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Permutation Invariant Representations

Overview
Two related problems:
Given a discrete group G acting on a normed space V :

1 Construct a (bi)Lipschitz Euclidean embedding of the quotient space
V /G , α : V̂ → Rm.

2 Construct projections onto cosets, π : V → ŷ = {g .y , g ∈ G}.
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Overview
Two related problems:
Given a discrete group G acting on a normed space V :

1 Construct a (bi)Lipschitz Euclidean embedding of the quotient space
V /G , α : V̂ → Rm. Classification of cosets.

2 Construct projections onto cosets, π : V → ŷ = {g .y , g ∈ G}.
Optimizations within cosets.
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Permutation Invariant Representations

Overview
In this talk we discuss the first problem:
Given a discrete group G = Sn acting on a normed space V = Rn×d :

1 Construct a (bi)Lipschitz Euclidean embedding of the quotient space
V /G , α : V̂ → Rm. Application: Classification of cosets.

2 Construct the projections cosets, π : V → ŷ = {g .y , g ∈ G}.
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Permutation Invariant Representations

Notations

Permutation Invariant Representations
Consider the equivalence relation ∼ on V = Rn×d induced by the group of
permutation matrices Sn acting on V by left multiplication: for any
X ,X ′ ∈ Rn×d ,

X ∼ X ′ ⇔ X ′ = PX , for some P ∈ Sn

Let R̂n×d = Rn×d/ ∼ be the quotient space endowed with the natural
distance induced by Frobenius norm ‖ · ‖F

d(X̂1, X̂2) = min
P∈Sn

‖X1 − PX2‖F , X̂1, X̂2 ∈ R̂n×d .

The Problem: Construct a Lipschitz embedding α̂ : R̂n×d → Rm, i.e., an
integer m = m(n, d), a map α : Rn×d → Rm and a constant L = L(α) > 0
so that for any X ,X ′ ∈ Rn×d ,

1 If X ∼ X ′ then α(X ) = α(X ′)
2 If α(X ) = α(X ′) then X ∼ X ′
3 ‖α(X )− α(X ′)‖2 ≤ L · d(X̂ , X̂ ′) = L minP∈Sn ‖X − PX ′‖F
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Permutation Invariant Representations

Motivation

Motivation (1)
Graph Learning Problems

Given a data graph (e.g., social network, transportation network, citation
network, chemical network, protein network, biological networks):

Graph adjacency or weight matrix, A ∈ Rn×n;
Data matrix, X ∈ Rn×d , where each row corresponds to a feature
vector per node.

Contruct a map f : (A,X )→ f (A,X ) that performs:
1 classification: f (A,X ) ∈ {1, 2, · · · , c}
2 regression/prediction: f (A,X ) ∈ R.

Key observation: The outcome should be invariant to vertex permutation:
f (PAPT ,PX ) = f (A,X ), for every P ∈ Sn.
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Permutation Invariant Representations

Motivation

Motivation (2)
Graph Convolutive Networks (GCN), Graph Neural Networks (GNN)

General architecture of a GCN/GNN

GCN (Kipf and Welling (’16)) choses Ã = I + A; GNN (Scarselli et.al.
(’08), Bronstein et.al. (’16)) choses Ã = pl (A), a polynomial in adjacency
matrix. L-layer GNN has parameters (p1,W1,B1, · · · , pL,WL,BL).

Note the covariance (or, equivariance) property: for any P ∈ O(n)
(including Sn), if (A,X ) 7→ (PAPT ,PX ) and Bi 7→ PBi then Y 7→ PY .
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Permutation Invariant Representations

Motivation

Motivation (3)
Deep Learning with GCN
Our solution for the two learning tasks (classification or regression) is to
utilize the following scheme:

where α is a permutation invariant map (extractor), and SVM/NN is a
single-layer or a deep neural network (Support Vector Machine or a Fully
Connected Neural Network) trained on invariant representations.
The purpose of this talk is to analyze the α component.
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Permutation Invariant Representations

Motivation

Example on the Protein Dataset
Enzyme Classification Example

Protein Dataset: the task is classification of each protein into enzyme or
non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
No Permutation Invariant Component: α = Identity
Fully connected NN with dense 3-layers and 120 internal units.
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Permutation Invariant Representations

Embeddings

The Universal Embedding

Consider the map

µ : R̂n×d → P(Rd ) , µ(X )(x) = 1
n

n∑
k=1

δ(x − xk)

where P(Rd ) denotes the convex set of probability measures over Rd , and
δ denotes the Dirac measure.
Clearly µ(X ′) = µ(X ) iff X ′ = PX for some P ∈ Sn.

Main drawback: P(Rd ) is infinite dimensional!
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Permutation Invariant Representations

Embeddings

Finite Dimensional Embeddings
Architectures

Two classes of extractors [Zaheer et.al.17’ -’Deep Sets’]:
1 Pooling Map – based on Max pooling
2 Readout Map – based on Sum pooling

Intuition in the case d = 1:
Max pooling:

λ : Rn → Rn , λ(x) = x↓ := (xπ(k))n
k=1 , xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n)

Radu Balan (UMD) Permutations Invariant Representations 1/17/2020



Permutation Invariant Representations

Embeddings

Finite Dimensional Embeddings
Architectures

Two classes of extractors [Zaheer et.al.17’ -’Deep Sets’]:
1 Pooling Map – based on Max pooling
2 Readout Map – based on Sum pooling

Intuition in the case d = 1:
Max pooling:

λ : Rn → Rn , λ(x) = x↓ := (xπ(k))n
k=1 , xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n)

Radu Balan (UMD) Permutations Invariant Representations 1/17/2020



Permutation Invariant Representations

Embeddings

Max pooling as isometric embedding
The Pooling Map, i.e., sorting, produces an isometric embedding of the
quotient space:

Proposition
In the case d = 1, λ̂ : R̂n → Rn, x̂ 7→ x↓ is an isometric embedding:

1 λ̂ is injective
2 λ̂(x̂)− λ̂(ŷ) = d(x̂ , ŷ), for all x , y ∈ Rn

Proof
Claim is equivalent to: minΠ∈Sn ‖x − Πy‖ = ‖x↓ − y↓‖.

WLOG: Assume x = x↓, y = y↓. Then

argminΠ∈Sn‖x − Πy‖ = argminΠ∈Sn‖x − xn · 1− Π(y − yn · 1)‖

Therefore assume xn = yn = 0 and x , y ≥ 0. The conclusion now follows
by induction over n.
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Permutation Invariant Representations

Embeddings

Finite Dimensional Embeddings
Architectures

Two classes of extractors [Zaheer et.al.17’ -’Deep Sets’]:
1 Pooling Map – based on Max pooling
2 Readout Map – based on Sum pooling

Intuition in the case d = 1:
Max pooling:

λ : Rn → Rn , λ(x) = x↓ := (xπ(k))n
k=1 , xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n)

Sum pooling:
σ : Rn → Rn , σ(x) = (yk)n

k=1 , yk =
n∑

j=1
ν(ak , xj)

where kernel ν : R× R→ R, e.g. ν(a, t) = e−(a−t)2 , or ν(a = k, t) = tk .
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Permutation Invariant Representations

Embeddings

Pooling Mapping Approach
Fix a matrix R ∈ Rd×D. Consider the map:

Λ : Rn×d → Rn×D ≡ RnD , Λ(X ) = λ(XR)

where λ acts columnwise (reorders monotonically decreasing each
column). Since Λ(ΠX ) = Λ(X ), then Λ : R̂n×d → Rn×D.

Theorem
For any matrix R ∈ Rn,d+1 so that any n × n submatrix is invertible, there
is a subset Z ⊂ R̂n×d of zero measure so that Λ : R̂n×d \ Z → Rn×d+1 is
faithful (i.e., injective).

No known tight bound yet as to the minimum D = D(n, d) so that there
is a matrix R so that Λ is faithful (injective).
Due to local linearity, if Λ is faithful (injective), then it is stable
(bi-Lipschitz).
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Permutation Invariant Representations

Embeddings

Enzyme Classification Example
Extraction with Hadamard Matrix

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
α = Λ, Z = λ(YR) with R = [I Hadamard ]. D = 50, m = 50.
Fully connected NN with dense 3-layers and 120 internal units.
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Permutation Invariant Representations

Embeddings

Readout Mapping Approach
Kernel Sampling

Consider:

Φ : Rn×d → Rm , (Φ(X ))j =
n∑

k=1
ν(aj , xk) or (Φ(X ))j =

n∏
k=1

ν(aj , xk)

where ν : Rd × Rd → R is a kernel, and x1, · · · , xn denote the rows of
matrix X .
Known solutions: If m =∞, then there exists a Φ that is globally faithful
(injective) and stable on compacts.
Interesting mathematical connexion: On compacts, some kernels ν define
Repreducing Kernel Hilberts Spaces (RKHSs) and yield a decomposition

(Φ(X ))j =
∑
p≥1

σpfp(aj)gp(X )
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Permutation Invariant Representations

Embeddings

Enzyme Classification Example
Feature Extraction with Exponential Kernel Sampling

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
Ext : Zj =

∑n
k=1 exp(−‖yk − zj‖2) with m = 120 and zj random.

Fully connected NN with dense 3-layers and 120 internal units.
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Permutation Invariant Representations

Embeddings

Readout Mapping Approach
Polynomial Expansion - Quadratics

Another interpretation of the moments for d = 1: using Vieta’s formula,
Newton-Girard identities

P(X ) =
N∏

k=1
(X − xk)↔ (

∑
k

xk ,
∑

k
x2

k , ...,
∑

k
xn

k )

For d > 1, consider the quadratic d-variate polynomial:
P(Z1, · · · ,Zd ) =

n∏
k=1

(
(Z1 − xk,1)2 + · · ·+ (Zd − xk,d )2

)

=
2n∑

p1,...,pd =0
ap1,...,pd Zp1

1 · · ·Z
pd
d

Encoding complexity:
m =

(
2n + d

d

)
∼ (2n)d .
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Permutation Invariant Representations

Embeddings

Readout Mapping Approach
Polynomial Expansion - Quadratics (2)

A more careful analysis of P(Z1, ...,Zd ) reveals a form:

P(Z1, ...,Zd ) = tn+Q1(Z1, ...,Zd )tn−1+· · ·+Qn−1(Z1, ...,Zd )t+Qn(Z1, ...,Zd )

where t = Z 2
1 + · · ·+ Z 2

d and each Qk(Z1, ...,Zd ) ∈ Rk [Z1, ...,Zd ]. Hence
one needs to encode:

m =
(

d + 1
1

)
+
(

d + 2
2

)
+ · · ·+

(
d + n

n

)
=
(

d + n + 1
n

)
− 1

number of coefficients.
A significant drawback: Inversion is very hard and numerically unstable.
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Embeddings

Readout Mapping Approach
Polynomial Expansion - Linear Forms

A stable embedding can be constructed as follows (see also Gobels’
algorithm (1996) or [Derksen, Kemper ’02]).
Consider the n linear forms λk(Z1, ...,Zd ) = xk,1Z1 + · · · xk,dZd . Construct
the polynomial in variable t with coefficients in R[Z1, ...,Zd ]:

P(t) =
n∏

k=1
(t−λk(Z1, ...,Zd )) = tn−e1(Z1, ..,Zd )tn−1+· · · (−1)nen(Z1, ...,Zd )

The elementary symmetric polynomials (e1, ..., en) are in 1-1
correspondence (Newton-Girard theorem) with the moments:

µp =
n∑

k=1
λp

k(Z1, ...,Zd ) , 1 ≤ p ≤ n
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Embeddings

Readout Mapping Approach
Polynomial Expansion - Linear Forms (2)

Each µp is a homogeneous polynomial of degree p in d variables. Hence to

encode each of them one needs
(

d + p − 1
p

)
coefficients. Hence the

total embedding dimension is

m =
(

d
1

)
+
(

d + 1
2

)
+ · · ·+

(
d + n − 1

n

)
=
(

d + n
n

)
− 1

For d = 1, m = n which is optimal.

For d = 2, m = n2+3n
2 . Is this optimal?
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Embeddings

Algebraic Embedding
Encoding using Complex Roots

Idea: Consider the case d = 2. Then each x1, · · · , xn ∈ R2 can be replaced
by n complex numbers z1, · · · , zn ∈ C, zk = xk,1 + ixk,2.
Consider the complex polynomial:

Q(z) =
n∏

k=1
(z − zk) = zn +

n∑
k=1

σkzn−k

which requires n complex numbers, or 2n real numbers.

Open problem: Can this construction be extended to d ≥ 3?
Remark: A drawback of polynomial (algebraic) embeddings: [Cahill’19]
showed that polynomial embeddings of translation invariant spaces cannot
be bi-Lipschitz.
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