
1 Introduction

In a recent paper, Heinig and Maligranda [2] have applied Chebyshev’s in-
equality for decreasing(increasing) functions f, g

∫ x

0
pf

∫ x

0
pg ≤

∫ x

0
pfg

∫ x

0
p

in a variety of situations. Heinig asked if it was possible to extend the result
to the class of functions whose averages decrease. I give a new sufficient
condition which includes this class of functions.

The inequality is naturally expressed in terms of an averaging operator
A which is defined for suitable f and a continuous p > 0 by

Af(x) =

∫ x
0 pf
∫ x
0 p

.

Steffensen [3] has given a necessary condition for Chebyshev’s inequality. If
one of the functions, say f , is increasing, Steffensen has shown that Cheby-
shev’s inequality on [0, a] implies Ag(t) ≤ Ag(a) for each t ∈ [0, a]. In
particular, if we assume that Chebyshev’s inequality holds for each a in
[0,∞), and f is increasing, it follows from Steffensen’s result that Ag must
be increasing. This shows that our sufficient condition is also necessary for
the inequality to hold globally when one of the functions is monotone. If
it were possible to extend Steffensen’s result to the case Af increasing, it
would follow that our conditions are near the correct ones, at least for the
global inequality. A key step in Steffensen’s proof is false for functions whose
average is increasing; we do not know if the result can be generalized.

2 Main Results

Throughout, we will use the notation

Af(x) =
1
∫ x
0 p

∫ x

0
p(t)f(t) dt.

We will assume that p > 0 and that p is continuous. By Chebyshev’s
inequality, we understand the pointwise inequality

Af(x)Ag(x) ≤ A(fg)(x)

for all x > 0, which can also be written
∫ x

0
pf

∫ x

0
pg ≤

∫ x

0
p

∫ x

0
pfg.
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Note that if we consider the functions F (x) = f(a + (b − a)x), G(x) =
g(a + (b − a)x), P (x) = p(a + (b − a)x) for 0 ≤ x ≤ 1, apply the results
and make the obvious change of variables, we will also get results for the
inequality

∫ b

a
pf

∫ b

a
pg ≤

∫ b

a
p

∫ b

a
pfg.

Lemma 1 Af ↑⇔ f ≥ Af ; Af ↓⇔ f ≤ Af .

Proof. We compute that

(Af)′(x) =
p(x)(f(x) − Af(x))

∫ x
0 p

from which the result follows.

Lemma 2 If f ↑, then Af ↑. If f ↓, then Af ↓.

Lemma 3 If f(x) ≤ g(x) for 0 ≤ x ≤ a, then Af(x) ≤ Ag(x) for 0 ≤ x ≤
a.

Theorem 1 If

(f − Af)(g − Ag) ≥ 0 (1)

for 0 ≤ x ≤ a, Chebyshev’s inequality holds for 0 ≤ x ≤ a.

Proof. Let H(x) = A(fg)(x) − Af(x)Ag(x). One sees that H ′(x) =
A(fg)′ − Af ′Ag − Ag′Af and since

(Af)′(x) =
p(f − Af)
∫ x
0 p

we have

H ′(x) =
p(x)
∫ x
0 p

(fg − A(fg) − (f − Af)Ag − Af(g − Ag))

=
p(x)
∫ x
0 p

(f(g − Ag) − A(fg) + AfAg − Af(g − Ag))

=
p(x)
∫ x
0 p

((f − Af)(g − Ag) − H) .
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Now if (f − Af)(g − Ag) ≥ 0 for 0 ≤ x ≤ a, then

(

∫ x

0
p)H ′ + pH = ((

∫ x

0
p)H)′ ≥ 0,

which implies that (
∫ x
0 p)H ↑ for 0 ≤ x ≤ a. Since H(0) = 0, H(x) ≥ 0 for

all 0 ≤ x ≤ a.
Remark. Note that we have shown ((

∫ x
0 p)H)′ = (f − Af)(g − Ag) and

hence, if (f − Af)(g − Ag) ≤ 0, then H(x) ≤ 0 for x ≥ 0. It also follows
that (

∫ x
0 p)H is increasing iff (f − Af)(g − Ag) ≥ 0.

Now if Af ↑ and Ag ↑, then f ≥ Af and g ≥ Ag, which means that
(f −Af)(g−Ag) ≥ 0 and we get the same inequality if Af ↓ and Ag ↓ since
then f ≤ Af and g ≤ Ag and the product is still nonnegative.

We can also give a purely algebraic proof of this inequality. It re-
quires us to note that A is an invertible operator with inverse A−1f(x) =
((
∫ x
0 p)f)′/p(x) and to note the following inequality which follows from in-

tegration by parts.

Lemma 4

A[fAg + gAf ] = AfAg + A[AfAg].

This follows from the obvious integration by parts or by applying A−1

to both sides and computing the right hand side.
Now suppose that 0 ≤ (f − Af)(g − Ag). The right hand side of this

expression is

fg − (fAg + gAf) + AfAg = fg − A−1(AfAg) − AfAg + AfAg

and we take the middle term with A−1 to the left hand side of the equation
which shows

A−1(AfAg) ≤ fg.

The result follows by applying Lemma 3.

Lemma 5 If Af ↓, Ag ↓, then A(fg) ↓.

Proof. It follows from the above theorem that AfAg ≤ A(fg). However,
by Lemma 1, since Af ↓, f ≤ Af and hence, fg ≤ AfAg ≤ A(fg), and thus
by Lemma 1 again, A(fg) ↓.

Thus the set of nonnegative functions whose averages decrease is a sub-
algebra of the set of all nonnegative functions.
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Theorem 2 If Af ↓, Ag ↓, then AmfAng ≤ Amax(m,n)fg.
If Af ↑, Ag ↑, then AmfAng ≤ Amin(m,n)(fg).

Proof. Observe first that Amf ↓ or Amf ↑ follows by induction. Let us
consider the case of Af ↓ which is the case m = 1 of the induction. If
Am0f ↓, then by Lemma 1

A(Am0f) ≤ Am0f

and hence, by Lemma 3

A(Am0+1f) ≤ A(Am0f)

which proves, by Lemma 1 again, that Am0+1f ↓.
Consider first the case in which Af ↓, Ag ↓. By our hypothesis, AfAg ≤

A(fg), and thus by induction, AmfAmg ≤ Am(fg). One sees this because
if the inequality is true for m0, then

Am0+1fAm0+1g = A(Am0f)A(Am0g) ≤ A(Am0fAm0g)

because Am0f, Am0g ↓, and this is

≤ A(Am0(fg))

by the induction hypothesis. From the definition of composition, this latter
inequality is the desired inequality.

Now if m ≥ n, we write

AmfAng = An(Am−nf)Ang ≤ An((Am−nf)g)

by the above result. However, since Ag ↓, Lemma 1 shows g ≤ Ag and by
Lemma 3 we obtain g ≤ Ag ≤ A2g . . ., which allows us to estimate the last
term by

An(Am−nfAm−ng) ≤ An(Am−n(fg)) = Am(fg).

Either using symmetry or noting that if m ≤ n, we proceed as above but
using AmfAng = AmfAm(An−mg) gives the result in the second case.

If Af ↑, we use the fact that Af ≤ f , and again by induction and the
fact that A is increasing, . . . ≤ A2f ≤ Af ≤ f , to write for m ≥ n,

AmfAng = An(Am−nf)Ang ≤ An((Am−nf)g) ≤ An(fg).

Since a similar argument works for m ≤ n, we are done.
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Theorem 3

Amf(x) =

1
(m−1)!

∫ x
0 p(t)f(t) lnm−1

(

∫ x

0
p

∫ t

0
p

)

dt

∫ x
0 p

.

Proof. The formula is correct for m = 1 and can be checked also for m = 2.
Assume that it is valid for m = m0. We compute

Am0+1f(x) = Am0Af(x)

=

1
(m−1)!

∫ x
0 p(t)Af(t) lnm−1

(

∫ x

0
p

∫ t

0
p

)

dt

∫ x
0 p

If we multiply the expression through by
∫ x
0 p, we see that the numerator of

the fraction is

1

(m − 1)!

∫ x

0

p(t)
∫ t
0 p(u) du

(∫ t

0
p(s)f(s) ds

)

lnm−1

(

∫ x
0 p
∫ t
0 p

)

dt

and if we interchange the order of integration, we obtain

1

(m − 1)!

∫ x

0
p(s)f(s)

∫ x

s

p(t)
∫ t
0 p(u) du

lnm−1

(

∫ x
0 p
∫ t
0 p

)

dt.

We change variables in this expression by letting

v =

∫ x
0 p
∫ t
0 p

,
dv

v
= −

p(t)
∫ t
0 p

dt

and we obtain for the numerator of the expression with which we began

1

(m − 1)!

∫ x

0
p(s)f(s)

∫ 1
∫ x

0
p

∫ s

0
p

lnm−1 v (−
dv

v
)

=
1

m!

∫ x

0
p(s)f(s) lnm

(

∫ x
0 p
∫ s
0 p

)

ds.

This is the result we were trying to prove.
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Theorem 4 If Af ↓, Ag ↓, then ∀τ ∈ R+,

(

1
∫ x
0 p

∫ x

0
p(t)f(t)(

∫ x
0 p
∫ t
0 p

)
1

τ dt

)(

1
∫ x
0 p

∫ x

0
p(s)g(s)(

∫ x
0 p
∫ s
0 p

)
1

τ ds

)

≤
1
∫ x
0 p

∫ x

0
(pfg)(u)(

∫ x
0 p
∫ u
0 p

)
1

τ (1 +
1

τ
ln

∫ x
0 p
∫ u
0 p

) du.

This is one of several theorems we shall give which are proved using the
same process. While the inequality is not as sharp as possible, it is given
because it holds for all τ > 0.

Proof. By Theorem 2, we have since Af ↓, Ag ↓

AmfAng ≤ Amax(m,n)(fg) ≤ Am+n−1(fg)

because m, n ≥ 1 and Lemma 5 implies that

fg ≤ A(fg) ≤ A2(fg) ≤ A3(fg) . . . .

Multiply this by
1

τm+n−2

and sum over all m, n = 1 to ∞. We obtain

∞
∑

m=1,n=1

1

τm+n−2
AmfAng ≤

∞
∑

m=1,n=1

1

τm+n−2
Am+n−1(fg).

The left hand side is

∞
∑

m=1

1

τm−1
Amf

∞
∑

n=1

1

τn−1
Ang.

These terms are handled similarly. We have

∞
∑

m=1

1

τm−1
Amf =

1
∫ x
0 p

∞
∑

m=1

∫ x

0
p(t)f(t)

lnm−1

(

∫ x

0
p

∫ t

0
p

)

τm−1(m − 1)!
dt

=
1
∫ x
0 p

∫ x

0
p(t)f(t)

∞
∑

m=1

1

(m − 1)!

(

ln(

∫ x
0 p
∫ t
0 p

)1/τ

)m−1

dt
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=
1
∫ x
0 p

∫ x

0
p(t)f(t)e

ln(

∫ x

0
p

∫ t

0
p

)1/τ

dt

=
1
∫ x
0 p

∫ x

0
p(t)f(t)

(

∫ x
0 p
∫ t
0 p

)1/τ

dt.

The right hand side is

∞
∑

m,n=1

1

τm+n−2
Am+n−1(fg)

=
∞
∑

k=1

1

τk−1
Ak(fg)

∑

m+n−1=k

1 =
∞
∑

k=1

k

τk−1
Ak(fg)

=
1
∫ x
0 p

∫ x

0
(pfg)(u)

∞
∑

k=1

k lnk−1(

∫ x

0
p

∫ u

0
p
)

(k − 1)!τk−1
du.

We observe that

∞
∑

k=1

k

(k − 1)!
zk−1 =

∞
∑

k=1

(k − 1) + 1

(k − 1)!
zk−1

=
∞
∑

k=2

1

(k − 2)!
zk−1 +

∞
∑

k=1

1

(k − 1)!
zk−1 = zez + ez,

and thus the right hand side is

1
∫ x
0 p

∫ x

0
(pfg)(u)(

∫ x
0 p
∫ u
0 p

)1/τ (1 +
1

τ
ln

∫ x
0 p
∫ u
0 p

) du.

Next we consider the case Af ↓, Ag ↓ where we attempt to use the full
strength of the inequality

AmfAng ≤ Amax(m,n)(fg).

The result is considerably more complicated in this case.

Theorem 5 If Af ↓, Ag ↓, then the expression

(

1
∫ x
0 p

∫ x

0
p(t)f(t)(

∫ x
0 p
∫ t
0 p

)1/τ dt

)(

1
∫ x
0 p

∫ x

0
p(s)g(s)(

∫ x
0 p
∫ s
0 p

)1/λ ds

)
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is bounded by the following expressions: for λ, τ > 1,

1
∫ x
0 p

∫ x

0
(pfg)(u)

{

(

∫ x
0 p
∫ u
0 p

)1/λτ +
τ

τ − 1
(

∫ x
0 p
∫ u
0 p

)1/λ +
λ

λ − 1
(

∫ x
0 p
∫ u
0 p

)1/τ

}

dx.

(2)
For λ < 1, τ < 1, it is bounded by

(1 +
τ

τ − 1
+

λ

λ − 1
)

1
∫ x
0 p

∫ x

0
(pfg)(u)(

∫ x
0 p
∫ u
0 p

)
1

λτ du. (3)

For λ < 1, τ > 1, it is bounded by

1
∫ x
0 p

∫ x

0
pfg(u)

{

(1 +
λ

λ − 1
)(

∫ x
0 p
∫ u
0 p

)
1

τλ +
τ

τ − 1
(

∫ x
0 p
∫ u
0 p

)
1

λ

}

du. (4)

For λ = 1, τ = 1, it is bounded by

1
∫ x
0 p

∫ x

0
pfg(u)(

∫ x
0 p
∫ u
0 p

)(1 + 2 ln

∫ x
0 p
∫ u
0 p

) du. (5)

Proof. We multiply the inequality AfAg ≤ Amax(m,n)(fg) by

1

τm−1λn−1

and sum. Instead of getting the term which we wrote

∞
∑

m=1

1

τm−1
Amf

∞
∑

n=1

1

τn−1
Ang,

the term is
∞
∑

m=1

1

τm−1
Amf

∞
∑

n=1

1

λn−1
Ang

and the individual terms are handled as above giving the left hand side of
the expression.

The right hand side of the expression is

∞
∑

m,n=1

1

τm−1λn−1
Amax(m,n)(fg)

=
∞
∑

k=1

Ak(fg)
∑

max(m,n)=k

1

τm−1λn−1
.
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The set {(m, n)|max(m, n) = k} is a finite set. It consists of

{(k, k) ∪ {(j, k)|j < k} ∪ {(k, j)|j < k}}.

For k = 1 there is only the term A(fg). For k > 1, the inner sum is

1

τk−1λk−1
+

1

λk−1





k−1
∑

j=1

1

τ j−1



+
1

τk−1





k−1
∑

j=1

1

λj−1





=
1

τk−1λk−1
+

1

λk−1

{

1 +
1

τ
+ . . . +

1

τk−1

}

+
1

τk−1

{

1 + . . . +
1

λk−1

}

.

Each series is a finite geometric series and gives rise to a term of the form
(Ak − Bk). In each of the cases, the result follows by estimating the term
from above by Ak and dropping the second term.

The case λ = 1, τ = 1 deserves special mention. The above described set
has 2k − 1 elements and thus the term on the right hand side becomes

∞
∑

k=1

(2k − 1)Ak(fg) =
∞
∑

k=1

1
∫ x
0 p

∫ x

0
pfg(u)

lnk−1(

∫ x

0
p

∫ u

0
p
)

(k − 1)!
(2k − 1) du

=
1
∫ x
0 p

∫ x

0
pfg(u)

∞
∑

k=1

2(k − 1) + 1

(k − 1)!
lnk−1(

∫ x
0 p
∫ u
0 p

) du

=
1
∫ x
0 p

∫ x

0
pfg(u)

(

∞
∑

k=2

2

(k − 2)!
lnk−1(

∫ x
0 p
∫ u
0 p

) +
∞
∑

k=1

1

(k − 1)!
lnk−1(

∫ x
0 p
∫ u
0 p

)

)

du

=
1
∫ x
0 p

∫ x

0
pfg(u)(

∫ x
0 p
∫ u
0 p

)(2 ln

∫ x
0 p
∫ u
0 p

+ 1) du.

This is the desired result in this case.

Next let us consider the case Af ↑, Ag ↑. A similar argument to the
above allows us to prove the next theorem.

Theorem 6 If Af ↑, Ag ↑,then for any λ > 1, τ > 1, we have

(

1
∫ x
0 p

∫ x

0
p(t)f(t)(

∫ x
0 p
∫ t
0 p

)1/τ dt

)(

1
∫ x
0 p

∫ x

0
p(s)g(s)(

∫ x
0 p
∫ s
0 p

)1/λ ds

)

≤

{

1 +
1

λ − 1
+

1

τ − 1

}

1
∫ x
0 p

∫ x

0
(pfg)(u)(

∫ x
0 p
∫ u
0 p

)1/λτ du.

9



Proof. Theorem 2 shows that under the hypotheses we have

AmfAng ≤ Amin(m,n)(fg)

which we multiply by
1

τm−1λn−1

and sum over all m, n. The same argument as above gives the left hand side
of

(

1
∫ x
0 p

∫ x

0
p(t)f(t)(

∫ x
0 p
∫ t
0 p

)1/τ dt

)(

1
∫ x
0 p

∫ x

0
p(s)g(s)(

∫ x
0 p
∫ s
0 p

)1/λ ds

)

.

The right hand side is

∞
∑

m,n=1

1

τm−1λn−1
Amin(m,n)(fg) =

∞
∑

k=1

Ak(fg)
∑

min(m,n)=k

1

τm−1λn−1
.

It is easy to see that

{(m, n)|min(m, n) = k} = {(k, k)} ∪ {(k, j)|j > k} ∪ {(j, k)|j > k}.

We can write the inner sum on the right hand side as

∑

min(m,n)=k

1

τm−1λn−1
=

1

τk−1λk−1
+
∑

j>k

1

τk−1λj−1
+
∑

j>k

1

τ j−1λk−1

=
1

τk−1λk−1
+

1

τk−1

{

1

λk
+

1

λk+1
+ . . .

}

+
1

λk−1

{

1

τk
+

1

τk+1
+ . . .

}

=
1

τk−1λk−1
+

1

λkτk−1

{

1 +
1

λ
+

1

λ2
+ . . .

}

+
1

λk−1τk

(

1 +
1

τ
+ . . .

)

.

The series converge only if λ > 1 and τ > 1. When those conditions hold,
we obtain

∑

min(m,n)=k

1

τm−1λn−1

=
1

τk−1λk−1

{

1 +
1

λ
(

1

1 − 1
λ

) +
1

τ
(

1

1 − 1
τ

)

}

which means that the right hand side is

{

1 +
1

λ − 1
+

1

τ − 1

} ∞
∑

k=1

1

τk−1λk−1
Ak(fg)
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and by a similar argument to the above utilized arguments, we obtain the
theorem.

Remark. We can let τ or λ go to ∞ in the above inequalities to obtain

(

1
∫ x
0 p

∫ x

0
p(t)f(t)(

∫ x
0 p
∫ t
0 p

)1/τ dt

)(

1
∫ x
0 p

∫ x

0
p(s)g(s) ds

)

≤

{

1 +
1

τ − 1

}

1
∫ x
0 p

∫ x

0
(pfg)(u) du, ∀τ > 1.

The limit of this expression as τ → ∞ is the Chebyshev inequality. This
is also true for the previous inequalities.

3 Relation with known results

We next discuss the relation between the condition (1) and the known suf-
ficient and necessary conditions for Chebyshev’s inequality. One of those
conditions is the condition that f, g be similarly ordered.

Definition 1 f, g are similarly ordered if for all s, t ≥ 0, we have

(f(s) − f(t))(g(s) − g(t)) ≥ 0. (6)

The proof of Theorem 1 shows that (f −Af)(g −Ag) ≥ 0 iff (
∫ x
0 p)H ↑.

If f, g are similarly ordered, we can obtain a weaker conclusion.

Theorem 7 If f, g are similarly ordered, then (
∫ x
0 p)2H ↑.

Proof. Write the fact that f, g are similarly ordered.

(f(s) − f(t))(g(s) − g(t)) ≥ 0

multiply by p(s) and integrate with respect to s from 0 to t. We obtain

∫ t

0
pfg(s) − f(t)

∫ t

0
p(s)g(s) ds − g(t)

∫ t

0
p(s)f(s) ds + fg(t)

∫ t

0
p ≥ 0.

On dividing by
∫ t
0 p this can be written

A(fg)(t) − f(t)Ag(t) − g(t)Af(t) + fg(t) ≥ 0

11



and collecting terms, we have

(f − Af)(g − Ag) + H ≥ 0

where H = A(fg)−AfAg. However, since (f−Af)(g−Ag) = (
∫ x
0 p)H ′+pH,

we see that we have

(

∫ x

0
p)H ′ + 2pH ≥ 0

and hence, (
∫ x
0 p)2H ↑ which proves the result.

Note that according to [2], Chebyshev proved his result for functions
f, g that satisfy sgn df

dx = sgn dg
dx on [a, b]. If f, g are similarly ordered, this

condition holds as is seen by dividing (6) by (s − t)2 and letting s → t. It
is easy to give examples of functions that satisfy Chebyshev’s condition but
are not similarly ordered.
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