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High-Level View

In this talk, we discuss Euclidean embeddings of metric spaces induced by
representations of permutation (sub)groups Sn on linear spaces V .
Problem: Construct bi-Lipschitz embeddings of the metric space
V̂ = V / ∼ of orbits, α : V̂ → Rm, where d(x̂ , ŷ) = minu∈x̂ ,v∈ŷ ‖u − v‖V .

Today we focus on the case V = Rn×d , X ∼ Y ⇔ Y = PX for some
P ∈ Sn.
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Graph Learning Problems

Given a data graph (e.g., social network, transportation network, citation
network, chemical network, protein network, biological networks):

Graph adjacency or weight matrix, A ∈ Rn×n;
Data matrix, X ∈ Rn×r , where each row corresponds to a feature
vector per node.

Contruct a map f : (A,X )→ f (A,X ) that performs:
1 classification: f (A,X ) ∈ {1, 2, · · · , c}
2 regression/prediction: f (A,X ) ∈ R.

Key observation: The outcome should be invariant to vertex permutation:
f (PAPT ,PX ) = f (A,X ), for every P ∈ Sn.
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Graph Convolution Networks (GCN), Graph Neural
Networks (GNN)

General architecture of a GCN/GNN

GCN (Kipf and Welling (’16)) choses Ã = I + A; GNN (Scarselli et.al.
(’08), Bronstein et.al. (’16)) choses Ã = pl (A), a polynomial in adjacency
matrix. L-layer GNN has parameters (p1,W1,B1, · · · , pL,WL,BL).

Note the covariance (or, equivariance) property: for any P ∈ O(n)
(including Sn), if (A,X ) 7→ (PAPT ,PX ) and Bi 7→ PBi then Y 7→ PY .
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Deep Learning with GCN/GNN
The approach for the two learning tasks (classification or regression) is
based on the following scheme (see also Maron et.al. (‘19)):

where α is a permutation invariant map (embedding), and SVM/NN is a
single-layer or a deep neural network (Support Vector Machine or a Fully
Connected Neural Network) trained on invariant representations.
The purpose of this talk is to analyze the α component.
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The metric space V̂ when V = Rn×d

Recall the equivalence relation ∼ on V = Rn×d induced by the group of
permutation matrices Sn acting on V by left multiplication: for any
X ,X ′ ∈ Rn×d ,

X ∼ X ′ ⇔ X ′ = PX , for some P ∈ Sn

Let R̂n×d = Rn×d/ ∼ be the quotient space endowed with the natural
distance induced by Frobenius norm ‖ · ‖F

d(X̂1, X̂2) = min
P∈Sn

‖X1 − PX2‖F , X̂1, X̂2 ∈ R̂n×d .

The computation of the minimum distance is performed by solving the
Linear Assignment Problem (LAP) whose convex relaxation is exact:

max
P∈Sn

trace(PX2X T
1 ) = max

W∈DS(n)
trace(WX2X T

1 )

where DS(n) = {W ∈ [0, 1]n×n : W 1 = 1,W T 1 = 1} is the convex set of
doubly stochastic matrices.
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The embedding problem

Problem: Construct a bi-Lipschitz embedding α̂ : R̂n×d → Rm, i.e., an
integer m = m(n, d), a map α : Rn×d → Rm with constants
0 < a ≤ b <∞ so that for any X ,X ′ ∈ Rn×d ,

1 If X ∼ X ′ then α(X ) = α(X ′).
2 If α(X ) = α(X ′) then X ∼ X ′.
3 a · d(X̂ , X̂ ′) ≤ ‖α(X )− α(X ′)‖2 ≤ b · d(X̂ , X̂ ′).

where d(X̂ , X̂ ′) = minP∈Sn ‖X − PX ′‖F .
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A Universal Embedding

Consider the map

µ : R̂n×d → P(Rd ) , µ(X )(x) = 1
n

n∑
k=1

δ(x − xk)

where P(Rd ) denotes the convex set of probability measures over Rd , and
δ denotes the Dirac measure. xk is the kth row of X .
Clearly µ(X ′) = µ(X ) iff X ′ = PX for some P ∈ Sn.
The Wasserstein-2 distance is equivalent to the natural metric:

W2(µ(X ), µ(Y ))2 := inf
q∈J(µ(X),µ(Y ))

Eq[‖x − y‖2
2] = min

P∈Sn
‖Y − PX‖2

By Kantorovich-Rubinstein theorem, the Wasserstein-1 distance (the Earth moving distance)
extends to a norm on the space of signed Borel measures.
Main drawback: P(Rd ) is infinite dimensional!
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Finite Dimensional Embeddings
Idea: “Project” the measure onto a finite dimensional space. This is
accomplished by kernel methods:
Fix a family of functions f1, · · · , fm and consider:

µ(X ) 7→
∫
Rd

fj(x)dµ(X ) = 1
n

n∑
k=1

fj(xk) , j ∈ [m]

Possible choices:
1 Polynomial embeddings: R[X ]Sn , ring of invariant polynomials;

[Lipman&al.],[Peyré&al.],[Sanay&al.],[Kemper book] ...
2 Gaussian kernels: fj(x) = exp(−‖x − aj‖2/σ2

j ) ;
[Gilmer&al.],[Zaheer&al.], [Vinyals&al.],...

3 Fourier kernels (cmplx embd): fj(x) = exp(2πi〈x , ωj〉); related to
Prony method; [Li&Liao] for bi-Lipschitz estimates.

Main drawback: No global bi-Lipschitz embeddings [Cahill&al.]. Ok on
(some) compacts.
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The Max Pool approach
The idea is provided by the following observation.
Let ↓: Rn → Rn denote the sorting map x 7→ ↓ x = Πx , Π ∈ Sn, so that

(Πx)1 ≥ (Πx)2 ≥ · · · ≥ (Πx)n.

Lemma
↓: R̂n → Rn is an isometry (hence bi-Lipschitz):

‖ ↓ (x)− ↓ (y)‖ = min
P∈Sn

‖x − Py‖ , for all x , y ∈ Rn.

Proof is based on the rearrangement inequality (see Wikipedia, or
Hardy-Littlewood-Pólya “Inequalities” §10.2).

Our main goal is to extend this construction from Rn to Rn×d
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The Encoder βA
Notations

Recall the equivalence relation, for X ,Y ∈ Rn×d ,

X ∼ Y ⇔ ∃Π ∈ Sn , Y = ΠX

that induces a quotient space R̂n×d = Rn×d/ ∼ and the natural distance

d : R̂n×d × R̂n×d → R , d(X ,Y ) = min
Π∈Sn

‖X − ΠY ‖F

In the following we look for an Euclidean embedding of the form

βA : Rn×d → Rn×D , βA(X ) =↓ (XA)

where ↓ (·) sorts decreasingly each column of ·, independently.
The matrix A ∈ Rd×D is called the key of encoder βA.
The key is called universal if β̂A : R̂n×d → Rn×D is injective.
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Intuition behind universality of keys

Consider the case
n = 2 , d = 3

X=

[
X11 X12 X13
X21 X22 X23

]
.
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Intuition behind universality of keys

X=

[
X11 X12 X13
X21 X22 X23

]
.

Y =↓ X

Y =

[
Y11 Y12 Y13
Y21 Y22 Y23

]
.

Information lost!

Radu Balan (UMD) Permutation Invariant Embeddings 03/17/2022



Motivation V = Rn×d Sorting Numerics

Intuition behind universality of keys

X=

[
X11 X12 X13
X21 X22 X23

]
.

Y =↓ X

Y =

[
Y11 Y12 Y13
Y21 Y22 Y23

]
.

Radu Balan (UMD) Permutation Invariant Embeddings 03/17/2022



Motivation V = Rn×d Sorting Numerics

Intuition for this encoder

X=

[
X11 X12 X13
X21 X22 X23

]
.

Y =↓
[

X Xa
]

Y =

[
Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

]
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Three results (1)
Existence of Universal Keys

Theorem

Consider the metric space (R̂n×d , d). Set D = 1 + (d − 1)n! and let
A ∈ Rd×D be a matrix whose columns form a full spark frame. Then the
key A is universal and the induced map β̂A : R̂n×d → Rn×D,
β̂A(X̂ ) =↓ (XA) is injective. Furthermore, β̂A is bi-Lipschitz with constants
a0 = minJ⊂[D],|J|=d sd (A[J ]) and b0 = s1(A), where s1(A) denotes the
largest singular value of A, A[J ] denotes the submatrix of A formed by
columns indexed by J, and sd (A[J ]) denotes the d th singular value (in this
case, the smallest) of A[J ]. Specifically, for any X ,Y ∈ Rn×d ,

a0d(X̂ , Ŷ ) ≤ ‖βA(X )− βA(Y )‖ ≤ b0d(X̂ , Ŷ ) (3.1)

where all norms are Frobenius norms.
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Three results (2)
Bi-Lipschitz Property of Universal Keys

Theorem

Assume the key A ∈ Rd×D is universal, i.e., the induced map
β̂A : R̂n×d → Rn×D, X 7→ βA(X ) =↓ (XA) is injective. Then β̂A is
bi-Lipschitz, that is, there are constants a0 > 0 and b0 > 0 so that for all
X ,Y ∈ Rn×d ,

a0 d(X̂ , Ŷ ) ≤ ‖βA(X )− βA(Y )‖ ≤ b0 d(X̂ , Ŷ ) (3.2)

where all are Frobenius norms. Furthermore, an estimate for b0 is provided
by the largest singular value of A, b0 = s1(A).
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Three results (3)
Dimension Reduction

Theorem

Assume A ∈ Rd×D is a universal key for R̂n×d with D ≥ 2d. Then, for
m ≥ 2nd, a generic linear operator B : Rn×D → Rm with respect to
Zariski topology on Rn×D×m, the map

β̂A,B : R̂n×d → R2nd , β̂A,B(X̂ ) = B
(
β̂A(X̂ )

)
(3.3)

is bi-Lipschitz. In particular, almost every full-rank linear operator
B : Rn×D → R2nd produces such a bi-Lipschitz map.

This result is compatible with a Whitney embedding theorem with the
important caveat that the Whitney embedding result applies to smooth
manifolds, whereas R̂n×d is not a manifold.
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Highlights of proofs
Universal keys

The upper bound is imediate. For lower bound, fix X ,Y ∈ Rn×d :

‖βA(X )− βA(Y )‖2
2 =

D∑
k=1
‖ ↓ (Xak)− ↓ (Yak)‖2

2 =
D∑

k=1
‖PkXak − QkYak‖2

2

Πk :=QT
k Pk=

D∑
k=1
‖(ΠkX − Y )ak‖2

2

≥
d∑

j=1
‖(Πkj X − Y )akj‖

2
2

so that Πk1 = · · · = Πkd = Π0 (pigeonhole principle: needs
D > (d − 1)n!). Then:

‖βA(X )− βA(Y )‖2
2 ≥

d∑
j=1
‖(Π0X − Y )akj‖

2
2

full spark
≥ sd (A[J ])2‖Π0X − Y ‖2

≥ sd (A[J ])2 min
Π∈Sn

‖ΠX − Y ‖2 = sd (A[J ])2d(X̂ , Ŷ )2
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Highlights of proofs
Bi-Lipschitz Property

The proof resembles the treatment of phase retrieval problem:
1 Homogeneity and compactness reduce the problem to local analysis.
2 The encoder is “locally” linearized. The failure of local lower

Lipschitz bound implies a certain behavior for a Quadratically
Constrained Ratio of Quadratics (QCRQ).

3 QCRQ has a minimizer:inf ⇒ min. [Teboulle&al.]
This step took most of time and lots of (self)convincing !

4 Contradiction to injectivity assumption.
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Highlights of proofs
Dimension Reduction

The proof follows the approach in [Cahill&al.], [Dufresne]:

0 = B(βA(X ))− B(βA(Y ))⇒ βA(X )− βA(Y ) ∈ ker(B)

Need to show: βA(X )− βA(Y ) = 0, or, Ran(∆) ∩ ker(B) = {0}, where

∆ : Rn×d × Rn×d → Rn×D , ∆(X ,Y ) = βA(X )− βA(Y ).

In the polynomial case, [Cahill&al.] exploit arguments from algebraic
geometry. Here the problem is simpler since Ran(∆) is included in a finite
union of linear subspaces of dimension at most 2nd .
By a dimension argument it follows that the target space for B must be of
dimension at least 2nd to obtain an injective embedding. In this case,
generically, Ran(∆) and ker(B) intersect transversally.
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Towards universal keys

The arXiv preprint provides necessary and sufficient conditions for a key to
be universal.
Open Problem: Given (n, d) find the smallest dimension D so that there
exists a universal key A ∈ Rd×D for Rn×d .
So far we obtained (joint with Daniel Levy (UMD) ):

n d D-d
2 2 1
3 2 2
4 2 2
5 2 3
6 2 ≥ 4

Open Problem: If a universal key exists for a triple (n, d ,D) then is it true
that universal keys are generic in Rd×D ?
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The Protein Dataset

Protein Dataset: 663 non-enzymes and 450 enzymes out of 1113 proteins.
Each graph associated to one protein: nodes represent amino acids and
edges represent the bonds between them. Number of nodes (aminoacids):
varying between 20 and 620 with average of 39. Input feature vectors os
size r = 29.
Task: the task is classification of each protein into enzyme or non-enzyme.
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The Deep Network Architecture
Architecture: ReLU activation and

GCN with L = 3 layers and 29 input feature vectors, and 50 hidden
nodes in each layer; no dropouts, no batch normalization. output of
GCN: d = 1, 10, 50, 100.
Mid-layer component: α
Fully connected NN with dense 3-layers and 150 internal units; no
dropouts, with batch normalization.
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The Network

Training has been done over 300 epochs with a batch size of 128. Loss
function: binary cross-entropy.
The following 7 α modules have been tested:

1 identity: α(X ) = X ; no permutation invariance.
2 data augmentation: α(X ) = X BUT the training data set has been

augmented with 4 random permutatons of each graph.
3 ordering: α(X ) =↓ (XA), A = [I 1]
4 kernels: α(X ) = (∑n

k=1 exp(−‖xk − aj‖2))1≤j≤m=5nd
5 sumpooling: α(X ) = 1T X
6 sort-pooling: sorted by last column
7 set-to-set: introduced in [Vinyals&al.]
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Enzyme Classification Example
Training Loss: X Entropy
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Enzyme Classification Example
Accuracy on Training set
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Enzyme Classification Example
Accuracy on Holdout data
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Enzyme Classification Example
Accuracy on Holdout data with nodes randomly permuted
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Performance Results: Accuracy

d = 50 ordering kernels identity data
augment

sum-
pooling

sort-
pooling

set-2-
set

Training 83.1 78.8 91 96 79.2 83.7 76.7
Holdout 71.5 76.5 72.5 71 77 71 76

Holdout Perm 71.5 76.5 69.5 72 77 71 76

Table: Accuracy ACC(%) for enzyme/non-enzyme classification of the seven
algorithms on PROTEINS FULL dataset after 300 epochs for embedding
dimension d = 50

For comparison: [Dobson&al.] obtain an accuracy of 77-80% using an
SVM based classifier.
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The QM9 Dataset

Dataset: Consists of about 134,000 isomers of organic molecules made up
of CHONF, each containing 10-29 atoms. see
http://quantum-machine.org/datasets/ Nodes corresponds to atoms; each
feature vector containins geometry (x,y,z coordinates), partial charge per
atom (Mulliken charge), and atom type.
Task: the task is regression: predict a physical feature (electron energy
gap ∆ε) computed for each molecule.
Architecture: ReLU activation and

GCN with L = 3 layers and 50 hidden nodes in each layer; no
dropouts, no batch normalization; zero padding to m = 29 number of
rows. output of GCN: d = 1, 10, 50, 100.
Mid-layer component: α
Fully connected NN with dense 3-layers and 150 internal units in each
of the two hidden layers; no dropouts, with batch normalization.
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The Network

Training has been done over 300 epochs with a batch size of 128. Loss
function: Mean-Square Error (MSE).
The same 7 α modules have been tested:

1 identity: α(X ) = X ; no permutation invariance.
2 data augmentation: α(X ) = X BUT the training data set has been

augmented with 4 random permutatons of each graph.
3 ordering: α(X ) =↓ (XA), A = [I 1]
4 kernels: α(X ) = (∑n

k=1 exp(−‖xk − aj‖2))1≤j≤m=5nd
5 sumpooling: α(X ) = 1T X
6 sort-pooling: sorted by last column
7 set-to-set: introduced in [Vinyals&al.]
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QM9 Regression Example
Training MSE
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QM9 Regression Example
Validation MSE
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QM9 Regression Example
Validation MSE with Random Permutations
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Performance Results: MAE

d = 100 ordering kernels identity data
augment

sum-
pooling

sort-
pooling

set-2-
set

Training 0.155 0.269 0.139 0.164 0.178 0.199 0.173
Holdout 0.187 0.267 0.227 0.206 0.201 0.239 0.201

Holdout Perm 0.187 0.267 1.086 0.213 0.201 0.239 0.201

Table: Mean Absolute Error (MAE) for regression of the electron energy gap
∆ε = LUMO − HOMO (eV) of the seven algorithms on QM9 dataset after 300
epochs for embedding dimension d = 100

For comparison:
chemical accuracy is 0.043eV
the best ML method [Gilmer&al.] achieves MAE of 0.053eV
Coulomb method [Rupp&al.] achieves MAE of 0.229eV
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Thank you!
Questions?
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The Embedding Problem
Notations (2)

Definition
Fix X ∈ Rn×d . A matrix A ∈ Rd×D is called admissible for X if
β−1

A (βA(X )) = X̂ . In other words, if Y ∈ Rn×d so that ↓ (XA) =↓ (YA)
then there is Π ∈ Sn sot that Y = ΠX.

We denote by Ad ,D(X ) (or A(X )) the set of admissible keys for X .

Definition
Fix A ∈ Rd×D. A data matrix X ∈ Rn×d is said separated by A if
A ∈ A(X ).

We let S(A) denote the set of data matrices separated by A.
The key A is universal iff S(A) = Rn×d .
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Genericity Results for d ≥ 2
Admissible keys

Theorem
Let X ∈ Rn×d . For any D ≥ d + 1 the set Ad ,D(X ) of admissible keys for
X is dense in Rd×D with respect to Euclidean topology, and it is generic
with respect to Zariski topology. In particular, Rd×D \ Ad ,D(X ) has
Lebesgue measure 0, i.e., almost every key is admissible for X.

Proof
It is sufficient to consider the case D = d + 1. Also, it is sufficient to
analyze the case A = [Id b] and to show that a generic b ∈ Rd defines an
admissible key. The vector b ∈ Rd does not define an admissible key if
there are Ξ,Π1, · · · ,Πd ∈ Sn so that for Y = [Π1x1, · · · ,Πd xd ],

Yb = ΞXb but Y − ΠX 6= 0 , ∀Π ∈ Sn

Define the linear operator
B(Ξ; Π1, · · · ,Πd ) : Rd → Rn , B(Ξ; Π1, · · · ,Πd )b = ΞXb−[Π1x1, · · · ,Πd xd ]bRadu Balan (UMD) Permutation Invariant Embeddings 03/17/2022
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Genericity Results for d ≥ 2
Admissible keys

Proof - cont’d
Let

P =
{

(Π1, · · · ,Πd ) ∈ (Sn)d ∀Π ∈ Sn, ∃k ∈ [d ] s.t. (Π− Πk)xk 6= 0
}

Then

{b ∈ Rd : [Id b] not admissible for X} =
⋃

(Ξ;Π1,···,Πd )∈Sn×P
ker(B(Ξ; Π1, · · · ,Πd ))

It is now sufficient to show that each null space has dimension less than d .
Indeed, the alternative would mean B(Ξ; Π1, · · · ,Πd ) = 0 but this would
imply (Π1, · · · ,Πd ) 6∈ P. �
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Non-Universality of vector keys
Insufficiency of a single vector key

The following is a no-go result, which shows that there is no universal
single vector key for data matrices tall enough.

Proposition
If d ≥ 2 and n ≥ 3,⋃

X∈Rn×d

{b ∈ Rd : A = [Id b] not admissible forX} = Rd .

Consequently, ⋂
X∈Rn×d

Ad ,d+1(X ) = ∅.

On the other hand, for n = 2, d = 2, any vector b ∈ R2 with b1b2 6= 0
defines a universal key A = [I2 b].
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Non-Universality of vector keys
Insufficiency of a single vector key - cont’d

Proof
To show the result, it is sufficient to consider a counterexample for n = 3,
d = 2, with key b = [1, 1]T .

X =

 1 −1
−1 0
0 1

 , Y =

 1 0
−1 1
0 −1


Then Xb = [0,−1, 1]T and Yb = [1, 0,−1]T , yet X 6∼ Y . Thus [I2 b] is
not admissible for X .
Then note if a ∈ Rd so that [Id a] is admissible for X then for any P ∈ Sd
and L an invertible d × d diagonal matrix, L−1PT A ∈ Ad ,1(XPL). This
shows how for any b ∈ R2, one can construct X ∈ R3×2 so that
b 6∈ A2,1(X ).
For n > 3 or d > 2, proof follows by embedding this example.
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Genericity Results for d ≥ 2
Admissible Data Matrices

Theorem
Assume a ∈ Rd is a vector with non-vanishing entries, i.e., a1a2 · · · ad 6= 0.
Then for any n ≥ 1, S([Id a]) is dense in Rn×d and includes an open dense
set with respect to Zariski topology. In particular, Rn×d \ S([Id a]) has
Lebesgue measure 0, i.e., almost every data matrix X is separated by the
vector key a.

Corollary
Assume A ∈ Rd×(D−d) is a matrix such that at least one column has
non-vanishing entries. Then for any n ≥ 1, S([Id A]) is dense in Rn×d and
is generic with respect to Zariski topology. In particular, Rn×d \ S([Id A])
has Lebesgue measure 0, i.e., almost every data matrix X is separated by
the matrix key [Id A].
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Genericity Results for d ≥ 2
Admissible Data Matrices

Theorem
Assume a ∈ Rd is a vector with non-vanishing entries, i.e., a1a2 · · · ad 6= 0.
Then for any n ≥ 1, S([Id a]) is dense in Rn×d and includes an open dense
set with respect to Zariski topology. In particular, Rn×d \ S([Id a]) has
Lebesgue measure 0, i.e., almost every data matrix X is separated by the
vector key a.

Corollary
Assume A ∈ Rd×(D−d) is a matrix such that at least one column has
non-vanishing entries. Then for any n ≥ 1, S([Id A]) is dense in Rn×d and
is generic with respect to Zariski topology. In particular, Rn×d \ S([Id A])
has Lebesgue measure 0, i.e., almost every data matrix X is separated by
the matrix key [Id A].
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Proof that S([Id A]) is generic
The case D > d

Assume A ∈ Rd×(D−d) satisfies A1,kA2,k · · ·Ad ,k 6= 0 for some
k ∈ [D − d ]. The set of non-separated data matrices X ∈ Rn×d (i.e., the
complement of S([Id A])) factors as follows:

Rn×d\S([Id A]) =
⋃

(Ξ1,···,ΞD−d ;Π1,···,Πd )∈(Sn)D

(ker L(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ; A)\

\
⋃

Π∈Sn

ker M(Π,Π1, · · · ,Πd )

 (∗)

where, with A = [a1, · · · , aD−d ], X = [x1, · · · , xd ]:

L(Ξ1,···,ΞD−d ;Π1,···,Πd ;A):Rn×d→Rn×D−d , (L((...)X)k =[(Ξk−Π1)x1,···,(Ξk−Πd )xd ]ak , k∈[D−d]

M(Π,Π1,···,Πd ):Rn×d→Rn×d , M(Π,Π1,···,Πd )X=[(Π−Π1)x1,···,(Π−Πd )xd ]
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Proof that S(A) is generic
cont’d

1. The outer union can be reduced by noting that on the ”diagonal” ∆,
∆ = {(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ) ∈ (Sn)D , Π1 = Π2 = · · · = Πd}

M(Π1,Π1, · · · ,Πd ) = 0→
⋃

Π∈Sn

ker M(Π,Π1, · · · ,Πd ) = Rn×d

2. If (Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ) ∈ (Sn)D \∆ then for every k ∈ [D − d ]
there is j ∈ [d ] such that Ξk − Πj 6= 0. In particular choose the k column
of A that is non-vanishing. Let xj ∈ Rn so that (Ξk − Πj)xj 6= 0. Consider
the matrix X = [0, · · · , 0, xj , 0, · · · , 0] where xj is the only non identically 0
column. Claim: X 6∈ ker L(Ξ1, ...,Πd ; A). Indeed, the resulting k column
of L()X is Aj,k(Ξk − Πj)xj 6= 0. It follows that

dim ker L(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ; A) < nd

Hence Rn×d \ S([Id A]) is a finite union of subsets of closed linear spaces
properly included in Rn×d . This proves the theorem. �
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Additional Relations

Note the following relationship and matrix representation of X when
matrices are column-stacked:

M(Π,Π1, · · · ,Πd ) = L(Π, · · · ,Π; Π1, · · · ,Πd ; I)

L ≡


A1,1(Ξ1 − Π1) A2,1(Ξ1 − Π2) · · · Ad ,1(Ξ1 − Πd )
A1,2(Ξ2 − Π1) A2,2(Ξ2 − Π2) · · · Ad ,2(Ξ2 − Πd )

... ... . . . ...
A1,D−d (ΞD−d − Π1) A2,D−d (ΞD−d − Π2) · · · Ad ,D−d (ΞD−d − Πd )


a n(D − d)× nd matrix.
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