Properties of BMO functions whose reciprocals are also BMO

R. L. Johnson and C. J. Neugebauer

The main result says that a non-negative $B M O$-function w, whose reciprocal is also in $B M O$, belongs to $\bigcap_{p>1} A_{p}$,and that an arbitrary $u \in B M O$ can be written as $u=w-1 / w$, for w as above. This leads then to some observations concerning the John-Nirenberg distribution inequality for $F \circ u, u \in B M O$ and $F \in \operatorname{Lip} \alpha$.

Key words: Bounded mean oscillation, A_{p}-weights
AMS subject classifications: 42B25

1. Introduction

We will consider the question of when a function w and its reciprocal $1 / w$ are in $B M O$. If we assume that $w: R^{n} \rightarrow R_{+}$and consider this question for various spaces X, we obtain distinct results. The answer for $L^{p}\left(R^{n}\right)$ is that if $w, 1 / w \in L^{p}\left(R^{n}\right)$, then $p=\infty$ while $w, 1 / w \in L^{\infty}$ implies that $w \simeq 1$ which is also equivalent to the fact that $w, 1 / w \in A_{1}$ (for the precise definition of the A_{p} classes see below). It is known that $B M O$ is the right space to consider in place of L^{p} as $p \rightarrow \infty$ in a number of situations and we will give the answer to this question for $B M O$ in this paper.

The definition of $B M O$ is that $f \in B M O$ if

$$
\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|f(x)-f_{Q}\right| d x=\|f\|_{*}<+\infty
$$

where $f_{Q}=\frac{1}{|Q|} \int_{Q} f(x) d x$, and Q is a cube with sides parallel to the coordinate axes. It is important to know that the L^{1} norm can be replaced by the L^{p} norm for $0<p<\infty$,

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q}\left|f(x)-f_{Q}\right|^{p} d x\right)^{1 / p}=\|f\|_{*, p} \simeq\|f\|_{*} .
$$

We need also to recall the John-Nirenberg lemma, the reason for the above result, for functions of bounded mean oscillation. If $f \in B M O$, there are constants $c_{1}, c_{2}>0$ independent of f and Q such that

$$
\left|\left\{t \in Q:\left|f(t)-f_{Q}\right|>\lambda\right\}\right| \leq c_{1} e^{-c_{2} \lambda /\|f\|_{*}}|Q|
$$

for all $\lambda>0$. Of course, bounded functions are in $B M O$ and $\ln 1 /|x|$ is an unbounded function in $B M O$. The precise space we will study is

$$
B M O_{*}=\left\{w: R^{n} \rightarrow R_{+}: w, 1 / w \in B M O\right\}
$$

We need to recall the A_{p} weights which are defined by the condition

$$
A_{p}(w)=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w\right)\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}}\right)^{p-1}<+\infty
$$

where Q is again a cube. The A_{p} weights solve the problem of characterizing when the HardyLittlewood maximal function maps L_{w}^{p} into L_{w}^{p}, where $M f(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y$, and the result is

$$
\int|M f(x)|^{p} w(x) d x \leq C^{p} \int|f(x)|^{p} w(x) d x \longleftrightarrow w \in A_{p}
$$

We will also need to consider $A_{1}=\{w \mid M w(x) \leq C w(x)\}$, with the smallest such C being denoted $A_{1}(w)$ and $A_{\infty}=\bigcup_{p>1} A_{p}$. Since the A_{p} constants decrease by Hölder's inequality, we can set $A_{\infty}(w)=\lim _{p \rightarrow \infty} A_{p}(w)$. We have the set inclusions

$$
A_{1} \subseteq A_{p} \subseteq A_{q} \subseteq A_{\infty}
$$

where $1 \leq p \leq q \leq \infty$. The A_{p} weights also solve the corresponding problem for the Hilbert transform

$$
H f(x)=\lim _{\epsilon \rightarrow 0} \int_{\epsilon<|x-y|<1 / \epsilon} \frac{f(y)}{x-y} d y
$$

It is known that if $w, 1 / w \in A_{p}$, then $w \in A_{2}$, and we may limit our study to the case $1 \leq p \leq 2$ by the inclusion properties of A_{p}. It is also known that [1, p. 474]

$$
\begin{equation*}
w, 1 / w \in \bigcap_{p>1} A_{p} \Longleftrightarrow \ln w \in \operatorname{clos}_{B M O} L^{\infty} \tag{1}
\end{equation*}
$$

We say that $w \in R H_{p_{0}}$ (reverse Hölder) if

$$
\left(\frac{1}{|Q|} \int_{Q} w^{p_{0}}\right)^{1 / p_{0}} \leq \frac{C}{|Q|} \int_{Q} w,
$$

and we abbreviate by $R H_{p_{0}}(w)$ the infimum of all such C. We will use the fact, due to Strömberg and Wheeden, that $w \in R H_{p_{0}}$ if and only if $w^{p_{0}} \in A_{\infty}$. An alternate proof of this fact can be found in [3, Lemma 3.1].

2. Preliminary results

Our first result shows that Hölder continuous functions operate on $B M O$.
Lemma 1: If F is Hölder continuous of order α, where $0<\alpha \leq 1$ and $f \in B M O$, then $F \circ f \in B M O$ and $\|F \circ f\|_{*} \leq 2\|F\|_{\text {Lip } \alpha}\|f\|_{*}^{\alpha}$.

Proof. If there is a constant c such that $\frac{1}{|Q|} \int_{Q}|f(x)-c| d x \leq A$, then it is well known that $\|f\|_{*} \leq 2 A$. We compute

$$
\left(\frac{1}{|Q|} \int_{Q}\left|F(f(x))-F\left(f_{Q}\right)\right|^{p} d x\right)^{1 / p} \leq\left(\frac{1}{|Q|} \|\left. F\right|_{\text {Lip } \alpha} ^{p} \int_{Q}\left|f(x)-f_{Q}\right|^{\alpha p} d x\right)^{1 / p} .
$$

Thus we obtain with $p=1 / \alpha,\|F \circ f\|_{*} \leq 2\|F\|_{\text {Lip } \alpha}\|f\|_{*}^{\alpha}$.
This has been, at least partially, observed by many people. If $f \in B M O$, then $|f|^{\alpha} \in B M O$, for $0<\alpha \leq 1$ and $\max \{\mathrm{f}, \mathrm{g}\}$ and $\min \{\mathrm{f}, \mathrm{g}\}$ are in $B M O$ if f, g are in $B M O$.

We haven't noticed the converse observed, but it is true. If $\|F \circ f\|_{*} \leq A\|f\|_{*}^{\alpha}$, then $F \in$ $\operatorname{Lip} \alpha$. The proof may be found in [2], but as this is not generally available, we give the proof here. Without loss of generality, we may assume $F(0)=0$ and consider only cubes centered at the origin since $B M O$ is translation invariant. Suppose that $Q=\left[-\frac{d}{2}, \frac{d}{2}\right]^{n}$ and that

$$
f(x)= \begin{cases}x_{1} & \text { on the double of } Q \\ 0 & \text { outside the double of } Q\end{cases}
$$

One checks that

$$
F(f(x))= \begin{cases}F\left(x_{1}\right) & \text { for } x \in 2 Q \\ 0 & \text { outside the double of } Q\end{cases}
$$

and since $\|f\|_{*} \leq\|f\|_{\infty} \leq \frac{d}{2}$, one finds $\frac{1}{d} \int_{-\frac{d}{2}}^{\frac{d}{2}}\left|F\left(x_{1}\right)-F_{Q_{1}}\right| d x_{1} \leq A d^{\alpha}$, where Q_{1} is the onedimensional cube $\left[-\frac{d}{2}, \frac{d}{2}\right]$, and by the Campanato-Meyer theorem [4], this proves the result.

We can use the lemma to show that there is a close connection between $B M O$ and $B M O_{*}$.
Theorem 1: A real valued function u is in $B M O \Longleftrightarrow$ there exists a $w \in B M O_{*}$ such that $u=w-1 / w$ and $\|w\|_{*}+\|1 / w\|_{*} \simeq\|u\|_{*}$.

Proof. If u admits the decomposition, it is clear that $u \in B M O$. If we are given a $u \in$ $B M O$, it is easy to see that the equation for w leads to a quadratic equation with a solution of $w=\frac{1}{2}\left(u+\sqrt{u^{2}+4}\right)$. The function $F(x)=\frac{1}{2}\left(x+\sqrt{x^{2}+4}\right)$ is everywhere differentiable with derivative bounded by 1 . By Lemma $1, w \in B M O$.

Remark. We note that the same proof proves the corresponding result for functions of vanishing mean oscillation, which are defined as is $B M O$ but when the sup is taken over cubes of side r, and the resulting sup goes to 0 as $r \rightarrow 0+$.

Another application of Lemma 1 is to the determination of conditions under which the square of a function belongs to $B M O$. By Lemma 1 with $F(x)=\sqrt{x}$, it follows that such a function belongs to $B M O$. We show that more is true.

Lemma 2: If $f=F(u), F \in$ Lip $\alpha, u \in B M O$, then

$$
\left|\left\{x \in Q:\left|f(x)-F\left(u_{Q}\right)\right|>\lambda\right\}\right| \leq c_{1} e^{-c_{2} \lambda^{1 / \alpha} /\|F\|_{L i p}{ }_{\alpha}^{1 / \alpha}\|u\|_{*}}|Q| .
$$

Proof. Because $u \in B M O$, by the John-Nirenberg lemma, there are constants c_{1} and c_{2} such that $\left|\left\{t \in Q:\left|u(t)-u_{Q}\right|>\lambda\right\}\right| \leq c_{1} e^{-c_{2} \lambda /\|u\|_{*}}|Q|$. Hence, since

$$
\left\{t \in Q:\left|f(t)-F\left(u_{Q}\right)\right|>\lambda\right\} \subseteq\left\{t \in Q:\left|u(t)-u_{Q}\right|>\left(\frac{\lambda}{\|F\|_{\text {Lip } \alpha}}\right)^{1 / \alpha}\right\}
$$

we have the inequality

$$
\left|\left\{t \in Q:\left|f(t)-F\left(u_{Q}\right)\right|>\lambda\right\}\right| \leq c_{1} e^{-c_{2}\left(\frac{\lambda}{\|F\|_{\text {Lip } \alpha}}\right)^{1 / \alpha} /\|u\|_{*}}|Q|
$$

which is the desired result.

Corollary 1: For any $\epsilon<c_{2}$,

$$
\int_{Q}\left(e^{\frac{\left(c_{2}-\epsilon\right)\left|f(x)-F\left(u_{Q}\right)\right|^{1 / \alpha}}{\|F\|_{L i p \alpha}^{1 / \alpha}\|u\|_{*}}}-1\right) d x \leq c_{1}\left(\frac{c_{2}-\epsilon}{\epsilon}\right)|Q|
$$

Proof. Let $\phi(x)=e^{A x^{1 / \alpha}}-1$, which is increasing with $\phi^{\prime}(x)=\frac{A}{\alpha} x^{1 / \alpha-1} e^{A x^{1 / \alpha}}$. As long as A is positive,

$$
\begin{aligned}
\int_{Q} e^{A\left|f(x)-F\left(u_{Q}\right)\right|^{1 / \alpha}} d x-|Q| & =\frac{A}{\alpha} \int_{0}^{\infty}\left|\left\{x \in Q:\left|f(x)-F\left(u_{Q}\right)\right|>\lambda\right\}\right| \lambda^{1 / \alpha-1} e^{A \lambda^{1 / \alpha}} d \lambda \\
& \leq \frac{A}{\alpha} c_{1} \int_{0}^{\infty} e^{-\left(\frac{c_{2}}{\|F\|_{\text {Lip } \alpha}^{1 / \alpha}\|u\|_{*}}-A\right) \lambda^{1 / \alpha}} \lambda^{1 / \alpha-1} d \lambda|Q|
\end{aligned}
$$

If we choose A less than the fraction, we can use the fact that

$$
\frac{1}{\alpha} \int_{0}^{\infty} e^{-\epsilon \lambda^{1 / \alpha}} \epsilon \lambda^{1 / \alpha-1} d \lambda=\int_{0}^{\infty} e^{-u} d u=1
$$

to obtain the above estimate.
If we modify the choice of ϕ slightly by putting $\psi(x)=e^{A x^{1 / \alpha}}$, we see that for $\alpha \leq 1, \psi$ is convex and we can apply Jensen's formula to $Q, p=1, f=\left|f(x)-F\left(u_{Q}\right)\right|$ and if we note that

$$
\left|f_{Q}-F\left(u_{Q}\right)\right|=\left|\frac{1}{|Q|} \int_{Q}\left(f(x)-F\left(u_{Q}\right)\right)\right| \leq \frac{1}{|Q|} \int_{Q}\left|f(x)-F\left(u_{Q}\right)\right|
$$

we can make the estimate

$$
\begin{aligned}
\psi\left(2\left|f_{Q}-F\left(u_{Q}\right)\right|\right) & \leq \psi\left(\frac{1}{|Q|} \int_{Q} 2\left|f(x)-F\left(u_{Q}\right)\right|\right) \\
& \leq \frac{1}{|Q|} \int_{Q} e^{A 2^{1 / \alpha}\left|f(x)-F\left(u_{Q}\right)\right|^{1 / \alpha}}
\end{aligned}
$$

We now combine this with Corollary 1 and obtain

$$
\begin{aligned}
\int_{Q} e^{A\left|f(x)-f_{Q}\right|^{1 / \alpha}} & =\int_{Q} e^{A\left|f(x)-F\left(u_{Q}\right)+F\left(u_{Q}\right)-f_{Q}\right|^{1 / \alpha}} \\
& \leq \int_{Q} e^{A 2^{1 / \alpha}\left|f(x)-F\left(u_{Q}\right)\right|^{1 / \alpha}+A 2^{1 / \alpha}\left|f_{Q}-F\left(u_{Q}\right)\right|^{1 / \alpha}} \\
& =e^{A 2^{1 / \alpha}\left|f_{Q}-F\left(u_{Q}\right)\right|^{1 / \alpha}} \int_{Q} e^{A 2^{1 / \alpha}\left|f(x)-F\left(u_{Q}\right)\right|^{1 / \alpha}}
\end{aligned}
$$

If we choose $A 2^{1 / \alpha}=\left(c_{2}-\epsilon\right) /\left(\|F\|_{\text {Lip } \alpha}^{1 / \alpha}\|u\|_{*}\right)$, we can estimate this and

$$
\int_{Q} e^{A\left|f(x)-f_{Q}\right|^{1 / \alpha}} \leq\left(c_{1}\left(\frac{c_{2}-\epsilon}{\epsilon}\right)+1\right)|Q| \psi\left(2\left|f_{Q}-F\left(u_{Q}\right)\right|\right)
$$

by using Corollary 1 and now we apply Jensen's inequality to get

$$
\begin{aligned}
\int_{Q} e^{A\left|f(x)-f_{Q}\right|^{1 / \alpha}} & \leq\left(c_{1}\left(\frac{c_{2}-\epsilon}{\epsilon}\right)+1\right)|Q| \frac{1}{|Q|} \int_{Q} e^{A 2^{1 / \alpha}\left|f(x)-F\left(u_{Q}\right)\right|^{1 / \alpha}} \\
& \leq\left(c_{1}\left(\frac{c_{2}-\epsilon}{\epsilon}\right)+1\right)^{2}|Q|
\end{aligned}
$$

We can now state and prove the following.
Theorem 2: Consider the set of $f=F(u), u \in B M O, 0<\alpha \leq 1$. The following two statements are equivalent.
(i) $F \in \operatorname{Lip} \alpha$
(ii) there exists $0<c_{1}, c_{2}<\infty, 0<A<\infty$, independent of $Q, u \in B M O$ such that

$$
\left|\left\{x \in Q:\left|f(x)-f_{Q}\right|>\lambda\right\}\right| \leq c_{1} e^{-\frac{c_{2} \lambda^{1 / \alpha}}{A \mid u u \|_{*}}}|Q|
$$

and then $A \simeq\|F\|_{\text {Lip } \alpha}^{1 / \alpha}$.
Proof. We will first prove that (i) implies (ii). By restricting the range of integration in the inequality derived after Corollary 1, we see that

$$
\left|E_{\lambda}\right| \equiv\left|\left\{x \in Q:\left|f(x)-f_{Q}\right|>\lambda\right\}\right| \leq e^{-A \lambda^{1 / \alpha}} \int_{Q} e^{A\left|f(x)-f_{Q}\right|^{1 / \alpha}} d x
$$

since $e^{-A \lambda^{1 / \alpha}} e^{A\left|f(x)-f_{Q}\right|^{1 / \alpha}}>1$ on E_{λ}. This is the desired result if we choose $\epsilon=\frac{c_{2}}{2}$ and A as above.

We next show that (ii) implies (i). We first observe that (ii) implies that for some constants $0<c_{3}, c_{4}<\infty$

$$
\int_{Q} \exp \left(\frac{c_{3}\left|f(x)-f_{Q}\right|^{1 / \alpha}}{A\|u\|_{*}}\right) \leq c_{4}|Q|
$$

This implies that

$$
L_{Q} \equiv \frac{1}{|Q|} \int_{Q} \frac{c_{3}\left|f(x)-f_{Q}\right|^{1 / \alpha}}{\left.A| | u\right|_{*}} \leq c_{4} .
$$

Hölder now gives us, since $1 / \alpha \geq 1$,

$$
L_{Q} \geq\left(\frac{1}{|Q|} \int_{Q} \frac{c_{3}^{\alpha}\left|f(x)-f_{Q}\right|}{A^{\alpha}| | u \|_{*}^{\alpha}}\right)^{1 / \alpha}
$$

Hence

$$
\frac{1}{|Q|} \int_{Q}\left|f(x)-f_{Q}\right| \leq C A^{\alpha}\|u\|_{*}^{\alpha}
$$

The proof is now completed by an application of [2]; see the argument after Lemma 1.

Corollary 2: If $b^{k} \in B M O$, then

$$
\left|\left\{x \in Q:\left|b(x)-b_{Q}\right|>\lambda\right\}\right| \leq c_{1} e^{-c_{2} \lambda^{k} /\left\|b^{k}\right\|_{*}}|Q|
$$

Proof. Apply the above theorem with $u(x)=b^{k}, F(x)=x^{1 / k}$ which is Lipschitz continuous of order $1 / k$ with Lipschitz constant 1.

Remark. The argument actually shows that if

$$
\left|\left\{x \in Q:\left|u(x)-u_{Q}\right|>\lambda\right\}\right| \leq c_{1} e^{-c_{2} \lambda^{k}}|Q|,
$$

then

$$
\left|\left\{x \in Q:\left|f(x)-f_{Q}\right|>\lambda\right\}\right| \leq\left(c_{1}+1\right)^{2} e^{-\frac{c_{2} 2^{1 / \alpha}}{\|F\|_{L i p \alpha}^{1 / \alpha}} \lambda^{k / \alpha}}|Q| .
$$

Our main result connects the behavior of functions in $B M O_{*}$ with the A_{p} classes.
Theorem 3: The set of nonnegative functions which are BMO along with their reciprocals is contained in the intersection of all the A_{p} classes for $p>1$, i.e. $B M O_{*} \subseteq \bigcap_{p>1} A_{p}$.

Remarks.(1) Of course, if $b \in B M O_{*}$, then $1 / b \in B M O_{*} \subseteq \bigcap_{p>1} A_{p}$ and (1) above implies $\ln b \in \operatorname{clos}_{B M O} L^{\infty}$.
(2) The class $B M O_{*}$ is non-empty. For example, $b_{1}(x)=\max (\ln 1 /|x|, e) \in B M O$ and $1 / b_{1} \in L^{\infty} \subseteq B M O$. Moreover, if we take

$$
b_{2}(x)=\max \left(\ln 1 /|x|, 1 / \ln \left(|x| e^{2}\right)\right)
$$

we get an example of a function which is unbounded and whose inverse is unbounded, yet both $b_{2}, 1 / b_{2} \in B M O$.
(3) The result is sharp in the sense that the function b in the theorem cannot be in A_{1} since if it were, $1 / b$ would also be in A_{1} and then by a result of Johnson and Neugebauer [3, Lemma 2.2], $b \simeq 1$.
(4) The converse is, however, not true because with the same function b_{1} as above, b_{1}^{2} satisfies $1 / b_{1}^{2} \in L^{\infty}$ and $\ln b_{1}^{2}=2 \ln b_{1} \in \operatorname{clos}_{B M O} L^{\infty}$ and therefore $b_{1}^{2} \in \bigcap_{p>1} A_{p}$ and $\frac{1}{b_{1}^{2}} \in \bigcap_{p>1} A_{p}$, but $b_{1}^{2} \notin B M O$.

We will prove Theorem 3 as a special case of a more general result, but let us indicate how it can be proved directly. The first step is a lemma.

Lemma 3: Let us denote by

$$
f_{Q}=\frac{1}{|Q|} \int_{Q} f(x) d x
$$

then we have

$$
(f g)_{Q}-f_{Q} g_{Q}=\frac{1}{|Q|} \int_{Q}\left(f(x)-f_{Q}\right)\left(g(x)-g_{Q}\right) d x
$$

Proof. Compute and use the fact that $g-g_{Q}$ has mean value zero.
We are ready for the first step in this version of the proof of Theorem 3.
Theorem 4: Suppose $b \in B M O_{*}$, then b is in A_{2}.

Proof. Apply Lemma 3 to b and $1 / b$ which gives

$$
1-b_{Q}(1 / b)_{Q}=\frac{1}{|Q|} \int_{Q}\left(b(x)-b_{Q}\right)\left(1 / b(x)-(1 / b)_{Q}\right) d x
$$

and allows us to make the estimate $\left|1-b_{Q}(1 / b)_{Q}\right| \leq\|b\|_{*}\|1 / b\|_{*}$. Hölder's inequality shows that $1 \leq b_{Q}(1 / b)_{Q}$ and the above becomes $1 \leq b_{Q}(1 / b)_{Q} \leq 1+\|b\|_{*}\|1 / b\|_{*}$.

Theorem 5: If $b \in B M O_{*}$, then $b \in A_{3 / 2}$.
For the proof of this statement we have to estimate

$$
\left(\frac{1}{|Q|} \int_{Q} b\right)\left(\frac{1}{|Q|} \int_{Q} \frac{1}{b^{2}}\right)^{1 / 2} .
$$

First we require another lemma.
Lemma 4: With the same notation as in Lemma 3, we have

$$
\begin{gathered}
\frac{1}{|Q|} \int_{Q}\left(f(t)-f_{Q}\right)\left(g(t)-g_{Q}\right)\left(h(t)-h_{Q}\right)\left(l(t)-l_{Q}\right) d t \\
=(f g h l)_{Q}-f_{Q}(g h l)_{Q}-g_{Q}(f h l)_{Q}-h_{Q}(f g l)_{Q}-l_{Q}(f g h)_{Q}+f_{Q} g_{Q}(h l)_{Q} \\
+f_{Q} h_{Q}(g l)_{Q}+f_{Q} l_{Q}(g h)_{Q}+g_{Q} h_{Q}(f l)_{Q}+g_{Q} l_{Q}(f h)_{Q} \\
+h_{Q} l_{Q}(f g)_{Q}-3 f_{Q} g_{Q} h_{Q} l_{Q}
\end{gathered}
$$

Proof. We expand the integrand and compute the resulting terms.
Take $f=h=b, g=l=\frac{1}{b}$. We obtain

$$
\begin{gathered}
1-b_{Q}\left(\frac{1}{b}\right)_{Q}-\left(\frac{1}{b}\right)_{Q} b_{Q}-b_{Q}\left(\frac{1}{b}\right)_{Q}-\left(\frac{1}{b}\right)_{Q} b_{Q} \\
+\left\{b_{Q}\left(\frac{1}{b}\right)_{Q}+\left(b_{Q}\right)^{2}\left(\frac{1}{b^{2}}\right)_{Q}+b_{Q}\left(\frac{1}{b}\right)_{Q}+\left(\frac{1}{b}\right)_{Q} b_{Q}+\left(\left(\frac{1}{b}\right)_{Q}\right)^{2}\left(b^{2}\right)_{Q}+b_{Q}\left(\frac{1}{b}\right)_{Q}\right\} \\
-3\left(b_{Q}\right)^{2}\left(\left(\frac{1}{b}\right)_{Q}\right)^{2} \\
=\frac{1}{|Q|} \int_{Q}\left(b(t)-b_{Q}\right)^{2}\left(\frac{1}{b}(t)-\left(\frac{1}{b}\right)_{Q}\right)^{2} d t
\end{gathered}
$$

This allows us to estimate

$$
1+\left(b_{Q}\right)^{2}\left(\frac{1}{b^{2}}\right)_{Q}+\left(\left(\frac{1}{b}\right)_{Q}\right)^{2}\left(b^{2}\right)_{Q}-3\left(b_{Q}\right)^{2}\left(\left(\frac{1}{b}\right)_{Q}\right)^{2} \leq\|b\|_{*, 4}^{2}\left\|\frac{1}{b}\right\|_{*, 4}^{2}
$$

which means that

$$
1+\left(b_{Q}\right)^{2}\left(\frac{1}{b^{2}}\right)_{Q}+\left(\left(\frac{1}{b}\right)_{Q}\right)^{2}\left(b^{2}\right)_{Q} \leq 3\left(b_{Q}\right)^{2}\left(\left(\frac{1}{b}\right)_{Q}\right)^{2}+\|b\|_{*, 4}^{2}\left\|\frac{1}{b}\right\|_{*, 4}^{2}
$$

In particular, $b_{Q}\left(\frac{1}{b^{2}}\right)_{Q}^{1 / 2} \leq\|b\|_{*}\left\|\frac{1}{b}\right\|_{*}+\sqrt{3} A_{2}(b)$, which proves that

$$
A_{3 / 2}(b) \leq \sqrt{3}+(\sqrt{3}+1)\|b\|_{*}\left\|\frac{1}{b}\right\|_{*}
$$

The remainder of the direct proof of Theorem 3 proceeds like this. To prove that $b, 1 / b$ are in $A_{4 / 3}$ do the corresponding formula with 8 terms of which 4 are b and 4 are $1 / b$, etc. \ldots.

3. A_{p} weights whose reciprocals are A_{p} weights

We will now obtain Theorem 3 as a special case of the next result.
Theorem 6: Suppose $1<p_{0} \leq 2$. Then the following are equivalent.

$$
\begin{gather*}
w, 1 / w \in A_{p_{0}} \tag{2}\\
L_{Q}=\frac{1}{|Q|} \int_{Q}\left|w-w_{Q}\right|^{p_{0}^{\prime}-1}\left|\frac{1}{w}-\left(\frac{1}{w}\right)_{Q}\right|^{p_{0}^{\prime}-1} \leq c<+\infty . \tag{3}
\end{gather*}
$$

Proof. Suppose (2) holds. Let $r=p_{0}^{\prime}-1 \geq 1$. Note that

$$
\begin{aligned}
L_{Q} & \leq \frac{1}{|Q|} \int_{Q}\left|w^{r}-\left(w_{Q}\right)^{r}\right|\left|\frac{1}{w^{r}}-\left(\frac{1}{w}\right)_{Q}^{r}\right| \\
& \leq 1+\left(w^{r}\right)_{Q}\left(\frac{1}{w}\right)_{Q}^{r}+w_{Q}^{r}\left(\frac{1}{w^{r}}\right)_{Q}+w_{Q}^{r}\left(\frac{1}{w}\right)_{Q}^{r} \\
& \leq 1+A_{p_{0}}\left(\frac{1}{w}\right)+A_{p_{0}}(w)+A_{2}(w)^{r} \leq c<+\infty
\end{aligned}
$$

because $w \in A_{p_{0}}$ implies $w \in A_{2}$.
Conversely, if (3) holds, then we first note that $w \in A_{2}$. This follows from the next sequence of inequalities:

$$
\begin{aligned}
c^{1 / r} & \geq L_{Q}^{1 / r} \geq \frac{1}{|Q|} \int_{Q}\left|w-w_{Q}\right|\left|\frac{1}{w}-\left(\frac{1}{w}\right)_{Q}\right| \\
& \geq \frac{1}{|Q|} \int_{Q}\left(w-w_{Q}\right)\left(\left(\frac{1}{w}\right)_{Q}-\frac{1}{w}\right) \\
& =w_{Q}\left(\frac{1}{w}\right)_{Q}-1-w_{Q}\left(\frac{1}{w}\right)_{Q}+w_{Q}\left(\frac{1}{w}\right)_{Q}
\end{aligned}
$$

We use the fact that if $r \geq 1$, then $\left|a^{r}-b^{r}\right| \geq \frac{a^{r}}{2^{r-1}}-b^{r}$. Write

$$
\left|\left(w-w_{Q}\right)\left(\frac{1}{w}-\left(\frac{1}{w}\right)_{Q}\right)\right|=\left|w\left(\frac{1}{w}\right)_{Q}+\frac{1}{w} w_{Q}-\left(w_{Q}\left(\frac{1}{w}\right)_{Q}+1\right)\right|
$$

which allows us to estimate the integrand below by

$$
\begin{aligned}
\left|\left(w-w_{Q}\right)\left(\frac{1}{w}-\left(\frac{1}{w}\right)_{Q}\right)\right|^{r} & \geq \frac{1}{2^{r-1}}\left\{w\left(\frac{1}{w}\right)_{Q}+\frac{1}{w} w_{Q}\right\}^{r}-\left(w_{Q}\left(\frac{1}{w}\right)_{Q}+1\right)^{r} \\
& \geq \frac{1}{2^{r-1}}\left\{w^{r}\left(\frac{1}{w}\right)_{Q}^{r}+\frac{1}{w^{r}} w_{Q}^{r}\right\}-\left(w_{Q}\left(\frac{1}{w}\right)_{Q}+1\right)^{r}
\end{aligned}
$$

Now we take the average of this over Q which gives

$$
\frac{1}{2^{r-1}}\left\{\left(w^{r}\right)_{Q}\left(\frac{1}{w}\right)_{Q}^{r}+\left(\frac{1}{w^{r}}\right)_{Q} w_{Q}^{r}\right\} \leq c+\left(A_{2}(w)+1\right)^{r},
$$

and we conclude that $w, \frac{1}{w} \in A_{p_{0}}$.
Theorem 3 follows from this result; in fact, we obtain the estimate

$$
L_{Q} \leq\|w\|_{*, p\left(p_{0}^{\prime}-1\right)}^{p_{0}^{\prime}-1}\left\|\frac{1}{w}\right\|_{*, p^{\prime}\left(p_{0}^{\prime}-1\right)}^{p_{0}^{\prime}-1}
$$

and as $B M O$ is characterized by $\|f\|_{*, p}$ for any $p>0$, we can have any $p_{0}>1$ which proves the result.

Although we proved Theorem 6 for A_{p}, it immediately implies a result about $R H_{r}$.

Theorem 7: The following statements are equivalent for $1 \leq r<\infty$:

$$
\begin{gather*}
w, 1 / w \in R H_{r} \tag{4}\\
w, 1 / w \in A_{1+1 / r} \tag{5}\\
w^{r} \in A_{2} \tag{6}
\end{gather*}
$$

Proof. (4) \rightarrow (5). Since $w^{r}, 1 / w^{r} \in A_{\infty}$, we have that $w^{r}, 1 / w^{r} \in A_{2}$, and hence $w, 1 / w \in A_{1+1 / r}$.
$(5) \rightarrow(4) . w \in A_{1+1 / r} \rightarrow 1 / w \in R H_{r}$. Similarly, $w \in R H_{r}$.
$(4) \rightarrow(6)$. Since $w^{r}, 1 / w^{r} \in A_{\infty}$, we have that $w^{r} \in A_{2}$ as above.
(6) \rightarrow (4). Since $w^{r} \in A_{2}, w \in A_{1+1 / r} \rightarrow 1 / w \in R H_{r}$. From the fact that $w^{r} \in A_{2}$, it follows that $w^{-r} \in A_{2}$ and this implies that we can apply the above remark to $1 / w$.

Theorem 8: Suppose $u \in B M O$ and $\alpha>0$. Then $u^{2}+\alpha \in \bigcap_{p>1} A_{p}$.
Proof. For any $\lambda>0$, write $\lambda u=w_{\lambda}-1 / w_{\lambda}$, for some $w_{\lambda} \in B M O_{*}$. Then $\lambda^{2} u^{2}=w_{\lambda}^{2}+\frac{1}{w_{\lambda}^{2}}-2$. By Theorem 7, $w_{\lambda}^{2} \in A_{\infty}$ and since $w_{\lambda} \in \bigcap_{p>1} A_{p}$, by Lemma 2.4 in [3], $w_{\lambda}^{2} \in \bigcap_{p>1} A_{p}$ and a similar result holds for $\frac{1}{w_{\lambda}^{2}}$. This shows that $\lambda^{2} u^{2}+2 \in \bigcap_{p>1} A_{p}$ and hence, $u^{2}+\frac{2}{\lambda^{2}} \in \bigcap_{p>1} A_{p}$. Since λ is an arbitrary positive number, the result follows.

References

[1] García-Cuerva, J. and Rubio de Francia, J. L.: Weighted norm inequalities and related topics, (North Holland Math. Studies: Vol. 116), Amsterdam: North-Holland, 1985.
[2] Johnson, R. L.: Behaviour of BMO under certain functional operations. Preprint University of Maryland, September 1975.
[3] Johnson, R. L. and Neugebauer, C. J.: Homeomorphisms preserving A_{p}, Rev. Mat. Iberoamericana, 3(2), 1987, 249-273.
[4] Meyers, N. G.: Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc., 15(1964), 717-721.
R. L. Johnson

Supported by a grant from the NSF
Department of Mathematics
University of Maryland
College Park, Maryland 20742
and
C. J. Neugebauer

Department of Mathematics
Purdue University
West Lafayette, Indiana 47907
June 21, 1991

