ERRATA AND SUGGESTION SHEETS
 Advanced Calculus, Second Edition

Prof. Patrick Fitzpatrick

February 6, 2013

- Page 11, line 38: " $b^{2}<r$ " should be " $b^{2}<c$ "
- Page 13, line 1: for "... number a and b," write "... numbers a and b, "
- Page 16, 1c: " $\mathbb{Q} \backslash \mathbb{N} "$ should read " $\mathbb{Q} \backslash \mathbb{Z} "$
- Page 18, line 14: " $1-T$ " should read " $1-r$."
- Page 19: The Geometric sum formula. Left hand side is not define when $r=0$.
- Pages 30, 32: To slightly improve clarity, the Linearity Property should come before Theorem 2.13.
- Page 32, line 16: " $p(x)=\sum_{i=0}^{k} c_{i} x^{i} "$ should appear " $p(x)=c_{0}+\sum_{i=1}^{k} c_{i} x^{i}$ "
- Page 36, line 16: " $x=(a+b) / 2 "$ should be " $s=(a+b) / 2$ ".
- Page 38: Theorem 2.25 (i) and (ii) should have n in NATURAL numbers \mathbb{N}.
- Page 40, line 2: " $S_{4}+\frac{1}{2}=1+\frac{3}{2}$ " read " $S_{4}+\frac{1}{2} \geq 1+\frac{3}{2}$."
- Page 54, line 9:"sequence $(\{-1 / n\}$ " should read "sequence $\{-1 / n\}$ "
- Page 57, line 14: "... $f+g: R$ and ..." should read "... $f+g: R \rightarrow R$ and ..."
- Page 62, line 7: "the value 0 ." should read "zero or negative values."
- Page 67, line 21: " $1 / n$ " should read " $-1 / n$."
- Page 67, line 22: " $2+1 / n^{2}$ " should read " $-2-1 / n^{2}$."
- Page 67, line 24: " $(0,1)$ " should read " $(0,2)$."
- Page 73: Theorem 3.22 in the first sentence after "ii", it reads "... criterion at the domain $\mathrm{D} ; \ldots$... and it should read "... criterion on the domain $\mathrm{D} ; \ldots$..."
- Page 78, line 22: "monotonically increasing" should read "monotone"
- Page 81, line 23: "D" should appear "D."
- Page 90, line 14: " $\lim _{x \rightarrow 0, x>0} \frac{f(x)-f(0)}{x-0}=-1 "$ should read " $\lim _{x \rightarrow 0, x<0} \frac{f(x)-f(0)}{x-0}=-1$."
- Page 90, line 1 and Page 91, line 1: "... $+x_{0}^{n-2}+x_{0}^{n-1 "}$ should read "... $+x x_{0}^{n-2}+$ x_{0}^{n-1}."
- Page 94, \#3: The function value $f(0)$ is defined twice.
- Page 99, (4.8): " $x-x$ " should read " $x-x_{0}$ " in two denominators.
- Page 107, line 8: " $x_{0}<x_{0}+\delta$ " should appear " $x_{0}<x<x_{0}+\delta$ "
- Page 107, line 15: for "In section 9.5," write "In Section 9.6,"
- Page 112, line 3: " $g^{(n)}\left(x_{0}\right)=n$!" should appear " $g^{(n)}(x)=n$!"
- Page 112, line 14: " $\frac{f^{(n)}\left(x_{n}\right)}{g^{(n)}\left(x_{0}\right)}$ " should appear $" \frac{f^{(n)}\left(x_{n}\right)}{g^{(n)}\left(x_{n}\right)}$ "
- Page 120, line 15: for "inverse function \mathbb{R}." write "inverse function on \mathbb{R}."
- Page 128, line 11: " $C(2 z) \leq 0$ " should appear " $C(2 z)<0$."
- Page 142, line 1: for ". . . 1988), a clear ..." write ". . . 1988), is a clear . .."
- Page 143: Under 6.14 you should refer to Darboux sums, not Riemann.
- Page 144, line 10: the second"(6.19)" should be "(6.20)."
- Page 145, line 3: for " $[a, b]: \mathbb{R} \rightarrow \mathbb{R}$ " write " $f:[a, b] \rightarrow \mathbb{R}$."
- Page 149, \#4b.: for " $(b-a) / 2 "$ write " $\left(b^{2}-a^{2}\right) / 2$ "
- Page 150, line 10: for "The f is" write "Then f is."
- Page 152, line 5: for " $L\left(f, P_{n}\right)$ " write " $U\left(g, P_{n}\right)$."
- Page 152, line 12: for "... $\leq L(f, P)+U(g, P)$." write "... $\leq U(f, P)+U(g, P)$."
- Page 153, line 1: for "... $\leq U\left(f+g, P_{n}\right) \leq L\left(f, P_{n}\right)+U\left(g, P_{n}\right)$." write "... $\leq U(f+$ $\left.g, P_{n}\right) \leq U\left(f, P_{n}\right)+U\left(g, P_{n}\right) . "$
- Page 153, line 21: $U\left(\alpha f, P_{n}\right)$ Formula is in conflict with formulas 6.31. To avoid that, add the following statement: "The above formula is consistent with formula 6.31 because $U(\alpha f, P)=L(\alpha f, P)$ for all P if $\alpha=0$."
- Page 156, lines 10-12: for " $\left[x_{i-1}-x_{i}\right]$ " write " $\left[x_{i}-x_{i-1}\right]$ "
- Page 160, line 2: for "Section 7.4." write "Section 7.3."
- Page 162, line 8: for " $L(f, P)$ " write " $L\left(f^{\prime}, P\right)$."
- Page 162, line 8: for " $R(f, P)$ " write " $U\left(f^{\prime}, P\right)$."
- Page 164, \#3: for " $\int_{a}^{b} f=4 "$ write " $\int_{2}^{6} f=4$ "
- Page 169, line 7: "from bottom(7.2)" should be "(7.1)"
- Page 169, line 8: "from bottom(7.3)" should be "(7.2)"
- Page 180: Possible typo: I would delete $H(d)=0$. Not needed in argument, and not proved. It is really necessary to change 4.19 slightly.
- Page 187, line 11: for "index $i \geq 1$ " write "index i such that $1 \leq i \leq n$ "
- Page 189, \#8: for "Supose" write "Suppose"
- Page 191: In the caption of Figure 7.2; Reads ". . trapezoid . . ." rather than ". . trapezoid ..."
- Page 201, line 4: for " $x=0$ " write " $x_{0}=0$ "
- Page 201, line 8: for " $x=0$ " write " $x_{0}=0$ "
- Page 201, line 12: for " $x=0$ " write " $x_{0}=0$ "
- Page 201, line 7: for " $x=1$ " write " $=1$ "
- Page 202, line 10: for "strictly increasing ..." write "strictly decreasing ..."
- Page 202, line 1: for "at $x=0$ " write "at $x_{0}=0$."
- Page 203, line 10: for " $\left(x-x_{0}\right)^{n "}$ write " $\left(x-x_{0}\right)^{n+1}$."
- Page 205, line 3: from bottom " $n>4$ " should appear " $n \geq 4$."
- Page 206, line 1: for " $\ln (n+1)=\ln 1$ " write " $\ln (n+1)-\ln 1$."
- Page 217, line 6: for "number n " write "number k "
- Page 221, line 10: for "about $x=0$ " write "about $x_{0}=0$."
- Page 225, line 6: for " $1 \leq k \leq n$ " write " $0 \leq k \leq n$."
- Page 233, line 2: for "for index" write "for every index"
- Page 235, line 9: for " $(0, c)$ " write " $(0, b)$ "
- Page 240, line 2: for " $\lim _{n \rightarrow \infty}\left(\frac{a_{k}}{b_{k}}\right)$ " write " $\lim _{k \rightarrow \infty}\left(\frac{a_{k}}{b_{k}}\right)$ "
- Page 241, line 12: for "... value is $1 . "$ write "... value is $1, "$
- Page 241, Fig. 9.2: for "... $\lim _{n \rightarrow \infty} 1^{n}=0$." write "... $\lim _{n \rightarrow \infty} 1^{n}=1$."
- Page 242, line 1: for ". . . natural number k " write "... integer k."
- Page 243, line 6: from bottom " $2 / N<x$."
- Page 243, line 8: for "... number n, \ldots " write "number $n \geq 2, \ldots$ "
- Page 243, line 9: for " $f_{n}(0)=f(2 / n)=\cdots$ " write" $f_{n}(0)=f_{n}(2 / n)=\ldots$ "
- Page 243, line 10: for "and $[2 / n, 0]$ " write "and $[2 / n, 1]$."
- Page 243, Fig. 9.4: for " $\left(\frac{1}{n}, 1\right)$ " write " $\left(\frac{1}{n}, n\right)$."
- Page 251, line 4: for " $4[b-a]$ " write " $[4(b-a)]$ "
- Page 251, line 8: for " $6[b-a]$ " write " $[6(b-a)]$ "
- Page 257, line 4: for "Cauchy on A" write "Cauchy on A "
- Page 265, Fig. 9.6: left figure : for " $(l, 2 l)$ " write " (l, l)."
- Page 265, Fig. 9.6: Two comments: (1) It would be nice to use the same script l as in the surrounding text. (2) It would be nice if the graphs had the same scales for both x and y-axes.
- Page 266, line 16: for " $\sum_{k=1}^{\infty} h_{k}(x)$ " write " $\sum_{k=0}^{\infty} h_{k}(x)$ "
- Page 279, line 6: for "dist $\left(\mathbf{u}, \mathbf{u}^{\prime}\right)$ and" write " $\operatorname{dist}\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=0$ and"
- Page 286, line 1: from bottom " $\bigcap_{i=1}^{k} c_{i}$ " should appear " $\bigcup_{i=1}^{k} c_{i}$ "
- Page 302, line 7: for " $A: \mathbb{R} \rightarrow \mathbb{R}$ " write " $f: A \rightarrow \mathbb{R}$."
- Page 324, line 8: for " $f: \mathbb{R} \rightarrow \mathbb{R}$ " write " $f: I \rightarrow \mathbb{R}$."
- Page 355, line 4: Is " e_{i} " defined in the text (other than p. 281, H.W. \#2)?
- Page 373, line 11: for " $\left(\frac{1}{k}!\right)$ " write " $\left(\frac{1}{k!}\right)$."
- Page 375, line 8: for " h " write "h"
- Page 391, line 8: for " $\nabla f(x)=0$ " write " $\nabla f(x)=\mathbf{0}$ "
- Page 452, line 3: "Since the point ($\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}$) belongs to V " should be replaced by "Since the point ($\mathrm{x}_{\mathbf{0}}, \mathbf{0}$) belongs to V."
- Page 474, line 10: the word "integrable" comes before it is defined (p. 475).
- Page 479, lines 14-15: for "in any one of the $\mathbf{P}_{k}(\mathbf{J})$'s" write, perhaps, "in all of the $\mathbf{P}_{k}(\mathbf{J})$'s'
- Page 479, line 16: for " $\sum_{\mathbf{J}_{\mathbf{i n} \mathbf{p}}} U(\cdots)-L(\cdots)$ " write " $\sum_{\mathbf{J}_{\text {in } \mathbf{p}}}[U(\cdots)-L(\cdots)]$."
- Page 479, lines 14-21: It does not seem that \mathbf{P}_{k} can be chosen as indicated. One suggestion is to: Let \mathbf{P}_{k}^{*} be the partition of \mathbf{I} induced by the $\mathbf{P}_{k}(\mathbf{J})$'s (By this we mean that for all the \mathbf{J} 's in a common "row" of \mathbf{P}, we form the union of all the partition points of a common edge of the corresponding $\mathbf{P}_{k}(\mathbf{J})$'s. This union then forms one part of the partition \mathbf{P}_{k}^{*} for that corresponding edge.) It should be clear that for each $\mathbf{J}, \mathbf{P}_{k}^{*}(\mathbf{J})$ is a refinement of $\mathbf{P}_{k}(\mathbf{J})$ so that

$$
U\left(f, \mathbf{P}_{k}^{*}(\mathbf{J})\right)-L\left(f, \mathbf{P}_{k}^{*}(\mathbf{J})\right) \leq U\left(f, \mathbf{P}_{k}^{*}(\mathbf{J})\right)-L\left(f, \mathbf{P}_{k}^{*}(\mathbf{J})\right)
$$

for all \mathbf{J} and hence

$$
\begin{aligned}
U\left(f, \mathbf{P}_{k}^{*}\right)-L\left(f, \mathbf{P}_{k}^{*}\right) & =\sum_{\mathbf{J}}\left[U\left(f, \mathbf{P}_{k}^{*}(\mathbf{J})\right)-L\left(f, \mathbf{P}_{k}^{*}(\mathbf{J})\right)\right] \\
& \leq \sum_{\mathbf{J}}\left[U\left(f, \mathbf{P}_{k}(\mathbf{J})\right)-L\left(f, \mathbf{P}_{k}(\mathbf{J})\right)\right] \\
& <m \frac{1}{m k} \\
& =\frac{1}{k}
\end{aligned}
$$

Thus,

$$
\lim _{k \rightarrow \infty}\left[U\left(f, \mathbf{P}_{k}^{*}\right)-L\left(f, \mathbf{P}_{k}^{*}\right)\right]=0
$$

And therefore, by the Archimedes-Riemann Theorem, the function f is integrable on \mathbf{I}.

- Page 479, line 19: for " $-L\left(f, \mathbf{P}_{k}\right]=$ " write " $\left.-L\left(f, \mathbf{P}_{k}\right)\right]=$ "
- Page 488, line 5: for "vol $\mathbf{J}^{\prime \prime}$ " write" vol $\mathbf{J}_{i}^{\prime \prime}$ (twice).
- Page 488, line 11: for "For positive number a and b, show that the ellipse" write "Show that the set"
- Page 488, line 7: for "that the ellipsoid" write "that the set"
- Page 489, line 6.7: for "in the interior of \mathbf{J} " write "in the interior of \mathbf{I} "
- Page 491, line 2: for " $=\int_{\mathbf{J}} \hat{f}$," write " $=\int_{\mathbf{I}_{1}} \hat{f}, "$
- Page 493, line 15: for " $\{(\mathrm{x}, g(\mathrm{x}))$ " write " $\{(\mathrm{x}, g(\mathrm{x})) \ldots$ "
- Page 499, line 10: for "(19.3)" write "(19.1)"
- Page 500, line 2: for "of m_{i} and M_{i} " write "of M_{i} "
- Page 519, Problem 10: replace " R^{2} " by " R^{n} "

