HW02, due Wednesday, February 10
Math 406, Spring 2021
Reading: Read Chapter 2 of Crisman's text.
Graded Problems: Work the following problems for a grade. Turn them in on Gradescope.

Some problems are taken from the Online Version of Crisman's text:
http://math.gordon.edu/ntic/

Each problem is worth 20 points.

1. Give proofs for facts (1), (3) and (4) from Proposition 1.2 .8 in the text. In other words, suppose that a, b, c, u and v are integers. Then prove the following.
(1) [6 points] If $a \mid b$ and $b \mid c$, then $a \mid c$.
(3) [7 points] If $c \mid a$ and $c \mid b$, then $c \mid(a u+b v)$.
(4) [7 points] If $c>0$, then all divisors of c are less than or equal to c.
2. (Crisman, 2.5.6) Prove that

$$
\operatorname{gcd}(a, a+2)= \begin{cases}1, & a \text { odd } \\ 2, & a \text { even }\end{cases}
$$

3. Use the Euclidean algorithm to find the gcd d of 51 and 90. Then find integers x, y such that $51 x+90 y=d$. Show all your work.
4. Suppose a and b are two nonzero integers. An integer e is a common multiple of a and b if a and b both divide e.
(a) [7 points] Show that, as long as a and b are nonzero integers (as we are assuming), there always exists a positive common multiple of a and b.
(b) [6 points] Define the least common multiple of a and b to be the smallest positive common multiple of a and b. Explain why this number exists.
(c) [7 points] Write $\operatorname{lcm}(a, b)$ for the least common multiple of a and b. Show that $\operatorname{lcm}(a, b)=|a b|$ if and only if $\operatorname{gcd}(a, b)=1$. You can assume, for simplicity, that a and b are both positive. (However, the result holds in general.)
5. Prove the second assertion of Proposition 2.4.9 in the text. In other words, assume that a and b are coprime integers and assume that $a \mid b c$ for some integer c. Show that $a \mid c$.
