Section 1: Dot products and Orthogonal Matrices

MATLAB and Dot Products

We will begin with a  review of  the dot product and orthogonal and symmetric matrices. Much, but not all, of this material is included in chapters 6 and 7 of Lay's book.  We will also review the use of MATLAB as we proceed.

 We recall that  the term "vector" usually denotes a column vector.  This is forced on us by our desire to have the product of a matrix on the left with a vector on the right turn out to be a vector. A column vector is represented in MATLAB  by a semicolon delimited list. A comma or space delimited list is a row vector, and a column vector can also be represented as the transpose of a row vector. For example

[1;2;3]  

ans =

     1

     2

     3  

[1 2 3]'  

ans =

     1

     2

     3  

[1,2,3]'  

ans =

     1

     2

     3  

We see from the forgoing that the transpose, denoted in standard notation by a superscripted T as in AT, is represented in MATLAB by a  "prime" or  single  quote. Let us see this for a matrix.

A=[1 2 3;4 5 6;7 8 9]  

A =

     1     2     3

     4     5     6

     7     8     9  

A'  

ans =

     1     4     7

     2     5     8

     3     6     9  

We recall now that the dot product v•w of two vectors v and w may be defined as the matrix product vTw.  Let us see how this works in MATLAB.

v=[1;2;3]  

v =

     1

     2

     3  

w=[4;5;6]  

w =

     4

     5

     6  

v'*w  

ans =

    32  

w'*v  

ans =

    32  

Notice that MATLAB does not distinguish between a 1x1 matrix (which is what vTw really is) and its single entry. Neither do we ordinarily,  but we should remember that the product of a scalar with a matrix is not in general an instance of matrix multiplication. Notice also that the dot product is symmetric as regards v and w. This is important, and can be derived from two observations:

1. vTw  is a 1x1 matrrix, and therefore symmetric (equal to its transpose).

2. The transpose of a matrix  product is the product of the transposes in the opposite order.

Let us see, by way of contrast, what happens if we look at  the products vwT and wvT.

v*w'  

ans =

     4     5     6

     8    10    12

    12    15    18  

w*v'  

ans =

     4     8    12

     5    10    15

     6    12    18  

These are  3x3 matrices and are not equal, although each is the transpose of the other.

Matrix Transposes and Dot Products

We now state and prove an important identity regarding transposes and the dot product:

Proposition 1.1: If v is a vector of dimension n, A is an mxn matrix, and w is a vector of dimension m, then Av•w=v•ATw. 

Proof: This follows from the fact that  (Av)T=vTAT, so that both sides are represented by the matrix product vTATw.

We will be able to prove a converse to this result as after we state  another important fact regarding matrices and dot products:

Proposition 1.2:If A and B are mxn matrices  and  Av•w=Bv•w for all vectors v and w of the appropriate dimensions, then A=B. 

Proof:  If  Av•w=Bv•w , then (A-B)v•w=0  for all v and w.  In particular, setting  w= (A-B)v, it follows that 

(A-B)v•(A-B)v=0.  But the only vector whose dot product with itself is 0 is the zero vector, so we have shown that (A-B)v=0 for all v. But this can only be true if A-B is the zero matrix, so that A=B.

The converse we promised above now follows as a simple corollary:

Corollary 1.3:  If A is an mxn, matrix, B is an nxm matrix, and  Av•w=v•Bw for all vectors v of dimension n and w of dimension m, then B=AT.

Orthogonal Matrices

We come now to orthogonal matrices.  We recall  that a square matrix U is called orthogonal if Uv•Uw=v•w for all vectors v and w of the appropriate dimension.  We can immediately   prove:

Proposition 1.4 A square matrix U is orthogonal if and only if  UT=U-1.   

Proof: If  U is orthogonal,   we have v•w=Uv•Uw=v•UTUw for all v and w of the appropriate dimension.  It follows that  UTUw=w  for all w or, equivalently, that UTU=I, where I is the identity matrix of  the appropriate dimension. It follows that 

UT=U-1. On the other hand, if we assume UT=U-1, we have Uv•Uw=v•UTUw=v•w.

Another important characterization of orthogonal matrices follows from this proposition. 

Proposition 1.5: A matrix is orthogonal if and only if its columns  form an orthonormal set.  

Proof: For any defined matrix product AB, the ijth entry of the product is the matrix product of the ith row of A (on the left) and the jth column of B (on the right).  In particular, if A and B have the same shape, then  ATB is defined and  the ijth entry of ATB  is the dot product of the ith column of A with the jth column of B. It follows that  UTU is the identity matrix if and only if  the dot product of the  ith and jth columns of U is 0 when i and j are distinct and 1 when they are equal. 

Since any matrix  U  is equal both to (UT)T and to (U-1)-1, it follows that if U is orthogonal, then so is UT, so that the rows of an orthogonal matrix (or, more properly, the transposes of the rows, since  the dot product is only defined for column vectors) also form an orthonormal set.

Orthogonal Complements and Orthogonal Projection

Let V be a subspace of  Rn. We recall from Section 6.1 of your text that V

[image: image1.wmf]^


  denotes the orthogonal complement of V, which is the vector subspace of Rn consisting of all vectors perpendicular to V.   It follows from Theorem 3 on page 375 that V and V    have complementary dimensions 

Proposition 1.6: If V is a subspace of Rn, then  dim(V) + dim(V
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 EMBED Equation.3  [image: image4.wmf])=n. 

Proof: Let A be a matrix whose colums form a basis for V. Then V=Col(A), the dimension of V is the rank of A, and also of AT. We  have, by the Rank theorem on page 259, rank AT + dim Nul AT=n, but by Theorem 3 on page 375, Nul AT=(Col A)
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= V
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.  The result now follows. 

Propostion 1.7: If V is a subspace of Rn, then V
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=  V.

It is immediate from the definition of V
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   that any vector in V is perpendicular to any vector in V┴. From this it follows that V is a subspace of V
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  . But by Proposition 1.6, V and V
 EMBED Equation.3  


   have the same dimension. It follows that they  are equal.

We now proceed to amplify somewhat the discussion of orthogonal projection in Section 6.3 of Lay's text. 

From page 381, if y and u are vectors, the orthogonal projection of y on u, (or more properly on Span{u}) is given by 
[image: image7.wmf]u
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. Here the factor on the left is a scalar and the factor on the right is a vector and the product is not an instance of matrix multiplication. However, we can write this product differently by treating the numerator of the fraction as a 1x1 matrix and setting it on the right, so that we have
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. This shows us that  projection on u is a linear transformation whose matrix is given by 
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Proposition 1.8: Pu is symmetric,  
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Proof: The symmetry follows from the identity (uuT)T= uTTuT= uuT. The rest follows from the fact that uTu=u•u.

Proposition 1.9:  If u and v are perpendicular, then PuPv=PvPu=0.

Proof: We have 
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, but  uTv=u•v=0. Similarly for the opposite product, exchanging the roles of u and v.

Theorem 8 on page 390 of  Lay's text can  be reformulated as

Proposition 1.10:  If {u1,… up} is an orthogonal basis for W, then orthogonal projection on W is given by the
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The proof does not require any modification. 

Proposition 1.11: 
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This follows by direct computation, using Propositions 1.8 and 1.9.

Gram-Schmidt and the QR Factorization

We refer to Section 6.4 of Lay's text for the detailed definitions, theorems and proofs regarding the Gram-Schmidt Process and the QR factorization. We will recall that if M is a matrix with linearly independent columns, the Gram-Schmidt process produces a matrix Q whose columns form an orthonormal basis for the column space of M and such that M=QR, where R is upper triangular with positive diagonal entries.

MATLAB has a command (called  QR) that directly computes  QR factorizations. However, it will be instructive to ignore this command and produce  a QR factorization using  more fundamental MATLAB commands. 

Since we will be using projections systematically,  I have written a MATLAB m-file called proj that computes projection matrices.  proj(v) returns the Pv. This m-file, and others that I will provide, can be downloaded from the same source as this file. 

Now for a  sample computation. We begin by entering a 3x4 matrix M whose columns are linearly independent.

[1 2 3 4;6 5 7 8;9 11 10 12]'  

ans =

     1     6     9

     2     5    11

     3     7    10

     4     8    12  

Q=M;  

We will now use the Gram-Schmidt process to modify Q until its columns form an orthonormal basis for the column space of M. The first step is to normalize the first column.

Q(1:4,1)=Q(1:4,1)/norm(Q(1:4,1))  

Q =

    0.1826    6.0000    9.0000

    0.3651    5.0000   11.0000

    0.5477    7.0000   10.0000

    0.7303    8.0000   12.0000  

The notation Q(1:4,1) picks out the first column of Q as a vector. The effect of the command we gave is to divide the first column of Q by its norm, and leave the rest of  Q unchanged. The next step is to modify the second column by subtracting off it projection on the first column.

Q(1:4,2)=Q(1:4,2)-proj(Q(1:4,1))*Q(1:4,2)  

Q =

    0.1826    3.7000    9.0000

    0.3651    0.4000   11.0000

    0.5477    0.1000   10.0000

    0.7303   -1.2000   12.0000  

Next we normalize the second column.

Q(1:4,2)=Q(1:4,2)/norm(Q(1:4,2))  

Q =

    0.1826    0.9459    9.0000

    0.3651    0.1023   11.0000

    0.5477    0.0256   10.0000

    0.7303   -0.3068   12.0000  

Now we modify the third column by subtracting off its projections on the preceding columns.

Q(1:4,3)=Q(1:4,3)-proj(Q(1:4,1))*Q(1:4,3)-proj(Q(1:4,2))*Q(1:4,3)  

Q =

    0.1826    0.9459   -0.5098

    0.3651    0.1023    3.0980

    0.5477    0.0256   -1.0588

    0.7303   -0.3068   -0.6275  

And finally, we normalize again.

Q(1:4,3)=Q(1:4,3)/norm(Q(1:4,3))  

Q =

    0.1826    0.9459   -0.1512

    0.3651    0.1023    0.9187

    0.5477    0.0256   -0.3140

    0.7303   -0.3068   -0.1861  

We can now check that the columns of Q are orthonormal. If they are, then the product QTQ  should be the 3x3 identity matrix (why?)/

Q'*Q  

ans =

    1.0000    0.0000   -0.0000

    0.0000    1.0000   -0.0000
   -0.0000   -0.0000    1.0000  

Now, since we should have M=QR, then QTM=QTQR=R.

R=Q'*M  

R =

    5.4772   12.5976   19.9006

    0.0000    3.9115    6.2124

   -0.0000   -0.0000    3.3723  

1. Problems:

2. Determine which of the following matrices are orthogonal.

a. 
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b. 
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3. 
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4. Let u be the vector 
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. Use MATLAB to compute Pu.  Verify that Pu is symmetric, and that 
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5. In  each of Problems 6.3.9 and 6.3.10 in Lay's text:

a. Let W be Span{u1,u2,u3}, and use Proposition 1.10 and MATLAB to obtain the matrix  PW.
b. Verify Propositions 1.8 and 1.11 for W.

c. Use PW to solve the problem as stated in the text.

6. Use MATLAB  and the reformulation of the Gram-Schmidt process at the end of this section to solve Problems 6.4.11 and 6.4.12 in Lay's text. Find the QR decompositions as well.
7. Use the Gram-Schmidt process to determine the rank of the matrix 
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