & x-2 \\
0 & 0 & (x-2)^{3} / 5
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & (x-2)^{3}
\end{array}\right| .
\end{aligned}
$$

So $|S|=(x-2)^{3}$. Note that we only really had to do the first three parts of the computation to get down to a lower triangular matrix. However, I wanted to do this computation to the end so that I could state the following fact.
Theorem 5.4. Suppose $T \in L(V)$ and let $S=x \mathrm{Id}-T$. Using row and column operations as above, we can reduce S to a diagonal matrix of the form

$$
\left(\begin{array}{cccc}
p_{1} & 0 & \ldots & 0 \tag{5.4.1}\\
0 & p_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & p_{n}
\end{array}\right)
$$

where the p_{i} are monic polynomils and $p_{1}\left|p_{2}\right| \cdots p_{n}$. Then the p_{i} are the elementary divisors of T (in reverse order with 1 's omitted).

Proof. See $\S 7.4$ of Hoffman and Kunze.

Example 5.5. What is the Jordan canonical form of the matrix

$$
N=\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)
$$

with $a, b \in \mathbb{C}$? The easiest way to figure this out is to note that $N e_{3}=b e_{1}+c e_{2}, N^{2} e_{3}=a c e_{1}$ and $N^{3} e_{3}=0$. So the minimal polynomial divides x^{3}. If a, c are both non-zero, then $V=\mathbb{C}[N] e_{3}$. So, using the ordered basis $e_{3}, N e_{3}, N^{2} e_{3}$, we see that

$$
N \sim\left(\begin{array}{lll}
0 & 0 & 0 \tag{5.5.1}\\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

If $a=b=c=0$, then clearly N is the 0 -matrix. Otherwise, N has Jordan form

$$
\left(\begin{array}{lll}
0 & 0 & 0 \tag{5.5.2}\\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and elementary divisors x^{2} and x. This is easy to see abstractly because the list of elementary divisors of N is not x^{3} and not x, x, x. So the only thing it can be is x^{2}, x. And this shows that the Jordan form must be as above.

However, to see it explicitly it helps to work in cases. Let's do the case where $a=0$ but $c \neq 0$ explicitly using the method of proof in Theorem 4.8. This is certainly not the easiest way to do the computation. But it may help in understanding how the proof of Theorem 4.8 works. Set $H=\mathbb{C}[N] e_{3}=\left\langle, e_{3}, b e_{1}+c e_{2}\right\rangle$. Let $e_{1}^{*}, e_{2}^{*}, e_{3}^{*}$ denote the dual basis the the standard basis e_{1}, e_{2}, e_{3}. Set $\lambda=e_{2}^{*}$ and let $\bar{\lambda}$ denote the restriction of λ to H. Then $\left(N^{*} \bar{\lambda}, e_{3}\right)=\left(\bar{\lambda}, N e_{3}\right)=\left(\bar{\lambda}, b e_{1}+c e_{2}\right)=\left(e_{2}^{*}, b e_{1}+c e_{2}\right)=c$. And, since $N^{2}=0,\left(N^{*}\right)^{2}=0$ as well. So $\mathbb{C}\left[N^{*}\right] \bar{\lambda}=H^{*}$. So, following the argument in the proof of Theorem 4.8, set $K:=\left(\mathbb{C}\left[N^{*}\right] \lambda\right)^{\perp}$. We have $N e_{2}^{*}=c e_{3}^{*}$. So $K=\left\langle e_{2}^{*}, e_{3}^{*}\right\rangle^{\perp}=\left\langle e_{1}\right\rangle$. We get $V=H \oplus K=\left\langle e_{3}, b e_{1}+c e_{2}\right\rangle \oplus\left\langle e_{1}\right\rangle$. for the Jordan blocks. In other words, with respect to the ordered basis $B=\left(e_{3}, b e_{1}+c e_{2}, e_{1}\right), N$ has the matrix in (5.5.2).

Example 5.6. Set

$$
T=\left(\begin{array}{lll}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right)
$$

Let's find the elementary divisors of T both by hand and using the method in Theorem 5.4. First we do the row and column operations needed. We write $A \approx B$ if A and B differ by an elementary row or column operation. (Not to be confused with \sim for similarity of matrices. But hopefully this will be clear from the context.) We have

$$
\begin{aligned}
S & =\left(\begin{array}{ccc}
x-4 & 0 & -1 \\
-2 & -3 & -2 \\
-1 & 0 & -4
\end{array}\right) \approx\left(\begin{array}{ccc}
-1 & 0 & -4 \\
x-4 & 0 & -1 \\
-2 & x-3 & -2
\end{array}\right) \\
& \approx\left(\begin{array}{ccc}
-1 & 0 & 0 \\
x-4 & 0 & (x-4)^{2}-1 \\
-2 & x-3 & -2 x+6
\end{array}\right) \approx\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & x^{2}-8 x+15 \\
0 & x-3 & -2 x+6
\end{array}\right) \\
& \approx\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & x-3 & -2 x+6 \\
0 & 0 & (x-3)(x-5)
\end{array}\right) \approx\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & x-3 & 0 \\
0 & 0 & (x-3)(x-5)
\end{array}\right) .
\end{aligned}
$$

This tell us that the elementary divisors are $(x-3)$ and $(x-3)(x-5)$. It follows that T has diagonal Jordan form. That is

$$
T \sim\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

But, since we haven't prove Theorem 5.4 yet. Maybe we don't trust it. So let's find the Jordan form another way. The above computation tells us at least that $\chi(T)=(x-3)^{2}(x-5)$. So we have

$$
T-5=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
2 & -2 & 2 \\
1 & 0 & -1
\end{array}\right)
$$

This has row-echelon form

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

So $(1,2,1)$ generates the eigenspace of T with eigenvalue 5 .
Now

$$
T-3=\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 0 & 2 \\
1 & 0 & 1
\end{array}\right)=(1 / 2)(T-3)^{2}
$$

This row reduces to

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

This shows us that that vectors $(-1,0,1)$ and $(0,1,0)$ generate the eigenspace with eigenvalue 3. So again we get that T is diagonalizable into the form above.

Department of Mathematics, 1301 Mathematics Building, University of Maryland, College Park, MD 20742

E-mail address: pbrosnan@umd.edu

